191. Six nice problems with the incircle of a triangle.

by Virgil Nicula, Dec 14, 2010, 8:25 AM

Proposed problem 1. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ which touches its sides at $D\in BC$ ,

$E\in CA$ , $F\in AB$ . The rays $[BE$ , $[CF$ meet again $w$ at $X$ , $Y$ respectively. Prove that $BY\cap CX\cap AD\ne\emptyset$ .


Proof. Observe that $\Gamma\in AD\cap BE\cap CF$ (Gergogne's point), $\Gamma X\cdot \Gamma E=\Gamma Y\cdot\Gamma F\ ,\ \left\|\begin{array}{c}
\frac {\Gamma B}{b(s-b)}=\frac {\Gamma E}{(s-a)(s-c)}=\frac {BE}{(s-a)(s-c)+b(s-b)}\\\
\frac {\Gamma C}{c(s-c)}=\frac {\Gamma F}{(s-a)(s-b)}=\frac {CF}{(s-a)(s-b)+c(s-c)}\end{array}\right\|$

and $\left\|\begin{array}{c}
BX\cdot BE=(s-b)^2\\\
CY\cdot CF=(s-c)^2\end{array}\right\|$ . Apply the Ceva's theorem to $\triangle B\Gamma C$ for $D\in BC$ , $X\in \Gamma B$ and $Y\in \Gamma C\ :\ \frac {DB}{DC}\cdot\frac {YC}{Y\Gamma}\cdot\frac {X\Gamma}{XB}=1\iff$

$\frac {s-b}{s-c}\cdot\frac {\frac {(s-c)^2}{CF}}{Y\Gamma}\cdot \frac {X\Gamma}{\frac {(s-b)^2}{BE}}=1\iff$ $\frac {s-c}{s-b}\cdot\frac {BE}{CF}\cdot\frac {\Gamma F}{\Gamma E}=1\iff$ $\frac {s-c}{s-b}\cdot \frac {(s-a)(s-c)+b(s-b)}{(s-a)(s-c)}\cdot\frac {(s-a)(s-b)}{(s-a)(s-b)+c(s-c)}=1\iff$

$(s-a)(s-b)+c(s-c)=(s-a)(s-c)+b(s-b)\iff$ $(s-a)[(s-b)-(s-c)]=s(b-c)-(b-c)(b+c)$ $\iff$

$(s-a)(c-b)=(c-b)(b+c-s)$ $\iff$ $s-a=$b+c-s $\iff$ $2s=a+b+c$, what is truly.



Proposed problem 2. The incircle $w=C(I,r)$ of $\triangle ABC$ touches its sides at $D\in BC$ , $E\in CA$ and $F\in AB$ respectively. Consider the point $A'\in w$

for which the circumcircle $w_a$ of $\triangle BA'C$ is tangent in $A'$ to the circle $w$ . Define analogously the points $B'$ and $C'$ . Prove that $AA'\cap BB'\cap CC'\ne\emptyset$ .


Proof 1. From the well-known property obtain that the ray $[A'D$ is the bisector of the angle $\widehat {BA'C}$ . Denote the intersection $L\in BC\cap EF$. The division $(L,B,D,C)$ is harmonically, i.e. $\frac{LB}{LC}=\frac{DB}{DC}$ . From a characterization of the harmonical division obtain that $A'D\perp A'L$ . With other words, the point $A'$ is the intersection between the circle with the diameter $DL$ and the incircle $w$ for which $(AA')\cap BC=\emptyset$ . Then the point $A'$ is the reflection of the point $D$ w.r.t. the line $SI$, where the point $S$ is the middlepoint of the segment $[LD]$ , i.e. the lines $SD$ and $SA'$ is the tangents from $S$ to $w$ , $\frac{SB}{SC}=\left(\frac{DB}{DC}\right)^2=\left(\frac{p-b}{p-c}\right)^2$, $SD^2=SB\cdot SC$ , $\frac {SB}{(p-b)^2}=$ $\frac {SC}{(p-c)^2}=$ $\frac {a}{a(b-c)}=\frac {1}{b-c}$ , $SD=SB+BD=$ $\frac {(p-b)^2}{b-c}+(p-b)=$ $\frac {(p-b)(p-c)}{b-c}$ and $\tan \widehat {IDA'}=\frac{r}{SD}=\frac{r|b-c|}{(p-b)(p-c)}$ a.s.o.

