180. Own proposed problem from CRUX (with complex numbers).

by Virgil Nicula, Dec 1, 2010, 10:27 AM

Quote:
Proposed problem (own). Let $z\in\mathbb C^*$ and $n\in\mathbb N$ , where $n\ge 2$ . Prove that $\boxed{\ \left| {z^n+\frac{1}{z^n}}\right|\le 2\Longrightarrow \left| z+\frac 1z\right| \le 2\ }$ (CRUX, 3242/4/2007).

Proof 1 (directly - own). Show easily that $ \left\{\begin{array}{c} n\in\mathbb N^*\ ,\ x\in\mathbb R \\
 \\
r\in \mathbb R\ ,\ 0 < r\ne 1\end{array}\right\|$ $ \implies$ $ \left\{\begin{array}{cc} 1\blacktriangleright & |\sin nx|\le n\cdot |\sin x| \\
 \\
2\blacktriangleright & n\cdot\left|r - \frac 1r\right|\le \left|r^n - \frac {1}{r^n}\right|\end{array}\right\|$ .

Proof of the inequality (1)

Proof of the inequality (2)

Denote $ z = r\cdot(\cos\phi + i\cdot\sin \phi )$ for which $ \left|z^n + \frac {1}{z^n}\right|\le 2$ . Thus, $ \left|r^n\cdot (\cos\phi + i\cdot\sin\phi ) + \frac {1}{r^n}\cdot (\cos n\phi - i\cdot\sin n\phi )\right|\le 2$ $ \Longleftrightarrow$

$ \left|\left(r^n + \frac {1}{r^n}\right)\cdot\cos n\phi + i\cdot\left(r^n - \frac {1}{r^n}\right)\cdot\sin n\phi\right| \le 2$ $ \Longleftrightarrow$ $ \left(r^n + \frac {1}{r^n}\right)^2\cdot\cos^2 n\phi + \left(r^n - \frac {1}{r^n}\right)^2\cdot\sin^2 n\phi \le 4$ $ \Longleftrightarrow$

$ r^{2n} + \frac {1}{r^{2n}} + 2\cdot\cos 2n\phi \le 4$ $ \Longleftrightarrow$ $ \left(r^n - \frac {1}{r^n}\right)^2\le 4\cdot\sin^2n\phi$ $ \Longleftrightarrow$ $ \left|r^n - \frac {1}{r^n}\right|\le2\cdot|\sin n\phi |$ . In conclusion,

$ \boxed {\ \left|z^n + \frac {1}{z^n}\right|\le 2\ \Longleftrightarrow\ \left|r^n - \frac {1}{r^n}\right|\le2\cdot|\sin n\phi |\ }$ . For $ n = 1$ obtain : $ \boxed {\ \left|z + \frac {1}{z}\right|\le 2\ \Longleftrightarrow\ \left|r - \frac {1}{r}\right|\le2\cdot|\sin \phi |\ }$ . Using the upper

relations $ (1)$ and $(2)$ obtain that $ n\cdot\left|r - \frac 1r\right|\stackrel {(2)}{\ \le\ }\left|r^n - \frac {1}{r^n}\right|\le 2\cdot |\sin n\phi |\stackrel {(1)}{\ \le\ } 2n\cdot |\sin\phi |$ $ \Longrightarrow$ $ \left|r - \frac 1r\right|\le 2\cdot |\sin\phi |$ $ \Longleftrightarrow$ $ \left|z + \frac 1z\right|\le 2$ .

Remark. This problem points out a very interesting property of the structure of complex numbers :

Quote:
Denote the set $ \mathbb A$ of the complex numbers $ z\in\mathbb C^*$ for which $ \left|z + \frac 1z\right|\le 2$ and for $ z\in \mathbb A$ denote
the set $ \mathbb A_n(z)$ of the complex numbers $ \omega$ for which $ \omega^n = z$ , where $ n\in\mathbb N^*$ . Then $ \mathbb A_n(z)\subset\mathbb A$ .

