169. Some metrical problems in a circle (III).

by Virgil Nicula, Oct 28, 2010, 10:59 AM

PP1. Let $\triangle ABC$ with $:$ circumcircle $w$ ; feet $M\in (AB)$ , $N\in (AC)$ of bisectors from $C$ , $B$ ; $D\in MN\cap w$ . Prove that $\left|\frac {1}{DB}-\frac {1}{DC}\right|=\frac {1}{AD}$ (Bulgaria, 1997) .

Generalization. Let $\triangle ABC$ with the circumcircle $w$ , two points $M\in (AB)$ , $N\in (AC)$ and a point $D\in MN\cap w$ . Prove that $\left|\frac {MB}{MA}\cdot \frac {b}{DB}-\frac {NC}{NA}\cdot \frac {c}{DC}\right|=\frac {a}{AD}$ .

Proof 1 (synthetic). Denote $\{D,D'\}=MN\cap w$ so that $AB$ separates $C$ , $D$ . Apply the Ptolemy's theorem to $ABCD'\ :\ b\cdot BD'=a\cdot AD'+c\cdot CD'\ (*)$ .

From an well-known property applied in the quadrilaterals $ADBD'$ and $ADCD'$ obtain $\frac {MB}{MA}=\frac {BD\cdot BD'}{AD\cdot AD'}$ and $\frac {NC}{NA}=\frac {CD\cdot CD'}{AD\cdot AD'}$ .

Therefore, $\left|\frac {MB}{MA}\cdot \frac {b}{DB}-\frac {NC}{NA}\cdot \frac {c}{DC}\right|=$ $\left|\frac {BD\cdot BD'}{AD\cdot AD'}\cdot \frac {b}{DB}-\frac {CD\cdot CD'}{AD\cdot AD'}\cdot \frac {c}{DC}\right|=$ $\frac {a}{AD}\cdot\left|\frac {BD'}{AD'}\cdot\frac ba-\frac {CD'}{AD'}\cdot\frac ca\right|\stackrel{(*)}{=}\frac {a}{AD}$ .

Proof 2 (trigonometric). Choose the point $D$ so that the line $AB$ separates $C$ , $D$ . Denote $m(\angle CDN)=x$ . Then $m(\angle ADN)=B-x$ . Observe that

$\frac {MB}{MA}=\frac {DB}{DA}\cdot\frac {\sin (A+x)}{\sin (B-x)}$ and $\frac {NC}{NA}=\frac {DC}{DA}\cdot\frac {\sin x}{\sin (B-x)}$ and the relation from conclusion is equivalently with

$\left|\frac {DB}{DA}\cdot\frac {\sin (A+x)}{\sin (B-x)}\cdot \frac {AC}{DB}-\frac {DC}{DA}\cdot\frac {\sin x}{\sin (B-x)}\cdot\frac {AB}{DC}\right|$ $=\frac {BC}{AD}$ $\iff$ $|b\cdot\sin (A+x)-c\cdot\sin x|=$ $|a\cdot \sin (B-x)|$ $\iff$

$|\sin B\cdot\sin (A+x)-\sin C\cdot\sin x|=$ $|\sin A\cdot \sin (B-x)|$ $\iff$ $|\cos (B-A-x)-\cos (B+A+x)-\cos (C-x)+\cos (C+x)|=$

$2\cdot |\sin A\cdot\sin  (B-x)|$ $\iff$ $2\cdot |\sin A\cdot\sin  (B-x)|=$ $|\cos (A+x-B)+\cos (C+x)|=$

$2\cdot\left|\cos \left(\frac {A+C-B}{2}+x\right)\cos\left(\frac {B+C-A}{2}\right)\right|$ $\iff$ $|\sin A\sin (B-x)|=|\cos (90^{\circ}+x-B)\cdot\cos (90^{\circ}-A)|$ , what is truly.

Remarks. Denote $P\in BN\cap CM$ . Here are some interesting particular cases.

$\blacktriangleright\ P:=G\ \implies\ \left|\frac {b}{DB}-\frac {c}{DC}\right|=\frac {a}{AD}$ .

$\blacktriangleright\ P:=I\ \implies\ \left|\frac {1}{DB}-\frac {1}{DC}\right|=\frac {1}{AD}$ (Bulgaria, 1997).

$\blacktriangleright\ P:=H\ \implies\ \left|\frac {\cos B}{DB}-\frac {\cos C}{DC}\right|=\frac {\cos A}{AD}$ .

