402. Some interesting inequalities I.

by Virgil Nicula, Nov 9, 2014, 3:20 PM

PP1. Show that for any $\triangle ABC$ we have $\sin\frac{A}{2}\cdot \sin\frac{B}{2}\cdot \sin\frac{C}{2}\le\frac{abc}{(a+b)(b+c)(c+a)}$ and $\odot\begin{array}{ccc}
\nearrow & \cos^2A+\cos^2B+\cos^2C\geq \frac{1}{2}\cdot\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right) & \searrow\\\\
\searrow & \frac {a^2}{b^2+c^2}+\frac {b^2}{c^2+a^2}+\frac {c^2}{a^2+b^2}\le 6\cdot\left(\frac {R-r}{R}\right)^2 & \nearrow\end{array}\odot\ .$

Lemma. $\triangle ABC\Longrightarrow \boxed {\ \sin \frac A2\le \frac{a}{b+c}\ }\ \ (*)$ . I"ll use the identity $\boxed{bc=p(p-a)+(p-b)(p-c)}\ (1)$ .


First method. Define: the second intersection $A'$ between the circumcircle $C(O,R)$ and the bisector $[AI$ of the angle $\widehat {BAC}$; the intersection $D\in BC\cap AI$ $(l_a=AD)$.

From the well-known relations $l_a=\frac{2bc}{b+c}\cdot \cos \frac A2$ and $AA'\cdot AD=bc$ $(ABA'\sim ADC)$ results: $AA'\le 2R$ $\Longrightarrow$ $bc\le 2Rl_a$ $\Longleftrightarrow$ $bc\le 2R\cdot \frac{2bc}{b+c}\cdot\cos\frac A2$ $\Longleftrightarrow$

$b+c\le 4R\cos \frac A2$ $\Longleftrightarrow$ $\frac{b+c}{a}\le 2\cdot \frac{\cos \frac A2 }{\sin A}$ $\Longleftrightarrow$ $\frac{b+c}{a}\le \frac{1}{\sin \frac A2}$ $\Longleftrightarrow$ $\sin \frac A2\le \frac{a}{b+c}\ .$ Therefore, the inequality $(*)$ is equivalently with $AA'\le 2R\ !$

Second method. $(*)\Longleftrightarrow \sqrt{\frac{(p-b)(p-c)}{bc}}\le \frac{a}{b+c}$ $\Longleftrightarrow$ $(p-b)(p-c)(b+c)^2\le a^2bc$ $\stackrel{(1)}{\Longleftrightarrow}$ $(p-b)(p-c)(b+c)^2\le a^2 [p(p-a)+(p-b)(p-c)]$ $\Longleftrightarrow$

$(p-b)(p-c)\left[(b+c)^2-a^2\right]\le a^2p(p-a)\iff$ $4p(p-a)(p-b)(p-c)\le a^2p(p-a)\Longleftrightarrow 4(p-b)(p-c)\le a^2\Longleftrightarrow$ $a^2-(b-c)^2\le a^2\Longleftrightarrow (b-c)^2\ge 0$ . Prove easily that $\sum\frac 1{bc}\le\sum\frac 1{a^2}$ . Indeed, I"ll use the substitutions $\left\{\begin{array}{ccc}
bc & = & x\\\\
ca & = & y\\\\
ab & = & z\end{array}\right\|$ , i.e. $\left\{\begin{array}{ccc}
a^2 & = & \frac {yz}x\\\\
b^2 & = & \frac {zx}y\\\\
c^2 & = & \frac {xy}z\end{array}\right\|$

Remark 1. Using this lemma, the proposed inequality is a immediate consequence. The equality holds if and only if $a=b=c$. Prove easily that $\frac 12\left(\frac rR\right)^2\le \boxed {\prod \sin \frac A2\le \prod \frac{a}{b+c}}\le \frac 18$

Observe that $a^2=(c\cdot\cos B+b\cdot\cos C)^2\stackrel{\mathrm{(C.B.S)}}{\ \le\ }\left(c^2+b^2\right)\left(\cos^2B+\cos^2C\right)\implies$ $\sum\left(\cos^2B+\cos^2C\right)\ge \sum \frac {a^2}{b^2+c^2}\implies$ $\sum\cos^2A\ge\frac 12\cdot \sum \frac {a^2}{b^2+c^2}$

Remark 2. I"ll use the relations $\left\{\begin{array}{c}
\sum a^2=2\left(p^2-4Rr-r^2\right)\\\\
\boxed{p^2\ge 16Rr-5r^2}\ (2)\end{array}\right\|$ . Indeed, $\sum\frac {a^2}{b^2+c^2}\le 2\cdot\sum\cos^2A=$ $2\cdot \sum\left(1-\sin^ 2A\right)=$ $2\cdot\left(3-\sum\frac {a^2}{4R^2}\right)=$ $6-\frac 1{2R^2}\cdot\sum a^2=$

$6-\frac 1{R^2}\cdot\left(p^2-4Rr-r^2\right)\stackrel{(2)}{\ \le\ } $ $6-\frac{12Rr-6r^2}{R^2}=$ $\frac {6\left(R^2-2Rr+r^2\right)}{R^2}$ $\implies$ $\boxed{\frac {a^2}{b^2+c^2}+\frac {b^2}{c^2+a^2}+\frac {c^2}{a^2+b^2}\le 6\cdot\left(\frac {R-r}{R}\right)^2\le 6\cdot\left(\frac {R-r}{R}\right)^2}$ .



Lemma. $(\forall )\ \triangle ABC$ exists well-known identity $\boxed{a^2\cos A+b^2\cos B+c^2\cos C=\frac rR\cdot\left[3s^2-(2R+r)(4R+r)\right]}\ (*)$ and the inequality $\boxed{\frac 1{\cos A}+\frac 1{\cos B}+\frac 1{\cos C}\ge \frac {3R}{r}}\ (1)$ .