Proof 2. Denote $N\in I_aD\cap w\ ,\ T\in BC$ for which $TN$ is tangent to $w$ and $R\in TI\cap ND$ . Observe that the pentagon $BRICI_a$ is inscribed in the circle with

diameter $[II_a]$ and $TN^2=TR\cdot TI=TB\cdot TC$ . Therefore, $TN$ is tangent to the circumcircle of $\triangle BNC$ , i.e. $w$ is tangent to the circumcircle of $\triangle BNC$ in $N$ .



Proposed problem 3. The incircle $w$ of $\triangle ABC$ touches $BC$ at $K$. Let $M$ be the midpoint of $A$-altitude $AD$ of $\triangle ABC$ , where $D\in BC$ .

The line $MK$ meets the incircle of $\triangle ABC$ at $N$ (apart from $K$) . Show that the circumcircle of $\triangle BNC$ is tangent to $w$ at $N$ .


The proof. Suppose w.l.o.g. $c<b$ . Denote the A-exincircle $w=C(I_{a},r_{a})$ , $D'\in BC\cap w$, the intersection $P$ between $BC$ and the tangent to $w$ in $N$ and the intersection $R\in NK\cap IP$ . Prove easily that $KD'=b-c$, $KD=\frac{(b-c)(p-a)}{a}$ and $\frac{KD}{KD'}=\frac{p-a}{a}$ . But $\frac{DM}{D'I_{a}}=$ $\frac{h_{a}}{2r_{a}}=$ $\frac{ah_{a}}{2ar_{a}}=$ $\frac{S}{ar_{a}}=$ $\frac{r_{a}(p-a)}{ar_{a}}=$ $\frac{p-a}{a}$ . Therefore, $\frac{DM}{D'I_{a}}=\frac{KD}{KD'}$, i.e. $\boxed{\ K\in MI_{a}\ }$ . The points $B,C,R$ belong to the circle with the diameter $II_{a}$ . But $IP\perp NK$ $\Longrightarrow$ $PN^{2}=$ $PR\cdot PI=$ $PB\cdot PC$ . Thus $PN^{2}=PB\cdot PC$ , i.e. the line $PN$ is tangent to the circumcircle of the triangle $BNC$ .


Proposed problem 4. Let $ ABC$ be a triangle with incircle $w$ which touches its sides at $ D\in BC$ , $E\in CA$ ,

$F\in AB$ . The line $CF$ meet again $w$ in $P$ . Prove that $ABPE$ is a cyclic quadrilateral $\implies DP\parallel AB$ .


Proof. Denote $M\in DE\cap AB$ . From a well-known property $MI\perp CF$ obtain that $MP$ is tangent to $w$ . Denote $K\in PM\cap AC$ and $H\in PB\cap DE$ .

Since $ABPE$ is cyclically obtain that $\widehat{PBM}\equiv \widehat{KEP}\equiv \widehat{PDE}\equiv \widehat{KPE}$ $\implies$ $PDBM$ is cyclically $\implies$ $\widehat{BDE}=\widehat{BPM}=\widehat{DEA}$ $\implies$

$KPHE$ is cyclically $\implies$ $\widehat{PHD}\equiv \widehat{PKE}$ $\implies$ $\widehat{HPD}=\widehat{HDP}$ $\implies$ $  PD\parallel AB$ .