$\blacktriangleright\ P:=N$ (Nagel's point) $\implies\ \left|\frac {b}{(s-b)\cdot DB}-\frac {c}{(s-c)\cdot DC}\right|=\frac {a}{(s-a)\cdot AD}$ , where $2s=a+b+c$ .

$\blacktriangleright\ P:=S$ (Lemoine's point) $\implies\ \left|\frac {1}{b\cdot DB}-\frac {1}{c\cdot DC}\right|=\frac {1}{a\cdot AD}$ .


Remark. Let $ABC$ be a triangle with the circumcircle $w$ . Denote the feet $F\in (AB)$ , $E\in (AC)$ of the bisectors from $C$ , $B$ respectively and $\{M,N\}=EF\cap w$ .

If the side $AB$ separates the points $M$ and $C$ then $\frac{1}{BM}=\frac{1}{AM}+\frac{1}{CM}$ and $\frac{1}{CN}=\frac{1}{AN}+\frac{1}{BN}$ and $\frac{1}{AM}+\frac{1}{CM}+\frac{1}{AN}+$ $\frac{1}{BN}=\frac{1}{BM}+\frac{1}{CN}\ .$



PP2. Consider an interior point $P$ of $\triangle ABC$ for which $\widehat {BAP}\equiv\widehat{ACP}$ and $\widehat{ABP}\equiv\widehat{CAP}$ . Suppose $A<90^{\circ}$ and denote the incenters $M$ and $N$

for incircles of $\triangle  ABP$ and $\triangle ACP$ respectively and the length $\rho$ of circumradius of $\triangle MAN$ . Prove that $\boxed{\frac {1}{\rho}=\frac 1b+\frac 1c+\frac {1}{AP}}$ (Toshio Seimyia).


Proof. Show easily that $\left\{\begin{array}{cccc}
b^2+c^2+2bc\cdot\cos A & = & 4m_a^2 & (1)\\\\
\left(b+c+2m_a\right)\left(b+c-2m_a\right) & = & 4bc\cdot\sin^2\frac A2 & (2)\end{array}\right\|$ . Observe that $\boxed{MN=2\rho\cdot \sin \frac A2}\ (3)$ and $\triangle APB\sim\triangle CPA\sim NPM$ .

Therefore, $\odot\begin{array}{cccc}
\nearrow & PB=\frac cb\cdot PA & (4) & \searrow\\\\
\rightarrow & PC=\frac bc\cdot PA & (5) & \rightarrow\\\\
\searrow & MN=b\cdot \frac {PM}{PA} & (6) & \nearrow\end{array}\odot$ . Apply the Cosinus' theorem in the triangles $APB\ :\ c^2=PA^2+PB^2+2\cdot PA\cdot PB\cdot\cos A$ $\stackrel{(4)}{\implies}$

$c^2=PA^2+\left(\frac cb\cdot PA\right)^2+2\cdot\frac cb\cdot PA^2\cdot\cos A$ $\implies$ $b^2c^2=\left(b^2+c^2+2bc\cdot\cos A\right)\cdot PA^2$ $\stackrel{(1)}{\implies}$ $\boxed{bc=2m_a\cdot PA}\ (7)$ . Therefore, $\frac {PA}{bc}=\frac {PB}{c^2}=\frac {PC}{b^2}=\frac {1}{2m_a}$ . Observe that

$PA+PB+PC=\frac {b^2+c^2+bc}{2m_a}$ . Prove easily that $PA+PB-c=2\cdot PM\cdot\sin\frac A2$ . Thus, $PM\stackrel{(4)}{=}\frac {PA+\left(\frac cb\cdot PA\right)-c}{2\cdot\sin\frac A2}$ $\implies$ $PM=\frac {(b+c)\cdot PA-bc}{2b\cdot\sin\frac A2}$ $\stackrel{(6)}{\implies}$

$MN=\frac {(b+c)\cdot PA-bc}{2\cdot \sin\frac A2\cdot PA}$ $\stackrel{(3)}{\implies}$ $4\rho\cdot\sin^2\frac A2=b+c-\frac {bc}{PA}$ $\stackrel{(7)}{\implies}$ $4\rho\cdot\sin^2\frac A2=b+c-2m_a$ $\stackrel{(2)}{\implies}$ $\rho\cdot \left(b+c+2m_a\right)\left(b+c-2m_a\right)=bc\left(b+c-2m_a\right)$ $\implies$

$\frac {1}{\rho}=\frac {b+c+2m_a}{bc}$ $\stackrel{(7)}{\implies}$ $\frac {1}{\rho}=\frac 1b+\frac 1c+\frac {1}{PA}$ .