Proof. $\frac 1{\cos A}+\frac 1{\cos B}+\frac 1{\cos C}=$ $\sum\frac {a^2}{a^2\cos A}$ $\stackrel{(\mathrm{C.B.S})}{\ge}\frac {(a+b+c)^2}{\sum a^2\cos A}\stackrel{(*)}{=}$ $\frac {4s^2R}{r\left[3s^2-(2R+r)(4R+r)\right]}$ . I"ll prove that $\boxed{\frac {4s^2R}{r\left[3s^2-(2R+r)(4R+r)\right]}\ge \frac {3R}{r}}\ (2)$

from where obtain the required inequality $(1)$ . Indeed, the inequality $(2)$ is equivalently with $4s^2\ge 3\cdot\left[3s^2-(2R+r)(4R+r)\right]\iff$ $5s^2\le 3(2R+r)(4R+r)\ (3)$ . From the

well-known inequality $s^2\le 4R^2+4Rr+3r^2$ and $5\left(4R^2+4Rr+3r^2\right)\le 3(2R+r)(4R+r)\iff$ $4R^2-2Rr-12r^2\ge 0\iff$ $2R^2-Rr-6r^2\ge 0\iff$

$(R-2r)(2R+3r)\ge 0$ , what is truly. Thus, the inequalities $(3)$ and $(2)$ are truly.



PP2. Let an acute $\triangle ABC$ with orthocenter $H$ , circumcircle $w=C(O,R)$ and $\left\{\begin{array}{cc}
D\in AH\cap BC\ ; & \{A,M\}=\{A,H\}\cap w\\\\
E\in BH\cap CA\ ; & \{B,N\}=\{B,H\}\cap w\\\\
F\in\ CH\cap AB\ ; & \{C,P\}=\{C,H\}\cap w\end{array}\right\|$ . Prove $\boxed{\sum HA\cdot\tan A\le \sum HM\cdot\tan A}$

Proof. $\tan A=\frac {\sin A}{\cos A}=\frac {2R\sin A}{2R\cos A}\implies$ $\boxed{\tan A=\frac a{HA}}\implies$ $\sum HA\cdot\tan A=a+b+c=2s$ and inequality becomes $\sum \frac {a\cdot HM}{HA}\ge 2s\iff$ $\sum \frac {2a\cdot HD}{HA}\ge 2s\iff$

$\sum \frac {a\left(h_a-HA\right)}{HA}\ge s\iff$ $\sum \left(\frac {2S}{HA}-a\right)\ge s\iff$ $2S\cdot \sum \frac 1{HA}\ge 3s\iff$ $\frac SR\cdot \sum \frac 1{\cos A}\ge 3s\iff$ $\sum \frac 1{\cos A}\ge \frac {3Rs}S\iff$ $\sum \frac 1{\cos A}\ge \frac {3R}r$ , what is truly.



PP3. Let an acute $\triangle ABC$ with centroid $G$ and circumcircle $w=C(O,R)$ . Let $\{A,S\}=\{A,G\}\cap w$ and diameter $[SN]$ of $w$ . Prove $\boxed{\sqrt{a^2+b^2+c^2}\le 3R\cos\widehat{ASN}}$ .

Similar proof. Let the midpoint $M$ of $[BC]$ and $m\left(\widehat{ASN}\right)=\phi$ .Thus, $AS=2R\cos\phi$ and from the power $p_w(G)$ of $G$ w.r.t. $w$ obtain

$GA\cdot GS=$ $\frac {a^2+b^2+c^2}{9}\implies$ $2R\cos\phi =AS=$ $GA+GS\ge2\sqrt{GA\cdot GS}=$ $2\cdot \sqrt{\frac {a^2+b^2+c^2}{9}}$ $\implies$ $\sqrt {a^2+b^2+c^2}\le$ $3R\cos\phi$

with equality iff $GA=GS\iff$ $-p_w(G)=GA^2\iff$ $\frac {a^2+b^2+c^2}{9}=\frac {4m_a^2}{9}\iff$ $b^2+c^2=2a^2$ .



PP4 (Cezar Lupu). Let $x$, $\{x,y,z\}\subset\mathbb R^*_+$ such that $(x+y)(y+z)(z+x)=1$ . Prove that $xy+yz+zx \le\frac{3}{4}$ .

Proof 1. In a triangle $ABC$ there are the following identities $abc=4Rpr$, $\sum (p-a)(p-b)=r(4R+r)$ and the inequality $R\ge 2r$ . Thus, $\left[\sum (p-a)\right]^{2}\ge 3\sum (p-a)(p-b)$

$\Longrightarrow$ $p^{2}\ge 3r(4R+r)$. But $9R\ge 2(4R+r)$ . Thus, $p^{2}\cdot (9R)^{2}\ge 3r(4R+r)\cdot 4(4R+r)^{2}$ $\Longrightarrow$ $27(4Rpr)^{2}\ge 64[r(4R+r)]^{3}$ $\Longrightarrow$ $(abc)^{2}\ge \frac{64}{27}\left[\sum (p-a)(p-b)\right]^{3}$ $\Longrightarrow$

$\boxed{\ \sqrt [3]{abc}\ge 2\sqrt{\frac{1}{3}\sum (p-a)(p-b)}\ }\ \ (1)\ .$ There are $x,\ y,\ z\ >\ 0$ so that $a=y+z,\ b=z+x,\ c=x+y$ . Therefore, the inequality $(1)$ becomes

$\boxed{\ x,\ y,\ z\ >\ 0\Longrightarrow \sqrt [3]{\frac{x+y}{2}\cdot\frac{y+z}{2}\cdot \frac{x+y}{2}}\ge \sqrt{\frac{xy+yz+zx}{3}}\ge \sqrt [3]{xyz}\ }\ \ (2)\ .$ If $(x+y)(y+z)(z+x)=1$ then the inequality $(2)$ becomes $xy+yz+zx\le \frac{3}{4}\ .$

Proof 2. $(x+y)(y+z)(z+x)\ge 8xyz\Longrightarrow xyz\le \frac{1}{8}(x+y)(y+z)(z+x)\ .$ $(xy+yz+zx)(x+y+z)=(x+y)(y+z)(z+x)+xyz\Longrightarrow $

$\boxed{\ (xy+yz+zx)(x+y+z)\le \frac{9}{8}(x+y)(y+z)(z+x)\ }\ \ (1)\ .$ Thus, $3(xy+yz+zx)\le (x+y+z)^{2}\Longrightarrow \boxed{\ \sqrt{3(xy+yz+zx)}\le x+y+z\ }\ \ (2)\ .$ Therefore,

$(1)\ \wedge \ (2)\Longrightarrow (xy+yz+zx)\sqrt{3(xy+yz+zx)}\le \frac{9}{8}(x+y)(y+z)(z+x)\Longrightarrow$ $\boxed{\{x,y,z\}\subset\mathbb R^*_+\Longrightarrow\sqrt [3]{xyz}\le \sqrt \frac{xy+yz+zx}{3}\le \sqrt [3]{\frac{x+y}{2}\cdot\frac{y+z}{2}\cdot\frac{z+x}{2}}\ }\ .$

In conclusion, if $(x+y)(y+z)(z+x)=1$ then $xy+yz+zx\le\frac{3}{4}\ .$



PP5 (Russia 1995). Let $x, y, z$ be real numbers such that $\sin x + \sin y + \sin z\ge 2$ . Show that $\cos x +\cos y + \cos z\le\sqrt 5$ .

