313. For middle school - some nice problems.

by Virgil Nicula, Aug 24, 2011, 9:43 PM

PP0 Solve the equation $f_a(x)\equiv x^4 + a^4 - 3ax^3+3a^3x = 0$ , where $a\ne 0$ .

Proof. $x^4 + a^4 - 3ax^3+3a^3x=$ $x^4+a^4-3ax\left(x^2-a^2\right)=$ $\left(x^2-a^2\right)^2+2a^2x^2-3ax\left(x^2-a^2\right)=$ $a^2x^2\cdot\left(\frac {x^2-a^2}{ax}-1\right)\left(\frac {x^2-a^2}{ax}-2\right)$ .

In conclusion, $x^4 + a^4 - 3ax^3+3a^3x=\left(x^2-ax-a^2\right)\left(x^2-2ax-a^2\right)$ . Thus, $f_a(x)=0\iff \frac xa\in\left\{\ \frac {1\pm\sqrt 5}{2}\ ,\ 1\pm\sqrt 2\ \right\}$ .



PP1. Prove the following implication :

$\boxed{f(x,y,z)\equiv 2x^2 + 2y^2 + 5z^2 - 2xy - 4yz - 4x - 2z + 15\ \implies\ \min_{\{x,y,z\}\subset\mathbb R}\ f(x,y,z)=f(2,2,1)=10}$ .


=========================================================================================================

Proof.

$\blacktriangleright\ h_{y,z}(x)=2\cdot \underline x^2-2(y+2)\cdot \underline x+(2y^2+5z^2-4yz-2z+15)\implies$ $\min _x(y,z)=\frac 12\cdot \left[3y^2-4y-8yz+10z^2-4z+26\right]$ and $\boxed{x_m=\frac {y_m+2}{2}}$ .

$\blacktriangleright\ g_{z}(y)=\frac 12\cdot \left[3\cdot \underline y^2-4(1+2z)\cdot\underline y+(10z^2-4z+26)\right]\implies$ $\min_{(x,y)}(z)=\frac 13\cdot \left(7z^2-14z+37\right)$ and $\boxed{y_m=\frac {2(1+2z_m)}{3}}$ .

$\blacktriangleright\ l(z)=$ $\frac 13\cdot \left(7\cdot\underline {z}^2-14\cdot\underline {z}+37\right)$ $\implies$ $\min_{(x,y,z)} =-\frac {1}{21}\cdot\left(49-7\cdot 37\right)=\frac {30}{3}=10$ , $\boxed{z_m=1}\implies$ $\boxed{\ \min_{\{x,y,z\}\subset\mathbb R}\ f(x,y,z)=f(2,2,1)=10\ }$ , where $\left\{\begin{array}{c}
x_m=2\\\\
y_m=2\\\\
z_m=1\end{array}\right\|$

Remark. I used $f(x)=ax^2+bx+c\ ,\ x\in \mathbb R$ , where $a>0\ \implies\ \min_{x\in\mathbb R} f(x)=$ $-\frac {\Delta}{4a}=-\frac {\Delta '}{a}$ ,

where $\Delta =b^2-4ac$ and $b=2b_1\ \implies\ \Delta '=b_1^2-ac$ . Indeed, can write $f(x)=a\cdot \left(x^2+\frac ba\cdot x+\frac ca\right)=$

$a\cdot\left[\left(x+\frac {b}{2a}\right)^2-\frac {b^2}{4a^2}+\frac ca\right]=$ $a\cdot\left[\left(x+\frac {b}{2a}\right)^2-\frac {b^2-4ac}{4a^2}\right]\implies$ $\boxed{\ f(x)=a\cdot \left[\left(x+\frac {b}{2a}\right)^2-\frac {\Delta}{4a}\right]\ }$ ,

where $\Delta =b^2-4ac$ . If $a>0$ , then $(\forall)\  x\in\mathbb R\ \ ,\ \ f(x)\ge \frac {-\Delta}{4a}$ , with the equality if and only if $x=-\frac {b}{2a}$ .

For example
, here is another proof of the upper proposed problem :

$f(x,y,z)=2\cdot\underline x^2-2(y+2)\cdot\underline x+\left(2y^2+5z^2-4yz-2z+15\right)=$

$2\cdot\left(x-\frac {y+2}{2}\right)^2-\frac {(y+2)^2}{2} +2y^2+5z^2-4yz-2z+15=$

$2\cdot\left(x-\frac {y+2}{2}\right)^2+\frac {-y^2-4y-4+4y^2+10z^2-8yz-4z+30}{2}=$

$\frac {(y+2-2x)^2}{2}+\frac {3\cdot\underline y^2-4(1+2z)\cdot\underline y+10z^2-4z+26}{2}=$

$\frac {(y+2-2x)^2}{2}+\frac 32\cdot\left\{\left[y-\frac 23\cdot (1+2z)\right]^2-\frac 49\cdot (1+2z)^2+\frac {10z^2-4z+26}{3}\right\}=$

$\frac {(-2x+y+2)^2}{2}+\frac 16\cdot\left[(4z-3y+2)^2-4(2z+1)^2+30z^2-12z+78\right]=$

$\frac {(-2x+y+2)^2}{2}+\frac {(4z+2-3y)^2}{6}+\frac {14z^2-28z+74}{6}=$ $\frac {(-2x+y+2)^2}{2}+\frac {(4z+2-3y)^2}{6}+\frac {7(z-1)^2+30}{3}\implies$

$\boxed{\ f(x,y,z)=\frac {(-2x+y+2)^2}{2}+\frac {(4z+2-3y)^2}{6}+\frac {7(z-1)^2}{3}+10\ \ge\ 10\ }$ with $f(x,y,z)=10\ \iff\ \left\{\begin{array}{c}
x_m=2\\\\
y_m=2\\\\
z_m=1\end{array}\right\|$ .



PP2. Let $ABCDEF$ be a regular hexagon. The points $M\in (AC)$ and $N\in (CE)$ satisfy $B\in MN$ and $AM=CN$ . Find $r=\frac {AC}{AM}$ .

Proof 1. Consider the regular $12$-gon $AA_1BB_1CC_1DD_1EE_1FF_1$ . Suppose w.l.o.g. that $AB=1$ . Denote $M_1\in \ BD_1\cap AC$

and $N_1\in BD_1\cap CE$ . Observe that $AC=CE=\sqrt 3$ , $m(\angle CBD_1)=45^\circ$ , $(\angle BCE)=90^\circ$ , $m(\angle CN_1B)=45^\circ$

and $CN_1=CB$ . Similarly, $AM_1=AF$ , $\frac {AC}{AM_1} =\frac {CE}{CN_1}=\sqrt 3$ . In conclusion, $M_1\equiv M$ and $N_1\equiv N$ , $r=\sqrt 3$ .

