416. Cateva solutii ale unei probleme de tip slicing.
by Virgil Nicula, Mar 23, 2015, 4:40 PM
P1. In triunghiul ABC punctul M este mijlocul laturii
si
. Stiind ca
, determinati masura unghiului
.
Desi problema este propusa la nivelul clasei a VI - a voi oferi mai multe solutii pentru aceasta frumoasa problema de tip slicing. Voi incepe
cu metodele metrice si/sau trigonometrice si sfarsind cu cele sintetice, de fapt singurele de interes estetic intr-o problema de tip slicing.
Metoda 1 (metrica). Aplicam teorema sinusurilor in
. Aplicam teorema medianei in

. Teorema sinusurilor in
.
Metoda 2 (trig.). Aplicam in

.
Metoda 3 ("slicing"). Construim triunghiul echilateral
astfel ca dreapta
sa separe punctele
si
. Asadar
, 
si semidreapta
este bisectoarea
si punctul
este mijlocul laturii
segmentul
este linie mijlocie in

si
triunghiul
este
-dreptunghic isoscel

triunghiul
este
-isoscel cu
.
Metoda 4 ("slicing"). Construim
echilateral astfel ca
sa nu separe
,
. Se observa ca
si
ceea ce
inseamna ca
este inscriptibil. Rezulta
,
. Asadar semidreptele
si
sunt bisectoare
la
si \angle BDM respectiv ceea ce inseamna ca
este centrul cercului inscris in
si semidreapta
este bisectoare la
, adica
.
Si iata o metoda "killer", nu numai eficienta, dar si foarte scurta, fara puncte intermediare sau constructii auxiliare ...
Metoda 5 (metrica). Teorema sinusurilor in

, adica dreapta
este tangenta in
la cercul circumscris triunghiului
.
O alta metoda ar fi utilizarea problemei/lemei foarte simple de "slicing" de aici
Metoda 6 ("slicing"). Fie
cu
astfel ca
sa separe
,
. Din lema mentionata rezulta
si
. Fie mijlocul
al lui
. Insa
si
,
sunt mijloacele la
,
respectiv
.
My (math)blog
Este binecunoscuta urmatoarea problema "slicing" intr-un triunghi : "In
cu
si
, unde
este mijlocul laturii
". Cei care nu au reusit sa o rezolve in cel mult jumatate de ora pot gasi demonstratia pe my (math)blog.
Metoda 7 ("slicing"). Notam mijlocul
al laturii
. Aplicam lema in
si rezulta
. Din
rezulta
.
Metoda 8 ("slicing"). Construim triunghiul
astfel ca dreapta
separa punctele
,
si
,
. Aplicam
lema in
si rezulta
. Deoarece triunghiurile
si
sunt simetrice fata de dreapta
rezulta ca
.
P2. Let
with
and
so that
. Prove that
.
Proof 1. Apply the theorem of Sines in

.
P3. Let a circle
with the diameter
and from
so that
construct the tangents
,
to
, where
and let
. Prove that
the ray
is the bisector of
.
Proof.
.
Hence division
is harmonic. Apply known property
we have
, i.e. the ray
is the bisector of
.
P4. Let a convex cyclical quadrilateral
with
so that
separates
,
, where
is the tangent line to the circle
at the point
.
Then
, i.e.
is a harmonic quadrilateral and in this case the division
is harmonically, where
.
Proof. Suppose
.Thus,

. Thus,
, i.e.
is harmonic.
Remark. Observe easily that the rays
,
,
and
are symmedians in the triangles
,
,
and
respectively. See here and here.
P5. Let
with
. Let
bisect
and let
bisect
, where
and
. If
, then what are the angles of
?
Proof 1 (metric). Denote
. Thus,
. Therefore,



,
because
.
Proof 2 (trigonometric). Denote
. I"ll apply the Sinus' theorem in the triangles
,
:






. Thus, 
or
.
Let an equilateral
with
and the point
so that the ray
is the
-bisector of
and
Prove that 
Proof 1 (trig). Let
So

what is true.
Proof 2 (metric). Let
i.e.
Observe that
Apply the theorem
of bisector in
Apply again the
theorem of bisector in
In conclusion,

what is true 
Proof 3 (synthetic). If denote
so that
and
then the point
is the incenter of
and
is
-excenter of 
In conclusion,

Remark.
and from the trapezoid
obtain the relation
i.e. 
Let an
-isosceles
for what there are
and the point
so that the ray
is
the
-bisector of
and
Prove that
i.e.
is equilateral
Proof. Let
i.e.
Observe that
and 
Apply the theorem of bisector in 
From
get 
Thus,


![$a\left[(b-m)^2+\frac {a^2m}{b}\right]+a(b-m)^2+2al(b-m)=abm+2b(b-m)^2+2bl(b-m)\iff$](//latex.artofproblemsolving.com/0/0/9/009df1dac65e75937a7fc74194dd5fc56cd2916b.png)
E}{BC}
because
P7 (Murat Öz, Turkey). Let an
-isosceles
with
The
-angled bisector meet
at
and there is
so that
Prove that
Proof 1. Denote
(degrees) and apply theorem of Sines