Proof. I"ll use the well-known inequality $\{a,b,c\}\subset \mathbb R\implies |a+b+c|\le \sqrt {3\left(a^2+b^2+c^2\right)}$ . Therefore, $\left(\sum\cos x\right)^2\le$

$3\sum\cos^2x=3\left(3-\sum\sin^2x\right)\le$ $3\left[3-\frac 13\cdot \left(\sum\sin x\right)^2\right]\le$ $3\left(3-\frac 43\right)=5\implies$ $\sum\cos x\le \left|\sum\cos x\right|\le\sqrt 5$



PP6. Let $a\ ,\ b\ ,\ c$ be side lengths of a right triangle and $a$ be the length of the hypotenuse. Find the minimum value of the expression $F=\frac {a^2(b+c)+b^2(c+a)+c^2(a+b)}{abc}$ .

Proof 1. Let $B=x\in \left(0.\frac {\pi}2\right)$ . Then $\frac a1=\frac {b}{\sin x}=\frac c{\cos x}$ , i.e. $F$ becomes $f(x)=\frac {\sin x+\cos x+1+\sin x\cos x(\sin x+\cos x)}{\sin x\cos x}$ . Let $S=\sin x+\cos x=t\in\left(1,\sqrt 2\right]\ ,$

$(\forall )\ x\in \left(0.\frac {\pi}2\right)$ . Then $P=\sin x\cos x=\frac {t^2-1}2$ and $f$ becomes $g(t)=\frac {1+S+SP}{P}=$ $\frac {1+t+t\cdot \frac {t^2-1}2}{\frac {t^2-1}2}=$ $\frac {t^3+t+2}{t^2-1}=$ $\frac {(t+1)(t^2-t+2)}{t^2-1}\implies$ $g(t)=\frac {t^2-t+2}{t-1}$ , where

$t\in\left(1,\sqrt 2\right]$ . For $t-1=u\in \left(0,\sqrt 2-1\right]$ $g$ becomes $h(u)=1+u+\frac 2u$ which is evidently strict decreasing $(\searrow)$ . The min. of $h$ is touched in $u=\sqrt 2-1\iff$ the min. of $g$ is

touched in $t=\sqrt 2\iff$ the min. of $f$ is touched in $x=\frac {\pi}4$ and in this case $f(x)\ge f\left(\frac {\pi}4\right)=2+3\sqrt 2$ , i.e. $\frac {a^2(b+c)+b^2(c+a)+c^2(a+b)}{abc}\ge 2+3\sqrt 2$ with equality iff $b=c$ .

Proof 2. $F=\frac{a^2(b+c)+b^2(c+a)+c^2(a+b)}{abc}=$ $\frac {bc(b+c)+a\left(b^2+c^2\right)+a^2(b+c)}{abc}=$ $\frac{b+c}{\sqrt{b^2+c^2}}+\frac{b^2+c^2}{bc}+\frac{(b+c)\sqrt{b^2+c^2}}{bc}=$

$\left[\frac{b+c}{\sqrt{b^2+c^2}}+\frac{(b+c)\sqrt{b^2+c^2}}{2bc}\right]+\frac{b^2+c^2}{bc}+\frac{(b+c)\sqrt{b^2+c^2}}{2bc}\ge$ $\frac{2(b+c)}{\sqrt{2bc}}+2+\frac{2\sqrt{bc}\cdot \sqrt{2bc}}{2bc}\ge$ $\frac{2\cdot 2\sqrt{bc}}{\sqrt{2bc}}+2+\sqrt 2=2\sqrt 2+2+\sqrt 2= 2+3\sqrt 2 .$ Very nice !

Remark. Denote $\left\{\begin{array}{c}
\boxed{S=\sin B+\cos B=t}\in I=\left(1,\sqrt 2\right]\\\\
P=\sin B\cos B=\frac {t^2-1}2\end{array}\right\|$ for any $B\in\left(0,\frac {\pi}2\right)$ . Prove similarly that $\left\{\begin{array}{ccccc}
\frac {a^2+b^2+c^2}{(a+b+c)^2} & \ge & 2\left(3-2\sqrt 2\right) & \ge & \frac 13\\\\  
\frac {a^2+b^2+c^2}{ab+bc+ca} & \ge & \frac {4\left(2\sqrt 2-1\right)}7 & \ge & 1\\\\
\frac{a^k+b^k+c^k}{(a+b+c)^k} & \ge & \left(1+\frac{1}{\sqrt{2^{k-2}}}\right)(\sqrt{2}-1)^k & \ge & \frac{1}{3^{k-1}}\end{array}\right\|$

$\left\{\begin{array}{cccccc}
\frac {a^3+b^3+c^3}{(a+b+c)\left(a^2+b^2+c^2\right)}\ \ge\ \frac {\sqrt 2}4\ \ge\ \frac 13 & \mathrm{where} & g(t)=\frac {(t+1)(2-t)}4\ ,\ t\in I & \mathrm{is\ \searrow} & \implies & g(t)\ \ge\ g\left(\sqrt 2\right)\ =\ \frac {\sqrt 2}4\\\\
\frac {a^3+b^3+c^3}{(a+b+c)^3}\ \ge\ \frac {3\sqrt 2-4}2\ \ge\ \frac 19 & \mathrm{where} & g(t)=\frac {2-t}{2(t+1)}\ ,\ t\in I & \mathrm{is\ \searrow} & \implies & g(t)\ge\ g\left(\sqrt 2\right)\ =\ \frac {3\sqrt 2-4}2\end{array}\right\|$

Therefore, $\left\{\begin{array}{c}
(a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\\\\
\boxed{\frac {(a+b+c)^3}{(a+b)(b+c)(c+a)}\ \ge\ 2+\sqrt 2}\ge\left(\frac 32\right)^3
\end{array}\right\|$ .

