416. Cateva solutii ale unei probleme de tip slicing.

by Virgil Nicula, Mar 23, 2015, 4:40 PM

P1. In triunghiul ABC punctul M este mijlocul laturii $[BC]$ si $C = 15^{\circ}$ . Stiind ca $m( \angle{AMB}) = 45^{\circ}$, determinati masura unghiului $\angle BAC$ .

Desi problema este propusa la nivelul clasei a VI - a voi oferi mai multe solutii pentru aceasta frumoasa problema de tip slicing. Voi incepe

cu metodele metrice si/sau trigonometrice si sfarsind cu cele sintetice, de fapt singurele de interes estetic intr-o problema de tip slicing.

Metoda 1 (metrica). Aplicam teorema sinusurilor in $\triangle AMC\ :\ \frac {b}{\sin 45}=\frac {a}{2\sin 30}\ \Longrightarrow\ a=b\sqrt 2\ \ (1)$ . Aplicam teorema medianei in $\triangle ABC\ :\ 4m_a^2=$ $2\left(b^2+c^2\right)-a^2\stackrel{(1)}{\ =\ }$

$2\left(b^2+c^2\right)-2b^2\ \Longrightarrow$ $\ c=m_a\sqrt 2\ \ (2)$ . Teorema sinusurilor in $\triangle ABM\ :\ \frac {m_a}{\sin B}=$ $\frac {c}{\sin 45}\ \stackrel{(2)}{\Longrightarrow}\ \frac {m_a}{\sin B}=$ $\frac {m_a\sqrt 2}{\frac {\sqrt 2}{2}}\ \Longrightarrow\ \sin B=\frac 12\Longrightarrow B=30^{\circ}$ .

Metoda 2 (trig.). Aplicam in $\triangle  ABC\ :\ \frac {MB}{MC}=$ $\frac {AB}{AC}\cdot\frac {\sin \widehat {MAB}}{\sin\widehat {MAC}}\Longrightarrow$ $1=\frac {\sin 15^{\circ}}{\sin B}\cdot \frac {\sin (B+45^{\circ})}{\sin 30^{\circ}}\Longrightarrow$ $\sin (B+45^{\circ})=2\sin B\cos 15^{\circ}\Longrightarrow$ $\sin\left(B+45^{\circ}\right)=$

$\sin \left(B+15^{\circ}\right)+\sin\left(B-15^{\circ}\right) \Longleftrightarrow$ $\sin (B+45^{\circ})-\sin\left(B-15^{\circ}\right)=$ $\sin (B+15^{\circ})\ \Longrightarrow$ $2\sin 30^{\circ}\cos \left(B+15^{\circ}\right)=$ $\sin \left(B+15^{\circ}\right)$ $\Longleftrightarrow$ $\tan\left(B+15^{\circ}\right)=1$ $\Longleftrightarrow$ $B=30^{\circ}$ .

Metoda 3 ("slicing"). Construim triunghiul echilateral $ACD$ astfel ca dreapta $BC$ sa separe punctele $A$ si $D$ . Asadar $DA=DC=AC\Longrightarrow$ $m(\angle MAD)=30^{\circ}$ , $m(\angle BCD)=45^{\circ}$

si semidreapta $[AM$ este bisectoarea $\angle CAD$ $\Longrightarrow$ $AM\perp CD$ si punctul $N\in AM\cap CD$ este mijlocul laturii $[CD]$ $\Longrightarrow$ segmentul $[MN]$ este linie mijlocie in $\triangle BCD$ $\Longrightarrow$

$MN\parallel BD$ $\Longrightarrow$ $m(\angle CBD)=45^{\circ}$ si $m(\angle ADB)=30^{\circ}$ $\Longrightarrow$ triunghiul $BDC$ este $A$-dreptunghic isoscel $\Longrightarrow$ $DB=DC=DA$ $\Longrightarrow$ $DB=DA$ $\Longrightarrow$

triunghiul $ADB$ este $A$-isoscel cu $m(\angle ADB)=30^{\circ}$ $\Longrightarrow$ $m(\angle BAD)=75^{\circ}$ $\Longrightarrow$ $m(\angle BAC)=135^{\circ}$ .