Proposed problem 5. Let $ ABC$ be a triangle ($ b\ne c$) for which denote the circumcircle $ w = C(O,R)$ , the incircle $ C(I,r)$ , the midpoint

$M$ of $ [BC]$ and the point $ N\in w$ so that $ MN\perp BC$ and $ BC$ doesn't separate $ A$ , $ N$ . Prove that $ \widehat {ANI}\equiv \left\{\begin{array}{ccc} \widehat {IMC} & \mathrm{if} & b < c \\
\ \widehat {IMB} & \mathrm{if} & b > c\end{array}\right\|\ .$


Proof I. Suppose $ b<c$ . Denote the diameter $ [NS]$ of circle $ w$ , $ T\in BC$ , $ IT\perp IA$ and $ R\in NI\cap ST$ .

Prove easily that $ R\in w$ and the quadrilateral $ MITS$ is cyclically. Thus, $ IT\parallel NA$ and $ \widehat {IMC}\equiv\widehat {ISR}\equiv\widehat {ANI}\ .$


Proof 2. Suppose $ b < c$ . Denote $ D\in BC$ for which $ ID\perp BC$ . Observe that $ MD = \frac {c - b}{2}$ and $ \tan\widehat {IMC} = \tan\widehat {IMD} = \frac {ID}{MD} = \frac {2r}{c - b}$ $ \implies$

$ \boxed {\ \tan\widehat {IMC} = \frac {2r}{c - b}\ }\ .$ Since $ AN\perp AI$ obtain $ \tan \widehat {ANI} = \frac {AI}{AN} = \frac {b + c}{2p}\cdot\frac {2bc\cdot\cos\frac A2}{b + c}\cdot\frac {1}{2R\sin\frac {C - B}{2}} =$ $ \frac {bc\cdot\cos\frac A2\sin\frac A2}{2pR\sin\frac {C - B}{2}\cos\frac {B + C}{2}} =$

$ \frac {bc\sin A}{2pR(\sin C - \sin B)} = \frac {2pr}{p(c - b)}$ $ \implies$ $ \boxed {\ \tan\widehat {ANI} = \frac {2r}{c - b}\ }$ . Thus, $b < c\implies  \tan\widehat {ANI} = \tan\widehat {IMC} = \frac {2r}{c - b}\implies  \widehat {ANI}\equiv\widehat {IMC}\ .$

You can prove analogously $b > c\implies \tan\widehat {ANI} = \tan\widehat {IMB} = \frac {2r}{b - c}\implies \widehat {ANI}\equiv\widehat {IMB}\ .$


Proposed problem 6. Let $ \triangle ABC$ with incircle $ w = C(I,r)$ and the Nagel's point $ N$ . Denote $ D\in BC\cap w$ , the diameter $ [MD]$ of $ w$ and $ D'\in AN\cap BC$ .

Prove that $ AM = ND'$ and $ N\in w\Longleftrightarrow$$ \prod (b + c - 3a) =  0 \Longleftrightarrow IG\perp BC\ \vee\ IG\perp CA\ \vee\ IG\perp AB$ $ \Longleftrightarrow s^2 + 4r^2 = 16Rr$ .


Proof. Prove easily that $ AM = ND'$ (nice property !). Therefore, $ N\in w$ $ \Longleftrightarrow$ $ IA = ID'\Longleftrightarrow DD' = s - a\Longleftrightarrow$ $ |b - c| = s - a$ $ \Longleftrightarrow$

$a + b = 3c\ \vee\ a + c = 3b$ a.s.o. Prove easily that $ IG\perp BC\Longleftrightarrow b + c = 3a$ . Using the well-known relation $ IN^2 = s^2 + 5r^2 - 16Rr$

obtain $ N\in w\Longleftrightarrow IN = r\Longleftrightarrow$ $ s^2 + 4r^2 = 16Rr$ .
This post has been edited 54 times. Last edited by Virgil Nicula, Nov 22, 2015, 5:36 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a