Proof 2. Denote $\left\{\begin{array}{c}
m(\angle CBN)=x\\\\
m(\angle EBN)=y\\\\
\left(x+y=60^\circ\right)\end{array}\right|$ . Apply an well-known relation to the cevians : $\left\{\begin{array}{cc}
BM/\triangle ABC\ : & \frac {MC}{MA}=\frac {\sin x}{\sin (y+60^\circ)}\\\\
BN/\triangle CBE\ : & \frac {NE}{NC}=\frac {2\sin y}{\sin x}\end{array}\right|\implies$

$\sin^2x=2\sin y\sin (y+60^\circ )\iff$ $\sin^2x=\cos 60^\circ -\cos (2y+60^\circ )\iff$ $1-\cos 2x=$ $1-2\cos (2y+60^\circ )\iff$

$\cos 2x=\cos (2y+60^\circ )\iff$ $\left\{\begin{array}{c}
x=y+30^\circ\\\
x+y=60^\circ\end{array}\right|\iff$ $\left\{\begin{array}{c}
x=45^\circ\\\
y=15^\circ\end{array}\right|$ . In conclusion, $MA=1$ and $r=\sqrt 3$ .



PP3. Let $ABC$ be a triangle. The $A$-bisector meet $[BC]$ în $D$ and the circumcircle again in $M$ .

Denote the midpoint $S$ of $[BC]$ and the projection $P$ of $S$ on $AM$ . Prove that $AP\cdot DM=\frac{a^2}{4}$ .


Proof. Suppose w.l.o.g. $b>c$ and note the diameter $[MN]$ of the circumcircle, $m(\angle ADB)=\phi$ and $L\in AN\cap BC$ .

Since $\triangle SDM\sim\triangle SNL$ obtain that $\frac {SD}{SM}=\frac {SN}{SL}$ and $BS^2=SM\cdot SN\implies$ $SD\cdot SL=BS^2$ . Observe that

$AP=SL\cos\phi$ and $DM\cos\phi =SD$ . In conclusion, $AP\cdot DM=SL\cdot SD=SB^2\implies AP\cdot DM=\frac {a^2}{4}$ .

Remark. Know that $\frac {DB}{c}=\frac {DC}{b}=\frac {a}{b+c}$ and $AD^2=bc-DB\cdot DC=\frac {2bc\cdot\cos\frac A2}{b+c}$ . Therefore, $DB\cdot DC=DA\cdot DM\implies$

$DM=\frac {a^2bc}{(b+c)^2}\cdot\frac {b+c}{2bc\cos\frac A2}\implies$ $\boxed{\ DM=\frac {a^2}{2(b+c)\cos\frac A2}\ }\ (1)$ . Denote $\left\{\begin{array}{c}
X\in SP\cap AB\\\
Y\in SP\cap AC\end{array}\right|$ and projections $U$ , $V$ of $B$ , $C$ on $AD$ respectively.

Prove easily that $AX=AY=\frac {b+c}{2}$ and $AP=\frac {BU+CV}{2}\implies$ $\boxed{\ AP=\frac{b+c}{2}\cdot\cos\frac A2\ }\ (2)$ . From the relations $(1)$ , $(2)$ obtain that $AP\cdot DM=\frac {a^2}{4}$ .



PP4. Let $ABC$ be a triangle with the circumcircle $w=C(O,R)$ . Let $AD$ , $BE$ be the $A$-bisector and the $B$-bisector, where $D\in BC$ and

$E\in CA$ . Let $\{F,G\}\subset w$ be two points so that $AF\parallel DE$ , $FG\parallel BC$ and $AC$ separates $B$ and $G$ . Prove that $GA=GB+GC$ .


Proof. Denote $x=m(\angle BAF)$ and suppose w.l.o.g. that $2R=1$ . Prove easily that $\left\{\begin{array}{c}
m(\angle EDA)=\frac A2+x\\\\
m(\angle EDC)=B-x\end{array}\right|$ and $\left\{\begin{array}{c}
GA=\sin (B-x)\\\
GB=\sin (A+x)\\\
GC=\sin x\end{array}\right|$ .

Apply an well-known property to $DE$ in $\triangle ADC\ : \frac ca=\frac {EA}{EC}=\frac {DA}{DC}\cdot\frac {\sin\widehat{EDA}}{\sin\widehat{EDC}}\implies$ $\frac ca=\frac {\sin C}{\sin\frac A2}\cdot \frac {\sin\left(\frac A2+x\right)}{\sin (B-x)}\implies$ $\frac {\sin(B-x)}{\sin\left(\frac A2+x\right)}=$

$\frac {a\sin C}{c\sin\frac A2}=$ $\frac {c\sin A}{c\sin \frac A2}\implies$ $\boxed{\ 2\cos\frac A2=\frac {\sin(B-x)}{\sin\left(\frac A2+x\right)}\ }\ \ (*)$ . Therefore, $GA=GB+GC\iff$ $\sin(B-x)=\sin (A+x)+\sin x\iff$

$\sin (B-x)=2\sin\left(\frac A2+x\right)\cos\frac A2\iff$ $2\cos\frac A2=\frac {\sin (B-x)}{\sin\left(\frac A2+x\right)}$ , what is the true relation $(*)$ . In conclusion, $GA=GB+GC$ .



PP5. Let $r_1$ and $r_2$ be the radii of two circles through $A$ and which touch $BC$ at $B$ , $C$ respectively. Prove that $r_1r_2= R^2$ .

Proof. Denote $\{A,P\}=w_1\cap w_2$ and $S\in AP\cap BC$ . Observe that $m(\angle SPB)=B$ and $m(\angle SPC)=C$ . Therefore,

$\left\{\begin{array}{c}
2R\sin C= c=2r_1\sin B\\\\
2R\sin B=b=2r_2\sin C\end{array}\right|\implies$ $\left\{\begin{array}{c}
R\sin C=r_1\sin B\\\\
R\sin B=r_2\sin C\end{array}\right|\ \bigodot\implies$ $R^2=r_1r_2$ . Remark that $\frac {r_1}{r_2}=\left(\frac cb\right)^2$ and

$\frac {r_1}{c^2}=\frac {r_2}{b^2}=$ $\frac {\sqrt{r_1r_2}}{bc}=\frac {R}{bc}=\frac {1}{2h_a}=\frac {a}{4S}$ . Thus, $r_1+r_2=\frac {a\left(b^2+c^2\right)}{4S}\ge \frac {abc}{2S}=2R\implies$ $\boxed{\frac {r_1+r_2}{2}\ge R=\frac {br_1+cr_2}{b+c}}$ .



PP6. $\{x,y,z\}\subset\mathbb R\implies x^2 + y^2 + z^2 \ge \sqrt 2\cdot (xy + yz)$ .

Method 1. $\left(y-x\sqrt 2\right)^2+\left(y-z\sqrt 2\right)^2\ge 0$ .