Metoda 4 ("slicing"). Construim $\triangle BCD$ echilateral astfel ca $BC$ sa nu separe $A$ , $D$ . Se observa ca $DM\perp BC$ si $m(\angle MDC)=$ $m(\angle MAC)=30^{\circ}$ ceea ce

inseamna ca $ADCM$ este inscriptibil. Rezulta $AD\perp AC$ , $m(\angle MDA)=$ $m(\angle MCA)=$ $m(\angle ADB)=15^{\circ}$ . Asadar semidreptele $[DA$ si $[MA$ sunt bisectoare

la $\angle BMD$ si \angle BDM respectiv ceea ce inseamna ca $A$ este centrul cercului inscris in $\triangle BDM$ si semidreapta $[BA$ este bisectoare la $\angle DBM$ , adica $B=30^{\circ}$ .


Si iata o metoda "killer", nu numai eficienta, dar si foarte scurta, fara puncte intermediare sau constructii auxiliare ...

Metoda 5 (metrica). Teorema sinusurilor in $\triangle AMC$ $\Longleftrightarrow$ $\frac {CM}{CA}=\frac {\sin \widehat {CAM}}{\sin\widehat {CMA}}$ $\Longrightarrow$ $\frac {\frac a2}{b}=\frac {\sin 30^{\circ}}{\sin 45^{\circ}}$ $\Longleftrightarrow$ $a=b\sqrt 2$ $\Longleftrightarrow$ $CA^2=CM\cdot CB$ $\Longleftrightarrow$

$\triangle CAM\sim \triangle CBA$ , adica dreapta $CA$ este tangenta in $A$ la cercul circumscris triunghiului $ABM$ $\Longleftrightarrow$ $\widehat {CBA}\equiv\widehat {CAM}$ $\Longleftrightarrow B=30^{\circ}$ .

O alta metoda ar fi utilizarea problemei/lemei foarte simple de "slicing" de
aici

Metoda 6 ("slicing"). Fie $\triangle ADC$ cu $DA=DC\ ,\ DA\perp DC$ astfel ca $BC$ sa separe $A$ , $D$ . Din lema mentionata rezulta $MA=MD$ si $MC=CD$ . Fie mijlocul $N$ al lui

$[AD]$ . Insa $MA=MD$ $\Longrightarrow$ $MN\perp AD$ $\Longrightarrow$ $MN\parallel CD$ si $M$ , $N$ sunt mijloacele la $[BC]$ , $[AD]$ respectiv $\implies AB\parallel CD\implies$ $m(\widehat {ABC})=m(\widehat {DCB})$ $\Longrightarrow$ $B=30^{\circ}$ .


My (math)blog

Este binecunoscuta urmatoarea problema "slicing" intr-un triunghi : "In $\triangle ABC$ cu $B=30^{\circ}$ si $C=15^{\circ}\implies$ $m(\widehat {MAC})=30^{\circ}$ , unde

$M$ este mijlocul laturii $[BC]$".
Cei care nu au reusit sa o rezolve in cel mult jumatate de ora pot gasi demonstratia pe my (math)blog.

Metoda 7 ("slicing"). Notam mijlocul $N$ al laturii $[AC]$ . Aplicam lema in $\triangle AMC$ si rezulta $m(\widehat{CMN})=30^{\circ}$ . Din $MN\parallel AB$ rezulta $B=30^{\circ}$ .

Metoda 8 ("slicing"). Construim triunghiul $BCD$ astfel ca dreapta $BC$ separa punctele $A$ , $D$ si $m(\angle CBD)=30^{\circ}$ , $m(\angle BCD)=15^{\circ}$ . Aplicam

lema in $\triangle BDC$ si rezulta $m(\widehat{MDC})=30^{\circ}$ . Deoarece triunghiurile $AMC$ si $DMC$ sunt simetrice fata de dreapta $BC$ rezulta ca $B=30^{\circ}$ .