$\blacktriangleright\ \sum\frac {b+c}a=\frac {\sum bc(b+c)}{abc}=\frac {\sum a^2(b+c)}{abc}\ge 2+3\sqrt 2\implies$ $\boxed{\ \frac {b+c}a+\frac {c+a}b+\frac {a+b}c\ge 2+3\sqrt 2\ge 6\ }$ .

$\blacktriangleright\ \sum\frac {b^2+c^2}{bc}=\frac {\sum a\left(b^2+c^2\right)}{abc}=\frac {\sum a^2(b+c)}{abc}\ge 2+3\sqrt 2\implies$ $\boxed{\ \frac {b^2+c^2}{bc}+\frac {c^2+a^2}{ca}+\frac {a^2+b^2}{ab}\ge 2+3\sqrt 2\ge 6\ }\ .$ See PE23 from
here


PP7. Let $ABC$ be a triangle with side lengths $\{a,b,c\}$ and let $A'B'C'$ be a triangle with side lengths $\left\{\sqrt{a},\sqrt{b},\sqrt{c}\right\}$ . Prove that $\left\{\begin{array}{cccc}
\prod\sin A & \le & 3\sqrt{3}\cdot \prod\cos A' & (1)\\\\
6\prod\sin A & \le & 3+\sum\cos A & (2)\end{array}\right\|$ .

Proof. There is a triangle with side lengths $\left\{\sqrt{a},\sqrt{b},\sqrt{c}\right\}$ . Indeed, $\left(\sqrt b+\sqrt c\right)^2=b+c+2\sqrt {bc}>b+c>a=\left(\sqrt a\right)^2\implies \sqrt b+\sqrt c >\sqrt a$ a.s.o.

$1.\blacktriangleright\ \prod\sin A\le 3\sqrt{3}\cdot \prod\cos A'\iff$ $\prod\frac a{2R}\le 3\sqrt{3}\cdot \prod\frac {b+c-a}{2\sqrt{bc}}\iff$ $\frac {abc}{8R^3}\le 3\sqrt 3\cdot\prod\frac {s-a}{\sqrt{bc}}\iff$ $\frac {4Rsr}{8R^3}\le 3\sqrt 3\cdot\frac {sr^2}{4Rsr}\iff$ $2s\le 3R\sqrt 3$ , what is truly.

$2.\blacktriangleright\ 6\prod\sin A\le 3+\sum\cos A\iff$ $\frac {24Rsr}{8R^3}\le 4+\frac rR\iff$ $3sr\le R(4R+r)$ . Observe that $\left\{\begin{array}{ccc}
s\sqrt 3 & \le & 4R+r\\\\
r\sqrt 3 & < & 2r\le R\end{array}\right\|\ \bigodot$ $\implies 3sr\le R(4R+r)$ .



PP8. Prove that in any triangle $ABC$ there is the relation $\frac {ab}c+\frac {bc}a+\frac {ab}c\ge \frac {4S}{R}$ , where $S$ is the area and $R$ is the circumradius.

Proof. $\left\{\begin{array}{c}
4(s-a)(s-b)\le c^2\\\\
4(s-a)(s-c)\le b^2\end{array}\right|\bigodot\implies$ $16(s-a)sr^2\le b^2c^2\iff$ $4(s-a)rabc\le b^2c^2R\iff$ $\frac {bc}{a}\ge \frac {4r(s-a)}{R}\implies$ $\sum \frac {bc}{a}\ge \frac {4rs}{R}=\frac {4S}{R}$ .


PP9. Prove that in any triangle $ABC$ there is the inequality $2\sin A\le\sqrt{\frac s{s-a}}$ .

Proof 1. Denote $\left\{\begin{array}{ccc}
s-a & = & x\\\\
s-b & = & y\\\\
s-c & = & z\end{array}\right\|$ . Thus, $s=x+y+z\ ,\ a=y+z$ and $\left\{\begin{array}{ccc}
S & = & \sqrt{xyz(x+y+z)}\\\\
R & = & \frac {(x+y)(y+z)(z+x)}{4\sqrt{xyz(x+y+z)}}\end{array}\right\|$ . Therefore,

$2\sin A=\frac aR=\frac {4S}{bc}$ and $2\sin A\le\sqrt{\frac s{s-a}}\iff$ $\frac {4\sqrt{xyz(x+y+z)}}{(x+y)(x+z)}\le\sqrt{\frac {x+y+z}x}\iff$ $(x+y)(x+z)\ge 4x\sqrt{yz}$

what is truly because $(x+y)(x+z)=x^2+xz+yx+yz\ge$ $ 4\sqrt{x^2\cdot xz\cdot xy\cdot yz}=$ $4\sqrt{x^4y^2z^2}=4x\sqrt{yz}$ .

Proof 2. $2\sin A=\frac aR=\frac {4S}{bc}$ and $2\sin A\le\sqrt{\frac s{s-a}}\iff$ $\frac {4S}{bc}\le \sqrt{\frac s{s-a}}\iff$ $4(s-a)\sqrt{(s-b)(s-c)}\le bc\ (*)$ .

Observe that $\left\{\begin{array}{ccc}
2\sqrt{(s-a)(s-b)} & \le &  (s-a)+(s-b)=c\\\\
2\sqrt{(s-a)(s-c)} & \le & (s-a)+(s-c)=b\end{array}\right\|$ $\bigodot\implies$ the relation $(*)$ is true.