Method 2. $f_{x,z}(y)=\underline y^2-(x+z)\sqrt 2\cdot\underline y+\left(x^2+z^2\right)$ with the discrimination $\Delta (x,z)=2(x+z)^2-4\left(x^2+z^2\right)=$ $-2(x-z)^2\le 0\implies$ $f_{x,z}(y)\ge 0$ .

Method 3 (Uzbekistan). $x^2+y^2+z^2=$ $\left(x^2+\frac {y^2}{2}\right)+\left(\frac {y^2}{2}+z^2\right)\ge xy\sqrt 2+yz\sqrt 2=x(y+z)\sqrt 2$ .


An easy and nice extension. $\boxed{\left(x^2+y^2+z^2\right)\cdot \sqrt {p^2+q^2}\ \ge\ 2y\cdot(px+qz)}$ .


PP7. $K$ , $L$ , $M$ and $N$ are points on sides $AB$ , $BC$ , $CD$ and $DA$ respectively of the unit square $ABCD$ such that $KM$

is parallel to $BC$ and $LN$ is parallel to $AB$ . The perimeter of triangle $KBL$ is equal to $1$ . What is the area of triangle $MND$ ?


Proof. Denote the midpoints $X$ , $Y$ of the sides $[AB]$ , $[BC]$ respectively. Since $BX=BY=\frac 12$ - semiperimeter of $\triangle KBL$ obtain that the incircle $w$

of the square is the $B$-exincircle of $\triangle KBL$ , i.e. $KL$ is tangent to $w$ . Denote $T\in KL\cap w$ and $KT=KX=x$ , $LT=LY=y$ . Therefore,

$BK+x=BL+y=\frac 12$ and $KL=x+y$ . Since $KL^2=BK^2+BL^2\iff$ $\frac 12-(x+y)=2xy\iff$ $4xy+2(x+y)+1=2$ , i.e.

$\boxed{(1+2x)(1+2y)=2}\ (*)$ . On other hand, $AK=DM=\frac 12+x$ , $CL=DN=\frac 12+y$ and $[MDN]=\frac 12\cdot\left(\frac 12+x\right)\left(\frac 12+y\right)$ , i.e.

$[MDN]=\frac 18\cdot (1+2x)(1+2y)$ . In conclusion, using the relation $(*)$ obtain that $[MDN]=\frac 14$ .


An easy and nice extension. Let $ABCD$ be a rhombus with the incircle $w(O,r)$ and $m\left(\widehat{ABC}\right)\le 90^{\circ}$ . The circle $w$ touches $AB$ , $BC$

at $E$ , $F$ respectively and denote $BE=u$ , $AE=v$ . Consider two mobile points $K\in (BE)$ , $L\in (BF)$ so that the semiperimeter of

$\triangle KBL$ is equal to $BE$ . Denote $M\in (CD)$ , $N\in (DA)$ for which $KM\parallel BC$ and $LN\parallel CD$ . Ascertain the area of the triangle $MND$ .


Proof. Denote $\phi =m\left(\widehat{ABD}\right)$ . Observe that $u>v$ , $r^2=uv$ , $\tan\phi =\sqrt{\frac vu}$ and $\cos \phi =\frac {u-v}{u+v}$ , $\sin \phi =\frac {2\sqrt{uv}}{u+v}$ . Since the semiperimeter of $\triangle KBL$

is equally to $BE$ obtain that the circle $w$ is the $B$-exincircle of $\triangle KBL$ . Denote $T\in KL\cap w$ . Therefore, $KT=KE=x$ and $LT=LF=y$ .

Thus, $BK=u-x$ , $BL=u-y$ and $KL=x+y$ . Apply the generalized Pytagoras' theorem to $\triangle KBL\ :$

$\ (u-x)^2+(u-y)^2-2(u-x)(u-y)\cdot $ $\frac {u-v}{u+v}=(x+y)^2\iff$ $\boxed{v(x+y)+xy=uv}\ \ (*)$ . On other hand,

$[MDN]=\frac 12\cdot (v+x)(v+y)\cdot\sin 2\phi =$ $\frac 12\cdot\left[v^2+v(u+v)+xy\right]\cdot$ $\frac {2\sqrt {uv}}{u+v}\ \stackrel{(*)}{=}\ \frac 12$ $\cdot v(u+v)\cdot \frac {2\sqrt {uv}}{u+v}\iff$ $\boxed{\ [MDN]=v\sqrt{uv}\ }$ .



PP8 (1995 - AIME). Circles $w_1=C(O_1,r_1)$ , $w_2=C(O_2,r_2)$ are externally tangent to each other and are internally tangent to a circle $w=C(O,r)$

so that $r_1+r_2=r$ . The circle $w$ has a chord that is a common external tangent of the other two circles. Find the square of the length of this chord.


Proof. Suppose w.l.o.g. $r_1\le r_2$ . Denote the chord $[MN]$ of circle $w$ that is a common external tangent of circles $w_1$ and $w_2$ . Denote the projections $T_1$ , $T$ , $T_2$

of $O_1$ , $O$ , $O_2$ on the line $MN$ . Thus, $\left\{\begin{array}{c}
O_1T_1=OO_2=r_1\\\\
O_2T_2=OO_1=r_2\\\\
OM=ON=r=r_1+r_2\end{array}\right|$ . Denote $U\in (OT)$ and $V\in O_2T_2$ so that $O_1\in UV$ and $UV\parallel T_1T_2$ .

In the right trapezoid $O_1O_2T_2T_1$ , where $OT\parallel O_1T_1\parallel O_2T_2\perp T_1T_2$ and $OO_1=r_2$ , $OO_2=r_1$ obtain easily $OT=OU+UT$ ,

where $UT=r_1$ and $\frac {OU}{O_2V}=\frac {O_1O}{O_1O_2}\iff$ $\frac {OU}{r_2-r_1}=\frac {r_2}{r_1+r_2}$ . Therefore, $OT=r_1+\frac {r_2(r_2-r_1)}{r_1+r_2}$ , i.e. $\boxed{OT=\frac {r_1^2+r_2^2}{r_1+r_2}}$ .

In conclusion, $MN^2=4\cdot TM^2=$ $4\cdot\left(OM^2-OT^2\right)=$ $4\cdot\left[(r_1+r_2)^2-\left(\frac {r_1^2+r_2^2}{r_1+r_2}\right)^2\right]\implies$ $\boxed{\ MN^2=\frac {16r_1r_2\left(r_1^2+r_1r_2+r_2^2\right)}{(r_1+r_2)^2}\ }$ .

In the particular case $r_1=3$ and $r_2=6$ obtain that $MN^2=224$ (the proposed problem 4 at AIME - 1995).