Proof 2. Denote $a = z + \frac 1z$ and $x_{n} = z^{n} + \frac {1}{z^{n}}\ ,\ n\in\mathbb N$ . Suppose $ |a| > 2 $ . Have $ ax_{n} = x_{n-1} + x_{n+1} $ . Thus, $ a = \frac{x_{n-1}}{x_{n}} + $ $\frac{x_{n+1}}{x_{n}} $ .

Denote $ y_{n} = \frac{x_{n}}{x_{n-1}} $ . Then we have $y_{n+1} = a - \frac{1}{y_{n}} $ . We know that $ |y_{1}| = \left|\frac a2\right| >1 $ . By induction we can show that $ |y_{n}| > 1 $ . Indeed, if $|y_{n}| > 1 $, then

$ |y_{n+1}| = \left| a - \frac{1}{y_{n}} \right|\geqslant |a| - \frac{1}{|y_{n}|} > 2 - 1 = 1 $ . Therefore $|y_{n}| > 1\ ,\ (\forall )\ n\in\mathbb N^* $ . Thus, $ |x_{n}| > |x_{n-1}|\ ,\ (\forall )\  n\in\mathbb N^*$ $\implies$

$ \left| z^{n} + \frac {1}{z^{n}}\right | =$ $\left|x_{n}\right| >\left |x_{n-1}\right| > \ldots > |x_{1}| = |a| > 2 $ .

Proof 3. Put $u_n = \left| {{z^n} + \frac{1}{{{z^n}}}} \right|\ ,\ n\in\mathbb N^*$ . Suppose contrary to all reason $u_1=\left|z+\frac 1z\right|>2$ . Have ${u_{n + 1}} = \left| {{z^{n + 1}} + \frac{1}{{{z^{n + 1}}}}} \right| = $

$\left| {\left( {{z^n} + \frac{1}{{{z^n}}}} \right)\left( {z + \frac{1}{z}} \right) - \left( {{z^{n - 1}} + \frac{1}{{{z^{n - 1}}}}} \right)} \right|\ge$ $\left|z^n + \frac{1}{z^n}\right|\cdot\left|z + \frac 1z\right|-\left|z^{n - 1} + \frac{1}{z^{n - 1}}\right|=$

$u_nu_1-u_{n-1}$ . Hence ${u_{n + 1}} \ge {u_n}\cdot {u_{1}} - {u_{n - 1}}$ with $n\in\mathbb N^*$ . From $|u_1|>2$ obtain that ${u_{n + 1}} > 2{u_n} - {u_{n - 1}}\Rightarrow $ ${u_{n + 1}} - {u_n} \ge$ $ {u_n} - {u_{n - 1}}$

for any $n\in\mathbb N^*$ . On the other hand ${u_2} > 2{u_1} - 2 \Rightarrow {u_2} - {u_1} \ge {u_1} - 2 > 0 \Rightarrow {u_2} > {u_1}$ . Thus ${u_n} > {u_1} > 2$ forall $n\ge 1$ , what is absurd.



Extension. Let $ z\in\mathbb C^*$ , $\{a,b\}\subset\mathbb R^*_+$ and $ n\in\mathbb{N}\ ,\ n\ge 2$ . Then $ \boxed{\boxed{\ \left|\frac{z^n}{b^n}+\frac{a^n}{z^n}\right|\le 2\cdot \left(\frac{a}{b}\right)^{\frac n2}\ \implies\ \left|\frac zb+\frac az\right|\le 2\sqrt{\frac ab}\ }}$ .

Proof. At first I"ll show that $ \left\{\begin{array}{c} 
n\in\mathbb N^*\ ,\ x\in\mathbb R \\
 \\
r>0\ ,\ a>0\ ,\ b>0 \end{array}\right\|$ $\implies$ $\left\{\begin{array}{cc}

1\blacktriangleright & |\sin nx|\le n\cdot |\sin x| \\
 \\
2\blacktriangleright & n\cdot\left(\frac{a}{b}\right)^{\frac{n-1}{2}}\cdot\left|\frac{r}{b}\cdot \frac{a}{r}\right|\le \left|\frac{r^n}{b^n}-\frac{a^n}{r^n}\right|\end{array}\right\|$

Proof of (1)-inequality

Proof of (2)-inequality

Denote $ z = r\cdot(\cos\phi + \text i\cdot\sin \phi )\ ,\ r>0\ ,\ \phi\in [0,2\pi )$ for which $ \left|\frac{z^n}{b^n} + \frac {a^n}{z^n}\right|\le 2\cdot\left(\frac ab\right)^{\frac{n}{2}}$ .