Remark. $2\sin A\le\sqrt{\frac s{s-a}}\iff$ $\frac aR\le\sqrt{\frac s{s-a}}\iff$ $\frac {a^2}{R^2}\le \frac s{s-a}\iff$ $\frac {s-a}{R^2}\le\frac s{a^2}$ a.s.o. $\implies$ $\sum\frac {s-a}{R^2}\le\sum \frac s{a^2}\implies$ $\boxed{\frac 1{R^2}\le \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}}$ . Otherwise $:$

$16S^2=2\sum b^2c^2-\sum a^4=$ $\sum b^2c^2-\left(\sum a^4-\sum b^2c^2\right)\le \sum b^2c^2=(4RS)^2\cdot\sum\frac 1{a^2}\implies$ $16S^2\le (4RS)^2\cdot\sum\frac 1{a^2} \iff$ $1\le R^2\sum\frac 1{a^2}\iff$ $\frac 1{R^2}\le \sum\frac 1{a^2}$ .

Observe that $\sum\frac 1{bc}=\frac {a+b+c}{abc}=\frac {2s}{4Rsr}=\frac1{2Rr}\ge \frac 1{R^2}\implies$ $\boxed{\frac 1{R^2}\le\frac 1{ab}+\frac 1{bc}+\frac 1{ca}}\ .$ Prove easily that $\sum\frac 1{bc}\le\sum\frac 1{a^2}\ (1)$ . Indeed, denote $\left\{\begin{array}{ccc}
bc & = & x\\\
ca & = & y\\\
ab & = & z\end{array}\right\|\ .$
Thus, $\left\{\begin{array}{ccc}
a^2 & = & \frac {yz}x\\\\
b^2 & = & \frac {zx}y\\\\
c^2 & = & \frac {xy}z\end{array}\right\|$ and the inequality $(1)$ becomes $\sum\frac 1x\le \sum \frac x{yz}\iff$ $\sum yz\le \sum x^2$ , what is truly. In conclusion, $\boxed{\frac 1{R^2}\le \frac 1{ab}+\frac 1{bc}+\frac 1{ca}\le\frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2}}\ .$



PP10. $\sum\frac {b^2+c^2}a=\frac {a^2}b+\frac {a^2}c+\frac {b^2}a+\frac {b^2}c+\frac {c^2}a+\frac {c^2}b=\sum\frac {a^2(b+c)}{bc}\ge\sum\frac {4a^2}{b+c}\ \stackrel{(C.B.S)}{\ge}\ \frac {4(a+b+c)^2}{2(a+b+c)}\implies\boxed{\ \sum\frac {b^2+c^2}a\ge 2(a+b+c)\ }\ .$


PP11. Sa se arate ca intr-un triunghi $ABC$ exista lantul de inegalitati $\boxed{a^3+b^3+c^3-3abc\ \ge\ 2\cdot\left[abc-(b+c-a)(c+a-b)(a+b-c)\right]\ }\ \ge\ 0\ .$

Proof. $\left\{\begin{array}{cc}
a^3+b^3+c^3=2p(p^2-6Rr-3r^2) \\\\  
\prod(b+c-a)=8\prod(p-a)=8pr^2 \ \end{array}\right\|$ $\implies$ $a^3+b^3+c^3+2\prod(b+c-a)\ \ge\ 5abc$ $\Longleftrightarrow$ $2p(p^2-6Rr-3r^2)+16pr^2\ \ge$ $20Rrp\ \Longleftrightarrow$

$p^2-6Rr-3r^2+8r^2\ \ge$ $10Rr$ $\Longleftrightarrow$ $p^2+5r^2\ \ge\ 16Rr\ .$ Cu relatiile $abc=4Rrp$ si $(p-a)(p-b)(p-c)=pr^2$ partea dreapta devine $R\ \ge\ 2r$ (cunoscuta).



PP12. Prove that $\sqrt[n]{a^n+b^n}\ge\sqrt[n+1]{a^{n+1}+b^{n+1}}$ for $n\in\mathbb N^*$ and $a,b\in\mathbb R^*_+$ with $a\ne b$ ?

Proof. Suppose w.l.o.g. that $0<a<b$ and denote $0<c=\frac ab<1$ . Observe that $\left\{\begin{array}{c}
\frac 1n>\frac {1}{n+1}>0\\\\
\ln\left(1+c^n\right)>\ln\left(1+c^{n+1}\right) >0\end{array}\right\|\bigodot\implies$ $\frac 1n\cdot\ln\left(1+c^n\right)>$

$\frac {1}{n+1}\cdot \ln\left(1+c^{n+1}\right)\iff$ $\sqrt [n]{1+c^n}>\sqrt [n+1]{1+c^{n+1}}\iff$ $b\cdot \sqrt [n]{1+c^n}>b\cdot \sqrt [n+1]{1+c^{n+1}}\iff$ $\sqrt[n]{a^n+b^n}\ge\sqrt[n+1]{a^{n+1}+b^{n+1}}$ .



PP13. Let $x,y \in \mathbb{R}$ such that $x+y = 2$ . Prove that $xy(x^2+y^2) \le 2$ .

Proof 1. Denote $xy=p$ . The proposed inequality becomes $p\left(4-2p\right)\le 2\iff$ $(p-1)^2\ge 0\iff$ $(xy-1)^2\ge 0$ with equality iff $xy=1$ , i.e. $x=y=1$ .

Proof 2. If $xy\le 0$ , then is evidently. Suppose $xy>0$ . Therefore,

$\left\{\begin{array}{c}
xy>0\\\
x+y=2\end{array}\right\|\implies$ $4=(x+y)^2=\left(x^2+y^2\right)+$ $(2xy)\ge 2\cdot\sqrt {(2xy)\cdot\left(x^2+y^2\right)}\implies$

$2\ge \sqrt {(2xy)\cdot\left(x^2+y^2\right)}\implies$ $2\ge xy\left(x^2+y^2\right)$ with equality iff $x^2+y^2=2xy$ , i.e. $x=y=1$ .

Proof 3. $\left\{\begin{array}{c}
(x+y)^4=x^4+y^4+4xy\left(x^2+y^2\right)+6x^2y^2\\\\
(x-y)^4=x^4+y^4-4xy\left(x^2+y^2\right)+6x^2y^2\end{array}\right\|\implies$ $16=(x+y)^4\ge (x+y)^4-(x-y)^4=$

$8xy\left(x^2+y^2\right)\implies$ $16\ge 8xy\left(x^2+y^2\right)\implies$ $xy\left(x^2+y^2\right)\le 2$ with equality iff $x=y=1$ .