Extension. Circles $w_1=C(O_1,r_1)$ , $w_2=C(O_2,r_2)$ are externally tangent to each other and are internally tangent to a circle $w=C(O,r)$ so that $O\in O_1O_2$

and $r_1+r_2< 2r$ . The circle $w$ has a chord that is a common external tangent $[MN]$ of the other two circles. Prove that $MN^2=\frac {16(r-r_1)(r-r_2)(r^2-r_1r_2)}{\left[2r-\left(r_1+r_2\right)\right]^2}$ .



PP9. Let $ABC$ be a triangle with the centroid $G$ and let $M$ be an arbitrary interior point. The line

$MG$ cut $AB$ , $BC$ , $CA$ in $Z$ , $X$ , $Y$ respectively. Prove that $\frac{\overline {XM}}{\overline {XG}}+\frac{\overline {YM}}{\overline {YG}}+\frac{\overline {ZM}}{\overline {ZG}}=3$ .


Proof. Denote the midpoints $D$ , $E$ , $F$ of the sides $[BC]$ , $[CA]$ , $[AB]$ respectively and $U\in AM\cap BC$ , $V\in BM\cap CA$ ,

$W\in CM\cap AB$ . Prove easily that $\frac {\overline{UM}}{\overline {UA}}+\frac {\overline{VM}}{\overline {VB}}+\frac {\overline{WM}}{\overline {WC}}=\sum\frac {[BMC]}{[BAC]}=1\ \ (*)$ . Apply the Menelaus' theorem to

transversals : $\left\{\begin{array}{cccc}
\overline{XDU}/\triangle AGM\ : & \frac {\overline{XM}}{\overline{XG}}\cdot \frac {\overline{DG}}{\overline{DA}}\cdot \frac {\overline{UA}}{\overline{UM}}=1 & \implies & \frac {\overline{XM}}{\overline {XG}}=3\cdot\frac {\overline{UM}}{\overline{UA}}\\\\
\overline{YEV}/\triangle BGM\ : & \frac {\overline{YM}}{\overline{YG}}\cdot \frac {\overline{EG}}{\overline{EB}}\cdot \frac {\overline{VB}}{\overline{VM}}=1 & \implies & \frac {\overline{YM}}{\overline {YG}}=3\cdot\frac {\overline{VM}}{\overline{VB}}\\\\
\overline{ZFW}/\triangle CGM\ : & \frac {\overline{ZM}}{\overline{ZG}}\cdot \frac {\overline{FG}}{\overline{FC}}\cdot \frac {\overline{WC}}{\overline{WM}}=1 & \implies & \frac {\overline{ZM}}{\overline {ZG}}=3\cdot\frac {\overline{WM}}{\overline{WC}}\end{array}\right|\ \stackrel{(*)}{\implies}\ \sum $ $\frac{\overline {XM}}{\overline {XG}}=3$ .



PP10 In the $x$-$y$ plane, given are circles $C_1$ with radius $r$, $C_2$ with radius $R$. Their centers lie on the first quadrant. Suppose that $C_1$ touches

the $x$ axis at $(1,\ 0)$, $C_2$ touches the $y$ axis at $(0,\ 2)$ and $C_1$ touches externally $C_2$ . When $R,\ r$ vary, find the minimum value of $R+r$.


Proof. Observe that $(R-1)^2+(r-2)^2=(R+r)^2$ , i.e. $R+2r+Rr=\frac 52\iff (R+2)(r+1)=\frac 92$ . Therefore, $R+r$

is max. $\iff$ $(R+2)+(r+1)$ is max. $\iff$ $R+2=r+1=\sqrt {\frac 92}=\frac {3\sqrt 2}{2}$ . In conclusion, $R+r\ge 3\sqrt 2-3=3\left(\sqrt 2-1\right)$ .


An easy extension In the $x$-$y$ plane, given are circles $w_1=C(O_1,r)$ , $w_2=C_2(O_2,R)$ . Their centers lie on the first quadrant. Suppose that $w_1$ touches

the $x$ axis at $(a,\ 0)$, $w_2$ touches the $y$ axis at $(0,\ b)$ and $w_1$ touches externally $w_2$ . When $R,\ r$ vary, find the minimum value of $R+r$.


Answer. In the minimum case, the slope of the line $O_1O_2$ is equally to $-1$ and $R+b=r+a=\frac {(a+b)\sqrt 2}{2}$ , i.e. $R+r\ge (a+b)\cdot \left(\sqrt 2-1\right)$ .


PP11. Let $ABCD$ be a square and $M$ be an interior point so that $MA=AB$ and $MC\perp MD$ . Prove that the midpoint of $[BC]$ belongs to $DM$ .

Proof 1. $\left\{\begin{array}{c}
E\in DM\cap BC\\\
F\in CM\cap AB\end{array}\right|\implies$ $ADMF$ is cyclically and $AM=AD$ . Thus, $\widehat {BFC}\equiv$ $\widehat {ADM}\equiv$ $\widehat {AMD}\equiv$ $\widehat{AFD}\implies$

$\widehat {BFC}\equiv\widehat{AFD}\iff$ $FA=FB$ . Since $\triangle CBF\equiv\triangle DCE$ obtain that $CE=BF$ , i.e. $E$ is the midpoint of the side $[BC]$ .

Proof 2. Denote $E\in DM\cap BC$ . Observe that $EC^2=EM\cdot ED=EB^2\ \implies\ EB=EC$ . With other words, the line $DM$ is the radical axis between

the circle with diameter $[CD]$ and the circle with the center $A$ and the radius $[AB]$ . Thus, $DM$ cut the common tangent $BC$ of these circles in the midpoint $E$ of $[BC]$ .

Proof 3. Denote $\left\{\begin{array}{c}
E\in DM\cap BC\\\
F\in CM\cap AB\end{array}\right|$ . Thus, $M\in C(A,AB)\implies$ $m\left(\widehat {BMD}\right)=135^{\circ}$ $\iff$ $m\left(\widehat {BME}\right)=45^{\circ}$ and $BEMF$ is cyclically $\iff$

$m\left(\widehat {BFE}\right)=45^{\circ}$ $\implies$ $\boxed{BE=BF}$ . Since $\triangle BCF\equiv\triangle CED$ obtain that $\boxed{BF=CE}$ . In conclusion, $EB=EC$ , i.e. $E$ is the midpoint of $[BC]$ .


Extension. Let $M$ be a point in the square $ABCD$ so that $MA=AB$ and $m\left(\widehat {CMD}\right)=x\in \left (45^{\circ},180^{\circ}\right)$ .

Denote $E\in DM\cap BC$ . Prove that $\frac {EB}{EC}=1-\cot x$ . For example, $\left\{\begin{array}{ccc}
x=90^{\circ} & \implies & EB=EC\\\\
x=135^{\circ} & \implies & EB=2\cdot EC\end{array}\right|$ .