P2. Let $\triangle ABC$ with $A=48^{\circ}\ ,\ B=12^{\circ}\ ,\ AB=\sqrt 3$ and $D\in (AB)$ so that $CD=1$ . Prove that $x\equiv\left(\widehat{BCD}\right)=6^{\circ}$ .

Proof 1. Apply the theorem of Sines in $:\ \left\{\begin{array}{cccc}
\triangle ABC\ : & \frac {AC}{AB}=\frac {\sin\widehat{ABC}}{\sin\widehat{ACB}} & \iff & b=2\sin 12^{\circ}\\\\

\triangle ACD\ : & \frac {AC}{CD}=\frac {\sin\widehat{ADC}}{\sin\widehat{CAD}} & \iff & b=\frac {\sin (12^{\circ}+x)}{\sin 48^{\circ} }\end{array}\right\|$ $\implies$ $2\sin 12^{\circ}=\frac {\sin \left(12^{\circ}+x\right)}{\sin 48^{\circ}}\iff$ $2\sin 12^{\circ}\sin 48^{\circ}=\sin (12^{\circ}+x)\iff$

$\cos 36^{\circ}-\cos 60^{\circ}=\sin (12^{\circ}+x)\iff$ $\frac {1+\sqrt5}4-\frac 12=$ $\sin (12^{\circ}+x)\iff$ $\frac {-1+\sqrt 5}4=\sin (12^{\circ}+x)\iff$ $\sin 18^{\circ}=\sin (12^{\circ}+x)\iff$ $12^{\circ}+x=18^{\circ}\iff$ $x=6^{\circ}$ .



P3. Let a circle $w=\mathbb C(O,r)$ with the diameter $[AB]$ and from $C\in AB$ so that $A\in (BC)$ construct the tangents $CE$ ,

$CF$ to $w$, where $\{E,F\}\subset w$ and let $D\in EF\cap AB$ . Prove that $(\forall )\ M\in w$ the ray $[MA$ is the bisector of $\widehat{CMD}$ .

Proof. $\left\{\begin{array}{ccccccc}
\triangle CEA\sim\triangle CBE & \implies & \frac {CE}{CB}=\frac {EA}{BE}=\frac {AC}{EC} & \implies & \odot\begin{array}{ccc}
\nearrow & CA=CE\cdot\frac {EA}{EB} & \searrow\\\\
\searrow & CB=CE\cdot \frac {EB}{EA} & \nearrow\end{array}\odot & \implies & \frac {CA}{CB}=\left(\frac {EA}{EB}\right)^2\\\\
\triangle ADE\sim\triangle EDB & \implies & \frac {AD}{ED}=\frac {DE}{DB}=\frac {AE}{EB} & \implies & \odot\begin{array}{ccc}
\nearrow & DA=ED\cdot\frac {EA}{EB} & \searrow\\\\
\searrow & DB=ED\cdot \frac {EB}{EA} & \nearrow\end{array}\odot & \implies & \frac {DA}{DB}=\left(\frac {EA}{EB}\right)^2\end{array}\right\|$ $\implies$ $\boxed{\frac {DA}{DB}=\left(\frac {EA}{EB}\right)^2=\frac {CA}{CB}}$ .

Hence division $(A,B;C,D)$ is harmonic. Apply known property $: (\forall ) M\not\in AB$ we have $\boxed{MA\perp MB\iff \widehat{AMC}\equiv\widehat{AMD}}$ , i.e. the ray $[MA$ is the bisector of $\widehat{CMD}$ .



P4. Let a convex cyclical quadrilateral $ABCD$ with $T\in BB\cap DD$ so that $BD$ separates $A$ , $T$ , where $XX$ is the tangent line to the circle $w$ at the point $X\in w$ .

Then $\boxed{T\in AC\iff AB\cdot CD=AD\cdot BC}$ , i.e. $ABCD$ is a harmonic quadrilateral and in this case the division $(A,C;S,T)$ is harmonically, where $S\in AC\cap BD$ .