Proof 4. $xy\left(x^2+y^2\right)\le 2\iff$ $xy\left(x^2+y^2\right)\le 2\cdot\left(\frac {x+y}{2}\right)^4\iff$ $8xy\left(x^2+y^2\right)\le x^4+y^4+4xy\left(x^2+y^2\right)+6x^2y^2\iff$

$0\le x^4+y^4-4xy\left(x^2+y^2\right)+6x^2y^2\iff$ $(x-y)^4\ge 0$ with equality iff $x=y=1$ .

Proof 5. With the substitutions $\begin{array}{c}
x=1+a\\\
y=1-a\end{array}$ the proposed inequality becomes $(1+a)(1-a)\left[(1+a)^2+(1-a)^2\right]\le 2\iff$

$\left(1-a^2\right)\left(1+a^2\right)\le 1\iff$ $1-a^4\le 1\iff$ $a^4\ge 0$ , what is truly. We have equality iff $a=0$ , i.e. $x=y=1$ .



PP14. Prove that $\boxed{\ \{x,a,b\}\subset (0,\infty )\ \wedge\ x\ge \sqrt {ab}\ \implies\ \frac {1}{x+a}+\frac {1}{x+b}\ \le\ \frac {2}{x+\sqrt {ab}}\ }$ .

Proof. $\frac {1}{x+a}+\frac {1}{x+b}\ \le\ \frac {2}{x+\sqrt {ab}}\iff$ $(2x+a+b)\left(x+\sqrt {ab}\right)\le 2\left[x^2+x(a+b)+ab\right]\iff$ $2x\sqrt{ab}+(a+b)\sqrt{ab}\le $ $x(a+b)+2ab$

$\iff$ $x\left(a+b-2\sqrt{ab}\right)\ge \sqrt{ab}\left(a+b-2\sqrt{ab}\right)\iff$ $\left(x-\sqrt {ab}\right)\left(\sqrt a-\sqrt b\right)^2\ge 0$ . We"ll have the equality if and only if $a=b\ \vee\ x=\sqrt{ab}$ .

Remark. If define (Geometrical Mean) $G(a,b)=\sqrt {ab}$ and (Harmonical Mean) $H(a,b)=\frac {2}{\frac 1a+\frac 1b}$ ,

then $\boxed{G(a,b)\ge H(a,b)}$ and $\underline{(\forall )\ x\ge G(a,b)}$ we have $\boxed{x+G(a,b)\le H(x+a,x+b)}$ .



PP15. Prove that $\frac {1}{2\sqrt n}<\dfrac {1} {2} \cdot \dfrac {3} {4} \cdots \dfrac {2n-1} {2n} < \dfrac {1} {\sqrt{2n+1}}\ ,\ (\forall )\ n\in\mathbb N^*$ and (stronger) $\frac {1} {2} \cdot \frac {3} {4} \cdots \frac {2n-1} {2n} < \frac {1} {\sqrt{3n+1}}\ ,\ (\forall )\ n>1$ .

Proof. Denote $a_n=\frac {1\cdot 3\cdot 5\cdot\ \ldots\ \cdot (2n-1)} {2\cdot 4\cdot 6\cdot\ \ldots\ \cdot 2n}$ and $b_n=\frac {2\cdot 4\cdot 6\cdot\ \ldots\ \cdot 2n}{3\cdot 5\cdot 7\cdot \ \ldots\ \cdot (2n+1)}$ , where $n\in\mathbb N^*$ . Observe that $a_n<b_n$

because $\frac {k}{k+1}<\frac {k+1}{k+2}$ for any $k\in\overline{1,2n-1}$ and $a_nb_n=\frac {1}{2n+1}$ . Hence $a^2_n<a_nb_n=\frac {1}{2n+1}$ from where obtain that

$\boxed{\ a_n<\frac {1}{\sqrt {2n+1}}\ }$ . From the relation $(2k+1)^2>4k(k+1)$ obtain that $\frac {2k+1}{2\sqrt{k(k+1)}}>1\ \ ,\ (\forall )\ k\in\overline{1,n-1}\implies$

$\frac {3\cdot 5\cdot\ \ldots\ \cdot (2n-1)}{2^{n-1}\cdot 2\cdot 3\cdot 4\cdot\ \ldots\ \cdot (n-1)\cdot\sqrt n}>1$ , i.e. $\frac {1\cdot 3\cdot 5\cdot\ \ldots\ \cdot (2n-1)}{4\cdot 6\cdot 8\cdot\ \ldots\ \cdot (2n-2)\cdot\sqrt n}>1\iff$ $\frac {2n}{\sqrt n}\cdot a_n>1\iff$ $\boxed{\ a_n>\frac {1}{2\sqrt n}\ }$ .

Observe that $a_n<\frac {1}{\sqrt{3n+1}}\implies$ $a_{n+1}=\frac {2n+1}{2n+2}\cdot a_n<\frac {2n+1}{2n+2}\cdot\frac {1}{\sqrt{3n+1}}$ and $\frac {2n+1}{2n+2}\cdot\frac {1}{\sqrt{3n+1}}<\frac {1}{\sqrt{3n+4}}\iff$

$(2n+1)^2(3n+4)<(2n+2)^2(3n+1)\iff$ $12n^3+28n^2+19n+4<12n^3+28n^2+20n+4\iff$ $0<n$ , O.K.

In conclusion, $a_2<\frac {1}{\sqrt 7}$ and $a_n<\frac {1}{\sqrt{3n+1}}\implies$ $ a_{n+1}<\frac {1}{\sqrt{3n+4}}$ for any $n\ge 2$ , i.e. $a_n<\frac {1}{\sqrt{3n+1}}$ for any $n\in\mathbb N$ , $n\ge 2$ .


Similar proposed problems. Prove that :

$\blacktriangleright\ 2\cdot \left(\sqrt{n+1}-1\right)<\sum_{k=1}^n\frac {1}{\sqrt k}<2\sqrt n\ ,\ (\forall )\ n\in \mathbb N\ ,\ n\ge 2\ .\ \ \ \ \blacktriangleright\ \sum_{k=0}^n\frac {1}{k!}<$ $3-\frac {n+2}{(n+1)!(n+1)}\ ,\ (\forall )\ n\in \mathbb N^*$ .