Proof. Suppose w.l.o.g. $AB=1$ . Denote $m\left(\widehat{DAM}\right)=2y$ .Thus, $m\left(\widehat{CDM}\right)=y$ and $MD=2\cdot\sin y$ . Therefore, $\frac {MD}{\sin\widehat {DCM}}=\frac {CD}{\sin\widehat{CMD}}\iff$

$\frac {2\cdot\sin y}{\sin (x+y)}=\frac {1}{\sin x}\iff$ $\boxed{\cot x+\cot y=2}$ . In conclusion, $1+\frac {EB}{EC}=$ $\frac {BC}{EC}=$ $\frac {CD}{CE}=\cot y\implies$ $\frac {EB}{EC}=\cot y-1\implies$ $\frac {EB}{EC}=1-\cot x$ .



PP12. Let $ABC$ be an equilateral triangle and $\left\{\begin{array}{cc}
M\in (BC)\ :\ MB=MC\\\\
N\in (Ca)\ :\ NC=3\cdot NA\\\\
P\in (AB)\ :\ PA=2\cdot PB\end{array}\right|$ . Ascertain $m\left(\widehat {NMP}\right)$ .

Proof 1. Suppose w.l.o.g. that $AB=12$ . Thus, $\left\{\begin{array}{ccc}
MB=6 & ; & MC=6\\\
NC=9 & ; & NA=3\\\
PA=8 & ; & PB=4\end{array}\right|$ . Apply the Pytagoras' theorem in the triangles

$\left\{\begin{array}{ccc}
\triangle ANP & \implies  & NP=7\\\\
\triangle BPM & \implies & PM=2\sqrt 7\\\\
\triangle CMN & \implies & MN=3\sqrt 7\end{array}\right|$ and in the triangle $MNP\ \implies\ \cos \widehat{NMP}=\frac 12$ , i.e. $m\left(\widehat {NMP}\right)=60^{\circ}$ .

Proof 2. Observe that $\frac{BM}{BP}=\frac{CN}{CM}$ and $\widehat{MBP}\equiv\widehat {MCN}$ . Hence $\triangle BMP\sim\triangle CNM$ , i.e.

$\left\{\begin{array}{c}
\widehat{BMP}\equiv\widehat{CNM}\\\\
\widehat{BPM}\equiv\widehat{CMN}\end{array}\right|\implies$ $m\left(\widehat{NMP}\right)=$ $180^{\circ}-\left[m\left(\widehat{BMP}\right)+m\left(\widehat{CMN}\right)\right]=60^{\circ}$ .



PP13, Let $x,y\in\Bbb{R},\ ;\ x^2+y^2=1$. Ascertain the maximum value of the function $f(x,y)=\mid x-y\mid +\mid x^3-y^3\mid$ .

Proof. Can use the substitution $|x-y|=t\in \left[0,\sqrt 2\right]$ because $x^2+y^2=1\ .$ In conclusion, the problem

becomes to find the maximum of the function $f(t)=\frac 12\cdot\left(5t-t^3\right)$ $\implies$ $f(t)\le f\left(\sqrt{\frac 53}\right)=\left(\frac 53\right)^{\frac 32}$ .

Remark. $\frac 12\cdot\left(5t-t^3\right)=$ $\frac{1}{2}\cdot t(5-t^2)=$ $\frac{1}{2\sqrt{2}}\cdot \sqrt{2t^2(5-t^2)(5-t^2)}\le$ $\frac{1}{2\sqrt{2}}\sqrt{\left(\frac{10}{3}\right)^3}=$ $\left(\frac{5}{3}\right)^{\frac{3}{2}}$ with equality iff $2t^2=5-t^2\iff$ $t=\sqrt{\frac 53}$ .



PP14. $\{m,p,q\}\subset\mathbb N^*$ and $\{x,y\}\subset \mathbb R^*_+$ . Ascertain $\max_{x^m+y^m=1}\  x^py^q$ without derivatives.

Example. Ascertain the maximum area of an isosceles trapezoid $ABCD$ which is inscribed in a semicircle $w=C(O,R)$ with the diameter $[AB]$ .

Proof. $x^py^q$ is $\max\iff$ $\left(\frac {x^m}{p}\right)^p\cdot \left(\frac {y^m}{q}\right)^q$ is $\max$ . Since $p\cdot\frac {x^m}{p}+q\cdot\frac {y^m}{q}=1$ (constant), then $x^py^q$ is $\max\iff$ $\frac {x^m}{p}=\frac {y^m}{q}=\frac {1}{p+q}$ .

Proof of given example. Denote $m\left(\widehat{DAB}\right)=m\left(\widehat{CBA}\right)=\alpha $ and the projections $E$ and $F$ of $D$ and $C$ on the diameter $[AB]$ . Observe

that $m\left(\widehat{AOD}\right)=m\left(\widehat{BOC}\right)=180^{\circ}-2\alpha $ and $m\left(\widehat{COD}\right)=4\alpha -180^{\circ}$ . Thus, $[ABCD]=2\cdot [ADE]+[CDEF]=$

$2\cdot\frac12\cdot R^2\cdot \sin(180^\circ-2\alpha)+\frac12\cdot R^2\cdot \sin(4\alpha-180^\circ)=$ $R^2\cdot\left(\sin 2\alpha-\frac12\cdot \sin 4\alpha\right)=$ $R^2\cdot (\sin 2\alpha-\sin 2\alpha\cos 2\alpha )=$

$R^2\cdot \sin 2\alpha (1-\cos2\alpha )=$ $R^2\cdot 2\sin\alpha\cos\alpha\cdot 2 \sin^2\alpha =$ $4R^2\cdot \sin^3\alpha\cos\alpha\implies$ $\boxed{[ABCD]=4R^2\cdot \sin^3\alpha\cos\alpha}$ . Thus, $[ABCD]$ is $\max\iff$

the product $\sin^3\alpha\cos\alpha$ is $\max\ (m=2\ ,\ p=3\ ,\ q=1)\iff$ $\frac {\sin^2\alpha}{3}=\frac {\cos^2\alpha}{1}=\frac14\iff$ $\tan\alpha =\sqrt 3\iff$ $\alpha =60^{\circ}\iff$ $BC=CD=DA$ .



PP15. Solve the system of equations $x^m+y^n=2z^p\ ,\  y^m+z^n=2x^p\  ,\ z^m+x^n=2y^p$ , where $\{m,n,p\}\subset \mathbb N^*$ and $\left\{x,y,z\right\}\subset (0,\infty )$ . .

Proof. Suppose w.l.o.g. $x=\max \{x,y,z\}$ . Observe that

$\blacktriangleright\ x\ge y\ge z \implies 2(z^p-x^p)=\left(x^m-y^m\right)+$ $\left(y^n-z^n\right)\ge 0 \implies z\ge x\implies x\ge y\ge z\ge x \implies    x=y=z$

$\blacktriangleright\ x\ge z\ge y \implies 2(y^p-x^p)=\left(z^m-y^m\right)+$ $\left(x^n-z^n\right)\ge 0 \implies y\ge x\implies x\ge z\ge y\ge x\implies    x=y=z$ .