Proof. Suppose $T\in AC$ .Thus, $\left\{\begin{array}{ccccccc}
\triangle TBC\sim\triangle TAB & \implies & \frac {TB}{TA}=\frac {BC}{AB}=\frac {CT}{BT} & \implies & \odot\begin{array}{ccc}
\nearrow & TA=TB\cdot\frac {AB}{BC} & \searrow\\\\
\searrow & TC=TB\cdot \frac {BC}{AB} & \nearrow\end{array}\odot & \implies & \frac {TA}{TC}=\left(\frac {AB}{BC}\right)^2\\\\
\triangle TDC\sim\triangle TAD & \implies & \frac {TD}{TA}=\frac {DC}{AD}=\frac {CT}{DT} & \implies & \odot\begin{array}{ccc}
\nearrow & TA=TD\cdot\frac {AD}{DC} & \searrow\\\\
\searrow & TC=TD\cdot \frac {DC}{AD} & \nearrow\end{array}\odot & \implies & \frac {TA}{TC}=\left(\frac {DA}{DC}\right)^2\end{array}\right\|$ $\implies$

$\left(\frac {AB}{BC}\right)^2=\frac {TA}{TC}=\left(\frac {DA}{DC}\right)^2\iff$ $\frac {AB}{BC}=\frac {DA}{DC}\iff$ $AB\cdot CD=AD\cdot BC$ . Thus, $\frac {SA}{SC}= \frac {AB\cdot AD}{CB\cdot CD}=\left(\frac {AB}{BC}\right)^2\implies$ $\frac {SA}{SC}=\frac {TA}{TC}$ , i.e. $(A,C;S,T)$ is harmonic.

Remark. Observe easily that the rays $[AS$ , $[BS$ , $[CS$ and $[DS$ are symmedians in the triangles $ABD$ , $BCA$ , $CDB$ and $DAC$ respectively. See
here and here.


P5. Let $ \triangle ABC$ with $ A = 60^{\circ}$ . Let $ AP$ bisect $ \widehat { BAC}$ and let $ BQ$ bisect $ \widehat {ABC}$ , where $ P\in BC$ and $ Q\in AC$ . If $ AB + BP = AQ + QB$ , then what are the angles of $\triangle ABC$?

Proof 1 (metric). Denote $ l_b = BQ$ . Thus, $ l_b = \frac {2ac}{a + c}\cdot\cos\frac B2$ . Therefore, $ AB + BP = AQ + QB$ $ \Longleftrightarrow$ $ c + \frac {ac}{b + c} = \frac {bc}{a + c} + l_b$ $ \Longleftrightarrow$ $ c(c + a)(c + b) + ac(a + c) =$

$ bc(b + c) + 2ac(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + (a + c)^2 - b^2 = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4p(p - b) = 2a(b + c)\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ ab + 4ac\cdot\cos^2\frac B2 = 2a(b + c)\cdot \cos\frac B2$ $ \Longleftrightarrow$

$ b\left(1 - 2\cdot\cos\frac B2\right) = 2c\cdot\cos\frac B2\cdot\left(1 - 2\cdot\cos\frac B2\right)$ $ \Longleftrightarrow$ $ b = 2c\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ \sin B = 2\cdot\sin C\cdot\cos\frac B2$ $ \Longleftrightarrow$ $ 2\sin\frac B2\cos\frac B2 = 2\sin C\cos\frac B2$ $ \Longleftrightarrow$ $ \sin\frac B2 = \sin C$ $ \Longleftrightarrow$

$ B = 2C$ $ \Longleftrightarrow$ $ C = 40^{\circ}$ , $ B = 80^{\circ}$ because $ A = 60^{\circ}$ .