PP3. Let $\triangle ABC$ . For $D\in (BC)$ let the incircles $w_1=(I_1,r_1)$ and $w_2=C(I_2, r_2)$ of $\triangle ABD$ and $\triangle ACD$

respectively. Prove that $\boxed{\mathrm{the\  quadrilateral}\ BI_1I_2C\ \mathrm{is\ cyclically}\ \iff\ \frac {DA+DB}{DA+DC}=\frac cb}$ (Toshio Seimyia).


Proof. Denote $M\in AB\cap I_1I_2\ ,\ N\in AC\cap I_1I_2$ and $P\in MN\cap AD$ . Therefore, $BI_1I_2C$ is cyclically $\iff$ $m\left(\widehat{MI_1B}\right)=\frac C2$ and $m\left(\widehat{CI_2N}\right)=\frac B2$ . Hence

$m\left(\widehat{AMN}\right)=m\left(\widehat{ANM}\right)=\frac {B+C}{2}$ and $AM=AN\ ,\ \frac {I_1P}{I_1M}=\frac {AP}{AM}=\frac {AP}{AN}=\frac {I_2P}{I_2N}$ $\iff$ $\frac {I_1P}{I_1M}=\frac {I_2P}{I_2N}$ $\iff$ $\boxed{\frac {PM}{I_1M}=\frac {PN}{I_2N}}\ (*)$ . Denote the distancies

$h_1=\delta_{AB}D\ ,\ h_2=\delta_{AC}D$ and $d_1=\delta_{AB}P\ ,\ d_2=\delta_{AC}P$ . Thus, $\frac {h_1}{h_2}=\frac {d_1}{d_2}$ and $\frac {d_1}{r_1}=\frac {MP}{MI_1}\stackrel{(*)}{=}\frac {NP}{NI_2}=\frac {d_2}{r_2}$ $\implies$ $\frac {h_1}{r_1}=\frac {h_2}{r_2}$ $\implies$ $\frac {ch_1}{cr_1}=\frac {bh_2}{br_2}$ $\implies$ $\frac {[ABD]}{cr_1}=\frac {[ADC]}{br_2}$ $\implies$

$\frac {c+AD+BD}{c}=\frac {b+AD+DC}{b}$ $\implies$ $\frac {DA+DB}{c}=\frac {DA+DC}{b}$ . Remark. Let $R\in DI_1\cap QB$ and $S\in DI_2\cap AC$ . From the well-known relations

$\frac {I_1D}{I_1R}=$ $\frac {DA+DB}{c}\ ,\ \frac {I_2D}{I_2S}=$ $\frac {DA+DC}{b}$ obtain that $\boxed{\mathrm{the\ quadrilateral}\ BI_1I_2C\ \mathrm{ is\ cyclically}\ \iff\ \frac {DA+DB}{DA+DC}=\frac cb\iff\ I_1I_2\parallel RS}$ .



PP4. Let an $A$-right $\triangle ABC$ with the excircles $w_b=\mathbb C\left(I_b,r_b\right)$ , $w_c=\mathbb C\left(I_c,r_c\right)$ and $D\in BC$ so that $AD\perp BC$ , $AD=h$ . Prove that $\left\{\begin{array}{c}
I_bD^2+I_cD^2=2\left(a^2-h^2\right)\\\\
\widehat{ADI_b}\equiv\widehat{ADI_c}\end{array}\right\|$ .

Proof. Denote $\{U,V,L\}\subset BC$ so that $I_cU\perp BC\ ,\ I_bV\perp BC\ ,\ L\in I_bI_c$ . Prove easily that the nice identity $\boxed{a^2=(s-b)^2+(s-c)^2+bc}\ (*)$ . Therefore,

$\frac{DB}{c^2}=\frac {DC}{b^2}=\frac h{bc}=\frac 1a$ and $\left\{\begin{array}{ccc}
UD=UB+BD=(s-a)+\frac {c^2}a=\frac {a(b+c-a)+2c^2}{2a}=\frac {a(b+c)+c^2-b^2}{2a}=\frac {(b+c)(a+c-b)}{2a} & \implies & UD=\frac {(b+c)(s-b)}a\\\\
VD=VC+CD=(s-a)+\frac {b^2}a=\frac {a(b+c-a)+2b^2}{2a}=\frac {a(b+c)+b^2-c^2}{2a}=\frac {(b+c)(a+b-c)}{2a} & \implies & VD=\frac {(b+c)(s-c)}a\end{array}\right\|$ $\implies$