In conclusion, $x=y=z\in \left\{0,\pm 1,\pm i\sqrt 2\right\}$ .



PP16. Let $ABC$ be an acute triangle with the circumcircle $w=C(O,R)$ . Denote $K\in BC\cap AO$

and the points $L\in AB$ , $M\in AC$ so that $KL = KB$ and $KM = KC$ . Prove that $LM \parallel BC$.


Proof 1 $.\ \frac {KB}{KC}=\frac {AB}{AC}\cdot\frac {\sin\widehat{KAB}}{\sin\widehat{KAC}}=$ $\frac cb\cdot\frac{\sin \left(90^{\circ} -C\right)}{\sin \left(90^{\circ}-B\right)}\implies$ $\boxed{\frac {KB}{KC}=\frac {c\cdot \cos C}{b\cdot\cos B}}\ (*)$ . Thus, $\left\{\begin{array}{c}
AL=AB-LB=c-2KB\cdot\cos B\\\\
AM=AC-MC=b-2KC\cdot\cos C\end{array}\right\|$ . Hence

$LM\parallel BC\iff$ $\frac {AL}{AB}=\frac {AM}{AC}\iff$ $\frac {c-2\cdot KB\cdot\cos B}{c}=\frac {b-2\cdot KC\cdot\cos C}{b}\iff$ $\frac {KB\cdot\cos B}{c}=\frac {KC\cdot\cos C}{b}\iff$ $\frac {KB}{KC}=\frac {c\cdot \cos C}{b\cdot\cos B}\ (*)$ .

Proof 2 Denote the midpoints $U$ , $V$ of $[BL]$ , $[CM]$ respectively and $D\in BC$ so that $AD\perp BC$ . Since $\widehat{DAB}\equiv\widehat {KAC}$ , i.e. the rays $[AD$ ,

$[AK$ are $A$-isogonal obtain from the Steiner's theorem that $\boxed{\frac {DB}{DC}\cdot\frac {KB}{KC}=\frac {c^2}{b^2}}\ (*)$ . Since the quadrilaterals $AUDK$ , $AVKD$ are cyclically

and $\left\{\begin{array}{c}
BL=2\cdot BU\\\\
CM=2\cdot CV\end{array}\right\|$ obtain that $\left\{\begin{array}{ccc}
BA\cdot BU=BK\cdot BD\\\\
CA\cdot CV=CK\cdot CD\end{array}\right\|\implies$ $\frac cb\cdot \frac {BL}{CM}=\frac {KB}{KC}\cdot\frac {DB}{DC}\stackrel{(*)}{\implies}$ $\frac {BL}{CM}=\frac cb\implies LM\parallel BC$ .



PP17. Find $a\in\mathbb R$ for which the equation $\sqrt[3]{{(x + 1)^2 }} - \sqrt[3]{{1 - x^2 }} + \sqrt[3]{{(x - 1)^2 }} = a\sqrt[3]{{x^2  - 1}}$ has an unique solution in $\mathbb R$ .

Proof. We can observe that $x=\pm 1$ is not a solution. Divide by $\sqrt[3]{x^2-1}\ :\  \sqrt[3]{\frac{x+1}{x-1}}+1+\sqrt[3]{\frac{x-1}{x+1}}=a$ . Denote $t=\sqrt[3]{\frac{x+1}{x-1}}$ .

Then our equation becomes $ t^2+(1-a)t+1=0$ . For $x$ to be unique, we need $t$ to be unique, i.e. $\Delta =0\Longrightarrow a\in\{-1\ ;\ 3\}$ .



PP18. Let $ABCD$ be a quadrilateral with $AC = 6$ , $BD = 8$ . Prove that $\max\left\{AB;BC;CD;DA\right\}\ge 5\ (*)$ .

Proof. Denote $m=\max\left\{AB;BC;CD;DA\right\}$ . Thus, $4m^2\ge AB^2+BC^2+CD^2+DA^2\stackrel{(1)}{\ge} AC^2+BD^2=100$ $\implies m\ge 5$ .

Remark. I used the Euler's relation $AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4\cdot MN^2$ , where $M$ and $N$ are midpoints of $[AC]$

and $[BD]$ , from where obtain the previous inequality $(1)$ . In conclusion, the relation $(*)$ becomes equality if and only if $ABCD$ is a paralellogram.



PP19. Let $\triangle ABC$ with $b>c$ the circumcircle $w$ . Let $P\in BB\cap CC$ , $M\in (AC)$ so that $m\left(\widehat{ABM}\right)=C$ and midpoint $N$ of $[BM]$ . Prove that $N\in AP$ .

Proof. It is well-known that the ray $[AP$ is the $A$-symmedian in $\triangle ABC$ . Since $BM$ is a anti-parallel to $BC$ and the

geometrical locus of the midpoint of the anti-parallel to $BC$ is the $A$-symmedian of $\triangle ABC$ , results that $N\in AP$ .

Remark. I used $XX$ - the tangent to the circle $w$ in the point $X\in w$ . If denote $S\in AP\cap BC$ and $\{A,D\}=AP\cap w$ , then $\frac {SB}{SC}=\frac {BA\cdot BD}{CA\cdot CD}\ (*)$

and $\left\{\begin{array}{cc}
\triangle ABD\ : & \frac {PA}{PD}=\left(\frac {BA}{BD}\right)^2\\\\
\triangle ACD\ : & \frac {PA}{PD}=\left(\frac {CA}{CD}\right)^2\end{array}\right\|\ \implies$ $\frac {BA}{BD}=\frac {CA}{CD}\implies$ $\frac {BD}{CD}=\frac {BA}{CA}\stackrel{(*)}{\implies}$ $\frac {SB}{SC}=\left(\frac {BA}{CA}\right)^2\implies$ $AP$ is $A$-symmedian in $\triangle ABC$ .




PP20. Let $A$ , $B$ be two fixed points. For a mobile point $M$ define the points $\left\{\begin{array}{cc}
 C\in (MA\ ; & MC=p\cdot MA\\\\
D\in (MB\ ; & MD=q\cdot MB\\\\
L\in (CD)\ ; & LC=r\cdot LD\end{array}\right\|$ ,

where $p,q,r$ are positive real numbers. Denote the midpoint $L$ of $[CD]$ . Prove that the point $F\in AB\cap ML$ is fixed.


Proof. $\boxed{\frac {FA}{FB}=\frac {LC}{LD}\cdot \frac {MA}{MB}\cdot\frac{MD}{MC}}=$ $r\cdot \frac {MA}{MB}\cdot\frac {q\cdot MB}{p\cdot MA}=r\cdot \frac qp$ (constant).