Proof 2 (trigonometric). Denote ${ x=m(\widehat ABQ})$ . I"ll apply the Sinus' theorem in the triangles $ ABP$ , $ ABQ$ : $ AB+BP=AQ+QB$ $ \Longleftrightarrow$ $ 1+\frac {BP}{BA}=\frac {AQ+QB}{AB}$ $ \Longleftrightarrow$

$ 1+\frac {\sin 30}{\sin (30+2x)}=\frac {\sin x+\sin 60}{\sin (60+x)}$ $ \Longleftrightarrow$ $ \sin (60+x)\left[\sin (30+2x)+\frac 12\right]=\sin (30+2x)(\sin x+\sin 60)$ $ \Longleftrightarrow$ $ \cos (x-30)-\cos (90+3x)+\cos (30-x)=$

$ \cos (x+30)-\cos (30+3x)+\cos (2x-30)-\cos (90+2x)$ $ \Longleftrightarrow$ $ \underline {\cos (x-30)}+\underline {\underline {\sin 3x}}+\underline {\underline {\underline {\cos (x-30)}}}=$ $ \underline {\underline {\underline {\cos (x+30)}}}-\underline {\underline {\cos (30+3x)}}+\cos (2x-30)+\underline {\sin 2x}$ $ \Longleftrightarrow$

$[\cos (x-30)-\cos (90-2x)]+[\sin 3x+\sin (60-3x)]=$ $ [\cos (x+30)-\cos (x-30)]+\cos (2x-30)$ $\Longleftrightarrow$ $ 2\sin \left(30-\frac x2\right)\sin\left(60-\frac {3x}{2}\right)+$ $2\sin 30\cos (3x-30)=$

$\cos (2x-30)-2\sin 30\sin x$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)=$ $\cos (2x-30)-\cos (90-x)$ $ \Longleftrightarrow$ $ \cos (3x-30)+2\sin\left(30-\frac x2\right)\sin \left(60-\frac {3x}{2}\right)$

$=2\sin \left(30+\frac x2\right)\sin\left(60-\frac {3x}{2}\right)$ $ \Longleftrightarrow$ $ \sin (120-3x)=2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ 2\sin\left(60-\frac {3x}{2}\right)\cos\left(60-\frac {3x}{2}\right)=$

$2\sin\left(60-\frac {3x}{2}\right)\left[\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)\right]$ $ \Longleftrightarrow$ $ \sin\left(60-\frac {3x}{2}\right)=0\ \ \vee\ \ \cos\left(60-\frac {3x}{2}\right)=\sin\left(30+\frac x2\right)-\sin\left(30-\frac x2\right)$ . Thus, $ \boxed {\ x=40\ }$

or $ \sin\left(30+\frac {3x}{2}\right)+\sin\left(30-\frac x2\right)=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ 2\sin\left(30+\frac x2\right)\cos x=\sin\left(30+\frac x2\right)$ $ \Longleftrightarrow$ $ x\in\emptyset$ .



$\bf\color{red}\mathrm{P6}\ (\Longrightarrow ).$
Let an equilateral $\triangle ABC$ with $D\in (AC)$ and the point $E$ so that the ray $[BE$ is the $B$-bisector of $\triangle ABD$ and $AE\parallel BC\ .$ Prove that $AE+CD=BD\ .$

Proof 1 (trig). Let $m\left(\widehat{EBD}\right)=m\left(\widehat{EBA}\right)=x\ .$ So $AE+CD=BD\iff$ $\frac {AE}{AB}\cdot \frac {BC}{BD}+\frac {CD}{BD}=1$ $\iff$ $\frac {\sin x}{\sin (60-x)}\cdot \frac {\sin(60+2x)}{\sin 60}+$ $\frac {\sin (60-2x)}{\sin 60}=1\iff$

$\sin x\sin (60+2x)+\sin (60-2x)\sin (60-x)=$ $\sin (60-x)\sin 60$ $\iff$ $\underline{\cos (60+x)}-\underline{\underline{\cos (60+3x)}}+\cos x-\underline{\underline{\cos (120-3x)}}=$ $\cos x-\underline{\cos (120-x)}\ ,$ what is true.