$\boxed{\frac {UD}{s-b}=\frac {VD}{s-c}=\frac {b+c}a}=k\ (1)\ .$ Thus, $\left\{\begin{array}{ccc}
I_cU=r_c=s-b\\\\
I_bV=r_b=s-c\end{array}\right\|$ and $I_cD^2+I_bD^2=\left(I_cU^2+UD^2\right)+$ $\left(I_bV^2+VD^2\right)\ \stackrel{(1)}{=}\ (s-b)^2\left(1+k^2\right)+(s-c)^2\left(1+k^2\right)=$

$\left(1+k^2\right)\left[(s-b)^2+(s-c)^2\right]\ \stackrel{(*)}{=}\ \frac {a^2+(b+c)^2}{a^2}$ $\cdot \left(a^2-bc\right)\implies$ $I_cD^2+I_bD^2=\frac {2\left(a^2+bc\right)\left(a^2-bc\right)}{a^2}=$ $2\cdot\frac {a^2+bc}a\cdot\frac {a^2-bc}a=$ $2\cdot\left(a+\frac{bc}a\right)\cdot\left(a-\frac {bc}a\right)=$

$2 (a+h)(a-h)$ $\implies$ $I_cD^2+I_bD^2=2\left(a^2-h^2\right)$ . Remark. $(L,U,D,V)$ is a harmonic division, i.e. $\frac {LU}{LV}=\frac {r_c}{r_b}=\frac {s-b}{s-c}=\frac {DU}{DV}$ .

Hence and $\left(L.I_c,A,I_b\right)$ is a harmonic division. Since $DA\perp DL\implies \widehat{ADI_b}\equiv\widehat{ADI_c}$ obtain that $[DA$ is bisector of $\widehat{I_bDI_c}$ .



PP5 (Miguel O. Sanchez). Let an $A$-right $\triangle ABC$ and $\left\{\begin{array}{cc}
D\in (PC)\ ; & P\in (BC)\ ,\ AP\perp BC\\\\
G\in (AC)\ ; & F\in AB\cap GD\end{array}\right\|$ . Prove that $\frac {DF^2-FA\cdot FB}{DG^2+GA\cdot GC}=1$ .

Proof.

$\blacktriangleright\ \triangle FAG\sim\triangle FDB\iff$ $\frac {FA}{FD}=\frac {FG}{FB}\iff$ $FA\cdot FB=FG\cdot FD\iff$ $DF^2-FA\cdot FB=DF^2-DF\cdot FG=DF\cdot (DF-FG)=DF\cdot DG\implies$ $\boxed{DF^2-FA\cdot FB=DF\cdot DG}$ .

$\blacktriangleright\ \triangle FAG\sim\triangle CDG\iff$ $\frac {GA}{GD}=\frac {GF}{GC}\iff$ $GA\cdot GC=GF\cdot GD\iff$ $DG^2+GA\cdot GC=DG^2+GF\cdot GD=$ $DG\cdot (DG+GF)=$ $DG\cdot DF\implies$ $\boxed{DG^2+GA\cdot GC=DG\cdot DF}$ .



PP6 (Ruben Dario). Let $\triangle ABC$ with $a>\max \{b,c\}$ and $\{X,Y\}\subset (BC)$ so that $X\in (BY)$ and $m\left(\widehat{AXC}\right)=m\left(\widehat{AYB}\right)=A$ . Let the incircles

$w_1=\mathbb C\left(I_1,r_1\right)$ and $w_2=\mathbb C\left(I_2,r_2\right)$ of $\triangle ABX$ and $\triangle ACY$ respectively, where $U\in AI_1\cap BC$ and $V\in AI_2\cap BC$ . Prove that $UV=2\cdot I_1I_2\cdot \sin\frac A2$ .


Proof. Denote $\left\{\begin{array}{c}
T_1\in BC\cap w_1\\\\
T_2\in BC\cap w_2\end{array}\right\|$ . Observe that $\left\{\begin{array}{ccc}
m\left(\widehat{BAX}\right)=A-B & \implies & m\left(\widehat{BAU}\right)=m\left(\widehat{XAU}\right)=\frac {A-B}2\\\\
m\left(\widehat{CAY}\right)=A-C & \implies & m\left(\widehat{CAV}\right)=m\left(\widehat{YAV}\right)=\frac {A-C}2\end{array}\right\|$ $\implies$ $m\left(\widehat{UAV}\right)=\boxed{m\left(\widehat{I_1AI_2}\right)=90^{\circ}-\frac A2}\ (1)$ .