PP21. Solve the equation $\sqrt{4-3\sqrt{10-3x}}=x-2$ .

Proof 1. Observe that $2\le \frac {74}{27}<x<\frac {10}{3}<4$ and $\sqrt{4-3\sqrt{10-3x}}=x-2\iff$ $3\sqrt{10-3x}=-x^2+4x\iff$ $3\left(1-\sqrt{10-3x}\right)=$

$x^2-4x+3\iff$ $\frac {9(x-3)}{1+\sqrt{10-3x}}=(x-1)(x-3)$ , i.e. $x=3$ is a zero. Suppose $x\ne 3$ . In this case our equation becomes $\frac {9}{1+\sqrt{10-3x}}=x-1$

$\iff$ $\sqrt {10-3x}=\frac {10-x}{x-1}\iff$ $\sqrt {10-3x}=-1+\frac {9}{x-1}$ . Since for $2<x<4$ we have $\sqrt {10-3x}<2<-1+\frac {9}{x-1}$ obtain that $x\in \emptyset$ .

In conclusion, the equation has only the zero $\boxed{x=3}$ .

Proof 2. Observe that $2\le \frac {74}{27}<x<\frac {10}{3}<4$ and by squaring both sides we get $4-3\sqrt{10-3x}=(x-2)^2\iff$ $3\sqrt{10-3x}=-x^2+4x$ .

Squaring again we get $x^4-8x^3+16x^2+27x-90=0$ . Factorizing we get $(x+2)(x-3)(x^2-7x+15)=0$ from here we get only $x=3$ .

Proof 3 . From the given equation we deduce that $\frac{74}{27}\leq x\leq \frac{10}{3}$ . Squaring, we get $4-3\sqrt{10-3x}=x^2-4x+4\iff$ $ -3\sqrt{10-3x}=x^2-4x$ . Introduce

another variable $y$ such that $\sqrt{10-3x}=ay+b$ for some real constants $a$ and $b$ . Then we have two system of equations $\left\{\begin{array}{c}
x^2-4x+3ay+3b=0\\\
a^2y^2+2aby+3x+b^2-10=0
\end{array}\right\|$ .

We need to find $a$ and $b$ in such a way that the corresponding coefficients of $x^2$ and $y^2$ are both equal and the constant terms are both equal. From this we set

$a^2=1$ , $b^2-10=3b\iff a=1$ , $b=-2$. Thus, we have an equivalent system of equations $\left\{\begin{array}{c}
x^2-4x+3y-6=0\\\
y^2-4y+3x-6=0
\end{array}\right\|$ .

Subtracting leaves $x^2-y^2-7x+7y=0\iff$ $ (x-y)(x+y-7)=0$ . We need to consider two cases.

Case 1. If $x=y$ , then $\sqrt{10-3x}=x-2$ or $x^2-4x+4=10-3x\iff$ $ x^2-x-6=(x-3)(x+2)=0$ . As $x\geq\frac{74}{27}$, we get $x=3$.

Case 2. If $y=7-x$ , then $\sqrt{10-3x}=7-x-2$ or $ \sqrt{10-3x}=5-x\iff$ $ x^2-10x+25=10-3x\iff$ $x^2-7x+15=0\implies x\in\emptyset$ .

Therefore, the only real solution is $\boxed{x=3}$ (thugzmath10).



PP22. Triangle $ABC$ has $AB=6$, $BC=8$, and $AC=10$ . A semicircle is inscribed in $ABC$ such that it is tangent to $AC$ in $M\in (AC)$ and the endpoints

$E$ and $F$ of its diameter lie on $AB$ and $BC$ respectively. Let $X$ be the midpoint of segment $EF$. If $XA=XC$ , what is the length of the radius of the semicircle ?


Proof. Denote $EF=2r$ . Thus, $XA=XC\iff$ $M$ is the midpoint of $[AC]\iff$ $BEMF$ is cyclically $\iff$

$\left\{\begin{array}{ccccc}
AM^2=AE\cdot AB & \iff & AE=\frac {25}{6} & \iff & BE=\frac {11}{6}\\\\
CM^2=CF\cdot CB & \iff & CF=\frac {25}{8} & \iff & BF=\frac {39}{8}\end{array}\right\|$ . In conclusion, $EF^2=BE^2+BF^2\iff$

$4r^2=\left(\frac {11}{6}\right)^2+\left(\frac {39}{8}\right)^2\iff$ $4\cdot 16\cdot 36\cdot r^2=16\cdot 121+9\cdot 1521=15625=125^2\iff$ $r=\frac {125}{48}$ .



PP23. $ABCD$ is a parallelogram. Let $\left\{\begin{array}{cc}
P\in (CD)\ ;& \frac {PD}{PC}=p\\\\
Q\in (BC)\ ; & \frac {QB}{QC}=q\end{array}\right\|$ . Let$T\in AP\cap DQ$ . Find $\frac {TA}{TP}$ and $\frac {TD}{TQ}$ .

Proof. Let $\left\{\begin{array}{c}
AD=BC=a\\\\
AB=DC=b\end{array}\right\|$ and $\left\{\begin{array}{c}
m\left(\widehat {TDA}\right) =m\left(\widehat {CQD}\right)=x\\\\
m\left(\widehat {TDP}\right) =m\left(\widehat {CDQ}\right)=y\end{array}\right\|$. Thus, $\left\{\begin{array}{ccc}
\frac {PD}{p}=\frac {PC}{1}=\frac {b}{p+1}\\\\
\frac {QB}{q}=\frac {QC}{1}=\frac {a}{q+1}\end{array}\right\|$

and $\frac {TA}{TP}=\frac {DA}{DP}\cdot\frac {\sin x}{\sin y}=$ $\frac {DA}{DP}\cdot\frac {CD}{CQ}=$ $\frac {a}{\frac {bp}{p+1}}\cdot\frac {b}{\frac {a}{q+1}}=\frac {(p+1)(q+1)}{p}\implies$ $\boxed{\frac {TA}{TP}=\frac{(p+1)(q+1)}{p}}$ . Let $R\in AP\cap BC$ .

Thus, $\frac {TQ}{TD}=\frac {QR}{AD}=$ $\frac {QC+CR}{AD}=\frac {QC}{BC}+\frac {CR}{AD}=$ $\frac {QC}{BC}+\frac {PC}{PD}=$ $\frac {1}{q+1}+\frac 1p\implies$ $\boxed{\frac {TD}{TQ}=\frac {p(q+1)}{p+q+1}}$ .

Remark. If $p=2$ and $q=1$ obtain that $TA=3\cdot TP$ and $TD=TQ$ .



PP24. On $[AB]$ of $\triangle ABC$ is built a equilateral triangle $ABD$ . Show that with $[AC]$, $[CB]$ and $[CD]$ can construct a triangle.