Proof 2 (metric). Let $:\ F\in BE\cap AC\ ;\ AB=a\ ,\ BD=l\ ,\ AD=m\ ,\ ,$ i.e. $\boxed{CD=a-m}\ .$ Observe that $A=60^{\circ}\iff \boxed{l^2=a^2+m^2-am}\ (*)\ .$ Apply the theorem

of bisector
in $\triangle ABD\ :\ \frac {FA}a=\frac {FD}l=\frac m{a+l}\implies \boxed{FA=\frac {am}{a+l}}\ (1)\ \implies FC=AC-AF=a-\frac {am}{a+l}\implies$ $\boxed{FC=\frac {a(a+l-m)}{a+l}}\ (2)\ .$ Apply again the

theorem of bisector in $\triangle ABE\ :\ \frac {AE}{AB}=\frac {FE}{FB}=$ $\frac {FA}{FC}\ \stackrel{1\wedge 2}{=}\ \frac m{a+l-m}\implies $ $\boxed{AE=\frac {am}{a+l-m}}\ (3)\ .$ In conclusion, $AE+CD=BD\iff$ $AE=BD-CD\ \stackrel{3}{\iff}$

$\frac {am}{a+l-m}=l+m-a\iff$ $[l+(m-a)]\cdot [(l-(m-a)]=am\iff$ $l^2-(a-m)^2=am\iff$ $l^2=(a-m)^2+am\iff$ $l^2=a^2+m^2-am\ ,$ what is true $(*).$

Proof 3 (synthetic). If denote $P\in AB$ so that $EP\perp AB$ and $G\in BD\cap AE\ ,$ then the point $F$ is the incenter of $\triangle ABG$ and $E$ is $B$-excenter of $\triangle ABD\ .$

In conclusion, $AE=2\cdot AP=BD+AD-AB=BD-(AC-AD)=BD-CD\implies$ $AE=BD-CD\implies$ $\boxed{BD=AE+CD}\ .$

Remark. $M\in (AB)\ ,\ DM\parallel BC\implies AD=DM$ and from the trapezoid $ABCG$ obtain the relation $\frac 1{AG}+\frac 1{AB}=\frac 1{AM}\ ,$ i.e. $\boxed {\frac 1{AG}+\frac 1{AB}=\frac 1{AD}}\ .$


$\bf\color{red}\mathrm{P6}\ (\Longleftarrow ).$ Let an $A$-isosceles $\triangle ABC\ ,\ AB\ge BC\ ,$ for what there are $D\in (AC)$ and the point $E$ so that the ray $[BE$ is

the $B$-bisector of $\triangle ABD$ and $AE\parallel BC\ .$ Prove that $AE+CD=BD\implies AB=BC\ ,$ i.e. $\triangle ABC$ is equilateral$\ .$


Proof. Let $:\ F\in BE\cap AC\ ;\ AB=AC=b\ ,\ BC=a\ ,\ BD=l\ ,\ AD=m\ ,\ ,$ i.e. $\boxed{CD=b-m}\ .$ Observe that $l^2=b^2+m^2-2bm\cos A$ and $\cos A=\frac {2b^2-a^2}{2b^2}$

$\implies l^2=b^2+m^2-2bm\cdot \frac {2b^2-a^2}{2b^2}=b^2+m^2-m\cdot \frac {2b^2-a^2}{b}=b^2+m^2-2bm+\frac {a^2m}b\implies$ $\boxed{l^2=(b-m)^2+\frac {a^2m}{b}}\ (*)\ .$ Apply the theorem of bisector in $\triangle ABD\ :$

$\frac {FA}b=\frac {FD}l=\frac m{b+l}\implies \boxed{FA=\frac {bm}{b+l}}\ (1)\ \implies FC=AC-AF=b-\frac {bm}{b+l}\implies$ $\boxed{FC=\frac {b(b+l-m)}{b+l}}\ (2)\ .$ From $AE\parallel BC$ get $\frac {AE}{BC}=\frac {FA}{FC}\ \stackrel{1\wedge 2}{=}\ \frac m{b+l-m}$

$\implies$ $\boxed{AE=\frac {am}{b+l-m}}\ (3)\ .$ Thus, $BD=AE+CD\iff$ $BD^2=(AE+CD)^2\ \stackrel{3}{\iff}\ l^2=$ $\left[\frac {am}{b+l-m}+(b-m)\right]^2\ \stackrel{*}{\iff}\ (b-m)^2+\frac {ma^2}b=$ $(b-m)^2+$