Proof 2 (Apostolis Manoloudis). Construct the bisector
of
Observe that
i.e.
is isosceles
and
i.e.
is cyclic. In conclusion,
![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)



Desi problema este propusa la nivelul clasei a VI - a voi oferi mai multe solutii pentru aceasta frumoasa problema de tip slicing. Voi incepe
cu metodele metrice si/sau trigonometrice si sfarsind cu cele sintetice, de fapt singurele de interes estetic intr-o problema de tip slicing.
Metoda 1 (metrica). Aplicam teorema sinusurilor in








Metoda 2 (trig.). Aplicam in














Metoda 3 ("slicing"). Construim triunghiul echilateral







si semidreapta





![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)

![$[MN]$](http://latex.artofproblemsolving.com/1/6/2/162e03b9cf481dcfb3d5bdf078be84feab5d2f6e.png)














triunghiul







Metoda 4 ("slicing"). Construim







inseamna ca







la






Si iata o metoda "killer", nu numai eficienta, dar si foarte scurta, fara puncte intermediare sau constructii auxiliare ...
Metoda 5 (metrica). Teorema sinusurilor in

















O alta metoda ar fi utilizarea problemei/lemei foarte simple de "slicing" de aici
Metoda 6 ("slicing"). Fie








![$[AD]$](http://latex.artofproblemsolving.com/0/f/3/0f3e4c424371b27673db323ced8ef0777940c0d4.png)







![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$[AD]$](http://latex.artofproblemsolving.com/0/f/3/0f3e4c424371b27673db323ced8ef0777940c0d4.png)




My (math)blog
Este binecunoscuta urmatoarea problema "slicing" intr-un triunghi : "In





![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
Metoda 7 ("slicing"). Notam mijlocul

![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)




Metoda 8 ("slicing"). Construim triunghiul






lema in






P2. Let





Proof 1. Apply the theorem of Sines in











P3. Let a circle

![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)










Proof.



Hence division





P4. Let a convex cyclical quadrilateral








Then




Proof. Suppose









Remark. Observe easily that the rays








P5. Let










Proof 1 (metric). Denote






























Proof 2 (trigonometric). Denote









![$ \sin (60+x)\left[\sin (30+2x)+\frac 12\right]=\sin (30+2x)(\sin x+\sin 60)$](http://latex.artofproblemsolving.com/f/9/0/f9014e97ba223e408eef58d3d00ae7e6856a69a3.png)







![$[\cos (x-30)-\cos (90-2x)]+[\sin 3x+\sin (60-3x)]=$](http://latex.artofproblemsolving.com/6/3/b/63b19b2a75cd47956e56c41ee66daeb92a7a1073.png)
![$ [\cos (x+30)-\cos (x-30)]+\cos (2x-30)$](http://latex.artofproblemsolving.com/b/0/5/b05b68ab2f09bc2aa220f250038619fa84e1d0e7.png)











![$ \sin (120-3x)=2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$](http://latex.artofproblemsolving.com/4/b/8/4b828fd2c7772b1ac36185122663c467e757ac00.png)


![$2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$](http://latex.artofproblemsolving.com/d/6/7/d6787a30786e7e73494cf66e267856c792fca8d8.png)



or














Proof 1 (trig). Let











Proof 2 (metric). Let



of bisector in


theorem of bisector in






![$[l+(m-a)]\cdot [(l-(m-a)]=am\iff$](http://latex.artofproblemsolving.com/f/c/b/fcba06ecd26b0f5a6eec33719ec36fb302da2e2a.png)




Proof 3 (synthetic). If denote








In conclusion,



Remark.










the






Proof. Let















![$\left[\frac {am}{b+l-m}+(b-m)\right]^2\ \stackrel{*}{\iff}\ (b-m)^2+\frac {ma^2}b=$](http://latex.artofproblemsolving.com/1/b/f/1bf1c2a0cc821cdd35197dbb441bb39776f885ee.png)







![$a\left[(b-m)^2+\frac {a^2m}{b}\right]+a(b-m)^2+2al(b-m)=abm+2b(b-m)^2+2bl(b-m)\iff$](http://latex.artofproblemsolving.com/0/0/9/009df1dac65e75937a7fc74194dd5fc56cd2916b.png)
E}{BC}
![$(b-a)\cdot \left[\frac {am(a+b)}b+2(b-m)^2+2l(b-m)\right]=0\implies$](http://latex.artofproblemsolving.com/f/f/6/ff66792c4dae00bca5f22642cd0715d853bb5611.png)


P7 (Murat Öz, Turkey). Let an









Proof 1. Denote

















Proof 2 (Apostolis Manoloudis). Construct the bisector




and





This post has been edited 190 times. Last edited by Virgil Nicula, Sep 23, 2017, 7:47 PM