Thus, $\left\{\begin{array}{ccccccc}
m\left(\widehat{BAV}\right)=m\left(\widehat{BVA}\right)=\frac {A+C}2 & \implies & \widehat {BVA}\equiv\widehat{BAV} & \implies & BV=BA & \implies & CV=a-c\\\\
m\left(\widehat{CAU}\right)=m\left(\widehat{CUA}\right)=\frac {A+B}2 & \implies & \widehat {CUA}\equiv\widehat{CAU} & \implies & CU=CA & \implies & BU=a-b\end{array}\right\|$ $\implies$ $ UV=a-(a-b)-(a-c)\implies$

$\boxed{UV=2(s-a)}\ (*)$ . Observe that $CAX\sim CBA\implies\frac ba=\frac {CX}b=\frac {AX}c\implies\odot\begin{array}{ccc}
\nearrow & CX=\frac {b^2}a & \searrow\\\\
\searrow & AX=\frac {bc}a & \nearrow\end{array}\odot\implies$ $BX=BC-CX=a-\frac {b^2}a\implies$ $\boxed{BX=\frac {a^2-b^2}a}$ .

Thus, $AI_1^2=\frac {AB\cdot AX\cdot (AB+AX-BX)}{AB+AX+BX}\implies$ $\left\{\begin{array}{ccccccc}
2s_1 & = & AB+AX+BX=c+\frac {bc}a+\frac {a^2-b^2}a & \implies & s_1 & = & \frac {(a+b)(s-b)}a\\\\
2(s_1-BX) & = & AB+AX-BX=c+\frac {bc}a-\frac {a^2-b^2}a & \implies & s_1-BX & = & \frac {(a+b)(s-a)}a\end{array}\right\|$ $\implies $

$AI_1^2=\frac {bc^2(s-a)}{a(s-b)}=$ $\frac {c(s-a)(s-c)}{a\sin^2\frac A2}\implies$ $\boxed{AI_1\sin\frac A2=\sqrt {\frac {c(s-a)(s-c)}a}}$ . From $\triangle BAY\sim\triangle BCA$ obtain that $CY=\frac {a^2-c^2}a$ and $\boxed{AI_2\sin\frac A2=\sqrt {\frac {b(s-a)(s-b)}a}}$ .

Therefore, $I_1I_2^2=AI_1^2+AI_2^2-2\cdot AI_1\cdot AI_2\cdot\cos\widehat{I_1AI_2}\ \stackrel{(1)}{\implies}$ $I_1^2I_2^2=\frac {bc^2(s-a)}{a(s-b)}+\frac {b^2c(s-a)}{a(s-c)}-2\cdot\sqrt{\frac {bc^2(s-a)}{a(s-b)}\cdot \frac {b^2c(s-a)}{a(s-c)}\cdot \frac {(s-b)(s-c)}{bc}}=$

$\frac {bc(s-a)}{a}\cdot\left(\frac c{s-b}+\frac b{s-c}-2\right)=$ $\frac {bc(s-a)}{a}\left[\frac {(s-a)+(s-b)}{s-b}+\frac {(s-a)+(s-c)}{s-c}-2\right]=$ $\frac {bc(s-a)}{a}\cdot \left(\frac {s-a}{s-b}+\frac {s-a}{s-c}\right)=$

$\frac {bc(s-a)^2}a\cdot\left(\frac 1{s-b}+\frac 1{s-c}\right)=$ $\frac {bc(s-a)^2}a\cdot  \frac a{(s-b)(s-c)}=$ $(s-a)^2\cdot\frac {bc}{(s-b)(s-c)}=$ $\frac {(s-a)^2}{\sin^2\frac A2}\implies$ $I_1I_2\sin\frac A2=s-a\ \stackrel{(*)}{\implies}\ UV=2\cdot I_1I_2\cdot \sin\frac A2$

Remark. I used the well-known relations in any $\triangle ABC\ :\ \boxed{\frac a{s-a}\cdot IA^2=\frac b{s-b}\cdot IB^2=\frac c{s-c}\cdot IC^2=\frac {abc}s=4Rr}$ .
This post has been edited 113 times. Last edited by Virgil Nicula, Dec 1, 2015, 9:27 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a