$\frac {a^2m^2}{(l+b-m)^2}+\frac {2am(b-m)}{l+b-m}\iff$ $\frac ab=\frac {am}{(l+b-m)^2}+\frac {2(b-m)}{l+b-m}\iff$ $\frac ab=\frac {am+2(b-m)(l+b-m)}{(l+b-m)^2}$ $\iff$ $a(l+b-m)^2=abm+2b(b-m)(l+b-m)\iff$

$al^2+a(b-m)^2+2al(b-m)=abm+2b(b-m)^2+2bl(b-m)\iff$ $a\left[(b-m)^2+\frac {a^2m}{b}\right]+a(b-m)^2+2al(b-m)=abm+2b(b-m)^2+2bl(b-m)\iff$

E}{BC}
$(b-a)\cdot \left[\frac {am(a+b)}b+2(b-m)^2+2l(b-m)\right]=0\implies$ $a=b$ because $\frac {am(a+b)}b+2(b-m)^2+2l(b-m)>0\ .$



P7 (Murat Öz, Turkey). Let an $A$-isosceles $\triangle ABC$ with $B=C=40^{\circ}\ .$ The $C$-angled bisector meet $AB$ at $D$ and there is $E\in (BC)$ so that $BE=CD\ .$ Prove that $m\left(\widehat{CAE}\right)=20^{\circ}\ .$

Proof 1. Denote $m\left(\widehat{CAE}\right)=x$ (degrees) and apply theorem of Sines $:\ \frac {\sin\widehat{DBC}}{\sin\widehat{BDC}}=$ $\frac {DC}{BC}=$ $\frac {BE}{BC}=$ $\frac {AE}{AC}\cdot \frac {\sin\widehat{BAE}}{\sin\widehat{BAC}}=$ $\frac {\sin\widehat{ACE}}{\sin\widehat{AEC}}\cdot\frac {\sin\widehat{BAE}}{\sin\widehat{BAC}}\implies$ $\frac {\sin\widehat{DBC}}{\sin\widehat{BDC}}=$

$\frac {\sin\widehat{ACE}}{\sin\widehat{AEC}}\cdot\frac {\sin\widehat{BAE}}{\sin\widehat{BAC}}\implies$ $\frac {\cancel{\sin 40^{\circ}}}{\sin 60^{\circ}}=\frac {\cancel{\sin 40^{\circ}}}{\sin\left(40^{\circ}+x\right)}\cdot\frac {\sin\left(100^{\circ}-x\right)}{\sin 100^{\circ}}$ $\implies$ $\sin 60^{\circ}\cos \left(x-10^{\circ}\right)=\sin\left(40^{\circ}+x\right)\cos 10^{\circ}\iff$ $\cancel{\sin\left(50^{\circ}+x\right)}+\sin\left(70^{\circ}-x\right)=$

$\cancel{\sin\left(50^{\circ}+x\right)}+\sin\left(30^{\circ}+x\right)\iff$ $\cos\left(x+20^{\circ}\right)=\cos \left(60^{\circ}-x\right)\iff$ $20^{\circ}+x=60^{\circ}-x\iff$ $2x=40^{\circ}\iff$ $x=20^{\circ}\ .$

Proof 2 (Apostolis Manoloudis). Construct the bisector $BF$ of $\widehat{ABC}\ .$ Observe that $BE=DC=BF\implies BE=BF\ ,$ i.e. $\triangle EBF$ is isosceles

and $m\left(\widehat{BEF}\right)=80^{\circ}$ $\implies$ $m\left(\widehat{BAF}\right)+
m\left(\widehat{BEF}\right)= 180^{\circ}\ ,$ i.e. $ABEF$ is cyclic. In conclusion, $\left(\widehat{FAE}\right)=\left(\widehat{FBE}\right)=20^{\circ}\implies x=20^{\circ}\ .$
This post has been edited 190 times. Last edited by Virgil Nicula, Sep 23, 2017, 7:47 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
See my proof for PP.6 at http://forum.gil.ro/viewtopic.php?f=25&t=6884

Best regards,
sunken rock

by sunken rock, Aug 30, 2016, 11:04 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a