Thus, $ \left|\frac{r^n}{b^n}\cdot (\cos n\phi + \text i\cdot\sin n\phi ) + \frac {a^n}{r^n}\cdot (\cos n\phi - \text i\cdot\sin n\phi )\right|\le 2\cdot\left(\frac ab\right)^{\frac n2}$

$ \iff\ \left|\left(\frac{r^n}{b^n} + \frac {a^n}{r^n}\right)\cdot\cos n\phi + \text i\cdot\left(\frac{r^n}{b^n} - \frac {a^n}{r^n}\right)\cdot\sin n\phi\right| \le 2\cdot\left(\frac ab\right)^{\frac n2}$

$ \iff\ \left(\frac{r^n}{b^n} + \frac {a^n}{r^n}\right)^2\cdot\cos^2 n\phi + \left(\frac{r^n}{b^n} - \frac {a^n}{r^n}\right)^2\cdot\sin^2 n\phi\ \le\ 4\cdot\left(\frac ab\right)^n$

$ \iff\ \frac{r^{2n}}{b^{2n}} + \frac {a^{2n}}{r^{2n}} + 2\cdot\left(\frac ab\right)^n\cdot \cos 2n\phi \le 4\cdot\left(\frac ab\right)^n\ \iff\color{white}{.}$ $ \left(\frac{r^n}{b^n}-\frac{a^n}{r^n}\right)^2+2\cdot\left(\frac ab\right)^n(1+\cos 2n\phi)\le 4\cdot\left(\frac ab\right)^n$

$ \iff\ \left(\frac{r^n}{b^n} - \frac {a^n}{r^n}\right)^2\le 4\cdot\left(\frac ab\right)^n\cdot\sin^2n\phi\ \iff\ \left|\frac{r^n}{b^n} - \frac {a^n}{r^n}\right|\le2\cdot\left(\frac ab\right)^{\frac n2}\cdot|\sin n\phi |$ .

In conclusion, $ \boxed {\ \left|\frac{z^n}{b^n} + \frac {a^n}{z^n}\right|\le 2\cdot\left(\frac ab\right)^{\frac{n}{2}}\ \iff\ \left|\frac{r^n}{b^n} - \frac {a^n}{r^n}\right|\le2\cdot\left(\frac ab\right)^{\frac n2}\cdot |\sin n\phi |\ }$ . Particularly, for $ n = 1$

obtain $ \boxed {\ \left|\frac zb + \frac az\right|\le 2\sqrt{\frac ab} \ \iff\ \left|\frac rb - \frac ar\right|\le2\sqrt{\frac ab}\cdot|\sin \phi |\ }$ . Using the upper relations $ (1)$ si $ (2)$ obtain :

$ \underline{\underline{n\cdot\left(\frac ab\right)^{\frac{n-1}{2}}\cdot \left|\frac rb-\frac ar\right|}}\stackrel {(2)}{\ \le\ }\left|\frac{r^n}{b^n}-\frac {a^n}{r^n}\right|\le 2\cdot\left(\frac ab\right)^{\frac n2}\cdot |\sin n\phi |\stackrel {(1)}{\ \le\ }$ $ \underline{\underline{2\cdot\left(\frac ab\right)^{\frac{n}{2}}\cdot n\cdot |\sin\phi |}}$

Therefore, $ \left|\frac rb - \frac ar\right|\le 2\sqrt\frac ab\cdot |\sin\phi |\ \iff\ \left|\frac zb+\frac az\right|\le 2\sqrt\frac ab$ .
This post has been edited 36 times. Last edited by Virgil Nicula, Nov 26, 2015, 7:00 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a