PP16 (M. CUCOANES). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\left(\frac {r_a}{\cos\frac A2}\right)^2+\left(\frac {r_b}{\cos\frac B2}\right)^2+\left(\frac {r_c}{\cos\frac C2}\right)^2\ge 9R^2\ge 2R(4R+r)}$ $\ (*)$ (standard notations).

Proof. I"ll use well-known identities $\left\{\begin{array}{cccc}
r_a+r_b+r_c & = & 4R+r & (1)\\\\
r_ar_b+r_br_c+r_cr_a & = & s^2 & (2)\\\\
\sum\tan\frac B2\cdot\tan\frac C2 & = & 1 & (3)\end{array}\right\|$ and Gerretsen's inequality $\boxed{16Rr-5r^2\le s^2\le 4R^2+4Rr+3r^2}\ (4)\ .$ Thus $:$

$\blacktriangleright\ \sum\frac 1{\cos^2\frac A2}=\sum\left(1+\tan^2\frac A2\right)=3+\sum\tan^2\frac A2\ge 3+\sum\tan\frac B2\tan\frac C2\ \stackrel {(3)}{=}\ 4\implies$ $\boxed{\sum\frac 1{\cos^2\frac A2}\ge 4}\ (5)\ .$

$\blacktriangleright\ \sum r_a^2=\left(\sum r_a\right)^2-2\cdot\sum r_br_c\ \stackrel{(1\wedge 2)}{=}\ (4R+r)^2-2s^2\ \stackrel{(4)}{\ge}\ (4R+r)^2-2\left(4R^2+4Rr+3r^2\right)=8R^2-5r^2$ $\implies$ $\boxed{\sum r_a^2\ge 8R^2-5r^2}\
 (6)\ .$

Observe that $r_a\le r_b\le r_c\iff$ $s-a\ge s-b\ge s-c\iff$ $a\le b\le c\iff$ $A\le B\le C\iff$ $\cos\frac A2\ge\cos\frac  B2\ge \cos\frac C2\ge 0\iff$

$\cos^2\frac A2\ge\cos^2\frac B2\ge \cos^2\frac C2\iff$ $\frac 1{\cos^2\frac A2}\le \frac 1{\cos^2\frac B2}\le \frac 1{\cos^2\frac C2}\ ,$ i.e. $\boxed{r_a\le r_b\le r_c\ \nearrow \ \iff\ \nearrow\ \frac 1{\cos^2\frac A2}\le \frac 1{\cos^2\frac B2}\le \frac 1{\cos^2\frac C2}}\implies$

Can apply the
Chebysev's inequality $:\ 3\cdot\sum\frac {r_a^2}{\cos^2\frac A2}\ge$ $\sum r_a^2\cdot \sum \frac 1{\cos^2\frac A2}\ \stackrel{(5\wedge 6)}{\ge}\ 4\left(8R^2-5r^2\right)\implies$ $\boxed{\sum\frac {r_a^2}{\cos^2\frac A2}\ge \frac 43\cdot \left(8R^2-5r^2\right)}\ (7)\ .$

Since $\frac 43\cdot \left(8R^2-5r^2\right)\ge 9R^2\iff$ $5R^2\ge 20r^2\iff$ $R^2\ge 4r^2\iff$ $R\ge 2r$ what is truly, from the relation $(7)$ obtain the required inequality $(*)\ .$ Remark:

$\sum\frac {r_a^2}{\cos^2\frac A2}\stackrel{C.B.S}{\ge}\frac {\left(\sum r_a\right)^2}{\sum\cos^2\frac A2}=$ $\frac {2(4R+r)^2}{\sum(1+\cos A)}=$ $\frac {2(4R+r)^2}{3+\sum\cos A}=$ $\frac {2(4R+r)^2}{3+\left(1+\frac rR\right)}=$ $\frac {2R(4R+r)^2}{4R+r}=$ $2R(4R+r)\implies$ $\boxed{\sum\frac {r_a^2}{\cos^2\frac A2}\ge 2R(4R+r)}\ (8).$

Since $9R^2\ge 2R(4R+r)\iff R\ge 2r$ is truly, then can say that the Marian Cucoanes's inequality is stronger than the inequality $(8)\ .$



PP17 (M. CUCOANES). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{4s^2\le \left(\frac {r_a}{\sin\frac A2}\right)^2+\left(\frac {r_b}{\sin\frac B2}\right)^2+\left(\frac {r_c}{\sin\frac C2}\right)^2\le 27R^2}$ $\ (*)$ (standard notations).

Proof. I"ll use the Gerretsen's inequality $\boxed{s^2\le 4R^2+4Rr+3r^2}\ (*)\ :$ $AI_a\sin \frac A2=r_a\implies$ $S\equiv \sum\left(\frac {r_a}{\sin\frac A2}\right)^2=\sum AI_a^2=\sum\left(s^2+r_a^2\right)=$ $3s^2+(4R+r)^2-2s^2=s^2+(4R+r)^2\ \stackrel {(*)}{\le}$

$4R^2+4Rr+3r^2+16R^2+8Rr+r^2=20R^2+12Rr+4r^2\implies$ $\boxed{S\le 20R^2+12Rr+4r^2}\ .$ Remain to prove $20R^2+12Rr+4r^2\le 27R^2\ .$ Indeed, $20R^2+12Rr+4r^2\le 27R^2\iff$

$7R^2-12Rr-4r^2\ge 0\iff$ $(7R+r)(R-2r)\ge 0$ what is truly. I"ll use the well-known inequality $\boxed{s\sqrt 3\le 4R+r}\ (1)\ :$ $S=s^2+(4R+r)^2\ge s^2+3s^2=4s^2\ ,$ i.e. $\boxed {S\ge 4s^2}\ .$



PP18. Prove that in any $\triangle ABC$ there is the inequality $\boxed{r_a^3+r_b^3+r_c^3\ge s^2(4R-5r)}\ (*)\ .$

Proof. I'll apply the well-known identity $:\ \sum r_a^3=3\cdot\prod r_a+\sum r_a\cdot\left(\sum r_a^2-\sum r_br_c\right)=$ $3rs^2+(4R+r)\cdot\left[(4R+r)^2-3s^2\right]=$

$(4R+r)^3-3s^2\cdot 4R$ $\iff$ $\boxed{\sum r_a^3=(4R+r)^3-12Rs^2}\ (*)\ .$ Hence $\sum r_a^3\ge s^2(4R-5r)\ \stackrel{(*)}{\iff}\ (4R+r)^3-12Rs^2\ge $

$s^2(4R-5r)$ $\iff$ $(4R+r)^3\ge s^2(16R-5r)\ ,$ i.e. $\boxed{\sum r_a^3\ge s^2(4R-5r)\iff (4R+r)^3\ge s^2(16R-5r)}\ .$ I"ll use the

Gerretsen's inequality $\boxed{s^2\le 4R^2+4Rr+3r^2}\ (1)\ .$ Thus, $s^2(16R-5r)\le $ $\left(4R^2+4Rr+3r^2\right)(16R-5r)\ .$ Remain to prove that

$\boxed{\left(4R^2+4Rr+3r^2\right)(16R-5r)}\le$ $ (4R+r)^3\ (2)\ .$ Indeed, the inequality $(2)$ is equivalent with $\cancel{64R^3}+\underline{44R^2r}+\underline{\underline{28Rr^2}}-\underline{\underline{\underline{15r^2}}}\le$

$\cancel{64R^3}+\underline{48R^2r}+\underline{\underline{12Rr^2}}+\underline{\underline{\underline{r^3}}}\iff$ $4R^2r-16Rr^2+16r^3\ge 0\ \stackrel{:(4r)}{\iff}\ R^2-4Rr+4r^2\ge 0$ $\iff$ $(R-2r)^2\ge 0$ what is truly.



PP19. Let $ABCD$ be a square with the incircle $w=\mathbb C(O,r)$ which touches $AB,$ $BC$ at $S,$ $R.$ For $M\in (SB)$ denote $N\in (BR)$ so that $MN$ is tangent to $w.$ Prove that $4\cdot [DMN]=[ABCD].$

Proof. Suppose w.l.o.g. $AB=1$ and denote $MS=x$ and $NR=y.$ Therefore, $AS=SB=BR=RC=\frac 12\ ,\ MB=\frac 12-x\ ,\ NB=\frac 12-y$ and $BM^2+BN^2=MN^2\iff$

$\left(\frac 12-x\right)^2+\left(\frac 12-y\right)^2=(x+y)^2\iff$ $\boxed{x+y+2xy=\frac 12}\ (*)\ .$ Hence $[DMN]=[ABCD]-[ADM]-[CDN]-[BMN]=$ $1-\frac 12\cdot (AD\cdot AM+CD\cdot CN+BM\cdot BN)=$

$1-\frac 12\cdot \left[\left(\frac 12+x\right)+\left(\frac 12+y\right)+\left(\frac 12-x\right)\left(\frac 12-y\right)\right]=$ $1-\frac 12\cdot\left[1+(x+y)+\frac 14-\frac 12\cdot (x+y)+xy\right]=$ $1-\frac 12\cdot\left[\frac 54+\overbrace {\frac {x+y}2+xy}^{\frac 14}\right]\ \stackrel{(*)}{=}\ \frac 14.$ In conclusion, $4\cdot [DMN]=[ABCD].$



PP20 (Adil Abdullayev). Prove that $(\forall )\ \triangle ABC$ there is the inequality $\boxed{\frac {\sqrt{r_a}}{\cos\frac A2}+\frac {\sqrt{r_b}}{\cos\frac B2}+\frac {\sqrt{r_c}}{\cos\frac C2}\ge 4\sqrt R}$ $\ (*)$ (standard notations).

Proof (Kevin Soto Palacios). $r_b+r_c=\frac {aS}{(s-b)(s-c)}=$ $\frac {as(s-a)}{S}=$ $\frac {abc}S\cdot\cos^2\frac A2=4R\cdot\cos^2\frac A2\implies$ $\boxed{\ r_b+r_c=4R\cdot\cos^2\frac A2\ }\ (1)\ .$ Thus, $\sum \frac {\sqrt{r_a}}{\cos\frac A2}=\sum 2\cdot\sqrt{\frac{Rr_a}{r_b+r_c}}\ .$

Hence $\sum\frac {\sqrt{r_a}}{\cos\frac A2}\ge 4\sqrt R\iff$ $\sum 2\cdot\sqrt{\frac{\cancel Rr_a}{r_b+r_c}}\ge 4\cancel{\sqrt R}\iff$ $\boxed{\sum\sqrt{\frac {r_a}{r_b+r_c}}\ge 2}\ (2)\ .$ Observe that $r_a+\left(r_b+r_c\right)\ge 2\sqrt {r_a\left(r_b+r_c\right)}\iff$ $\frac 2{r_a+r_b+r_c}\le \frac 1{\sqrt {r_a\left(r_b+r_c\right)}}\iff$

$\frac {2r_a}{r_a+r_b+r_c}\le \frac {r_a}{\sqrt {r_a\left(r_b+r_c\right)}}\iff$ $\frac {2r_a}{r_a+r_b+r_c}\le \sqrt {\frac {r_a}{r_b+r_c}}$ a.s.o. In conclusion, $\sum\sqrt {\frac {r_a}{r_b+r_c}}\ge \sum\frac {2r_a}{r_a+r_b+r_c}=2,$ i.e. the required inequality $(2)\ .$

Have equality $\iff r_a=r_b+r_c\iff$ $\tan\frac A2=\tan\frac B2+\tan\frac C2\iff$ $2\tan\frac A2=\tan\frac A2+\tan\frac B2+\tan\frac C2\iff$ $2\cancel{\tan\frac A2}=\cancel {\tan\frac A2}\cdot\tan\frac B2\cdot\tan\frac C2\iff$

$\tan\frac B2\tan\frac C2=2\iff$ $\sin\frac B2\sin\frac C2=2\cos\frac B2\cos\frac C2\iff$ $\cos\frac {B+C}2+\cos\frac B2\cos\frac C2=0\iff$ $\sin\frac A2+\cos\frac B2\cos \frac C2=0,$ what is false.
This post has been edited 227 times. Last edited by Virgil Nicula, Sep 1, 2017, 7:45 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a