Proof. Suppose $AB$ separates $C, D$ . Construct the equilateral triangle $\triangle BCE$, $BC$ separates $A$ , $E$ . See that a $60^\circ$ rotation about $B$ maps $\triangle BCD$ and $\triangle BEA$ .

Hence $AE=CD$ and $\triangle ACE$ is the one constructed with the required segments. Similarly when $C$ , $D$ are on the same side of $AB$ and $A$ , $E$ on the same side of $BC$



PP25. Let $ABM$, $BCN$ , $CDP$ , $d$ be equilateral triangles and a line so that $\{A,B,C,D\}\subset d$ (in this order) and $\left\{\begin{array}{c}
AB=a\\\
BC=b\\\
CD=c\end{array}\right\|$ and $M$ , $N$ , $P$

are situated in the same side of $d$ . Show that $\boxed{\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}\ge\sqrt{a^2+b^2+c^2+ab-ac+bc}}\ (*)$ (Lajos Longaver).


Proof, Let $R\in AM\cap DP$ . Thus, $\left\{\begin{array}{c}
RM=b+c\\\
RP=a+b\end{array}\right\|\implies$ $MP^2=(a+b)^2+(b+c)^2-(a+b)(b+c)\implies $

$MP^2=a^2+b^2+c^2+ab+bc-ac$ . Hence $\left\{\begin{array}{c}
MN^2=a^2+b^2-ab\\\\
PN^2=b^2+c^2-bc\end{array}\right\|$ . Thus, $NM+NP\ge MP\implies\ (*)$ .


An easy extension. Prove that for $a_k\in\mathbb R^*_+$ , where $k\in\overline{0,n}$ , exists the inequality $\sum_{k=0}^{n-1}\sqrt{a_k^2-a_ka_{k+1}+a_{k+1}^2}\ge
\sqrt{a_0^2+a_n^2+\left(\sum_{k=1}^{n-1}\right)^2-a_0a_n+(a_0+a_n)\sum_{k=1}^{n-1}a_k}$ .


PP26. Let $\triangle ABC$ with $b>c$ , the midpoints $M$ , $N$ , $P$ of $BC$ , $[CA]$ , $[AB]$ respectively and $\left\{\begin{array}{cc}
D\in (BC)\ ; & \widehat{DAB}\equiv\widehat{DAC}\\\\
E\in AD\ :& BE\perp AD\\\\
F\in AD\ ;& CF\perp AD\end{array}\right\|$ . Prove that $NF\cap PE\cap BC\ne\emptyset$ .

Proof. $\left\{\begin{array}{ccccccccc}
EA\perp ED & \iff & PA=PE & \iff & \widehat{PEA}\equiv\widehat{PAE}\equiv\widehat{CAE} & \iff & PE\parallel AC & \iff & M\in PE\\\
FA\perp FD & \iff & NA=NF & \iff & \widehat{NFA}\equiv\widehat{NAF}\equiv\widehat{BAF} & \iff & NF\parallel AB & \iff & M\in NF\end{array}\right\|$ $\implies$ $M\in PE\cap NF$ .


PP27. Let $ABCD$ be a square and let $F\in (CD)$ , $E\in (BC)$ be two points so that $m(\angle EAF)=45^{\circ}$ . Prove that the ray $[FA$ is the bisector of $\widehat{DFE}$ .

Proof. Let $G\in CD$ so that $D\in (FG)$ and $DG=BE$ . Thus, $\triangle ADG\equiv\triangle ABFE\implies$ $AE=AG\ \wedge\ \widehat{FAG}\equiv\widehat{FAE}\implies$

$\triangle FAE\equiv\triangle FAG\implies$ $\widehat{AFE}\equiv\widehat{AFG}\implies$ the ray $[FA$ is the bisector of $\widehat{DFE}$ .

Remark. If $\left\{\begin{array}{c}
m(\angle BAE)=x\\\\
m(\angle DAF)=y\end{array}\right\|$ , then prove easily that $\tan\widehat{AFE}=\frac {1-\tan x\tan y}{1+\tan^2y-(\tan x+\tan y)}$ . Indeed, denote $\left\{\begin{array}{c}
m\left(\widehat{AFE}\right)=\phi\\\
m\left(\widehat{CFE}\right)=z\end{array}\right\|$ and can

suppose w.l.o.g. that $AB=1$ . Thus, $\left\{\begin{array}{c}
BE=\tan x\ ;\ CE=1-\tan x\\\
DF=\tan y\ ;\ CF=1-\tan y\end{array}\right\|\implies$ $\tan z=\frac {1-\tan x}{1-\tan y}$ and $\tan\phi=\cot(z-y)=\frac {1+\tan z\tan y}{\tan z-\tan y}$ a.s.o.



PP28 Let $\{x,y,z\}\subset\mathbb C$ such that $\left\{\begin{array}{ccc}
x^2 & = & 2(2y-9)\\\\
y^2 & = & 2(z-4)\\\\
z^2 & = & 2(3x-1)\end{array}\right\|$ . Find $x^4 + y^4 + z^4$ .

Proof. $x^4+y^4+z^4=$ $4(2y-9)^2+4(z-4)^2+4(3x-1)^2=$ $4\cdot\left[\left(4y^2-36y+81\right)+\left(z^2-8z+16\right)+\left(9x^2-6x+1\right)\right]=$

$4\cdot\left(9x^2+4y^2+z^2-6x-36y-8z+98\right)=$ $4\cdot\left[18(2y-9)+8(z-4)+2(3x-1)-6x-36y-8z+98\right]=-4\cdot 98=-392$ .

An easy extension. Let $\{x,y,z,a,b,c\}\subset\mathbb C$ such that $\left\{\begin{array}{ccc}
x^2 & = & ay-\frac {c^2}{2}\\\\
y^2 & = & bz-\frac {a^2}{2}\\\\ 
z^2 & = & cx-\frac {b^2}{2}\end{array}\right\|$ . Prove that $4\cdot\left(x^4+y^4+z^4\right)+\left(a^4+b^4+c^4\right)=0$ .

Remark. For $a:=4\ ,\ b:=2\ ,\ c:=6$ obtain the proposed problem PP28.


PP29. Let $\{a,b\}\subset (0,1)$ and $\{m,n\}\subset \mathbb R^*_+$ so that $m+n>1$ and $ma+nb=1$ . Prove that $\boxed{\frac {1-ab}{(1-a)(1-b)}\ge \frac {1+2\sqrt{mn}}{m+n-1}}\ (*)$ .

Proof. Apply C.B.S. inequality $\left(\frac {1}{1-a}+\frac {1}{1-b}\right)\cdot\left(\frac {m}{\frac {1}{1-a}}+\frac {n}{\frac {1}{1-b}}\right)\ge \left(\sqrt m+\sqrt n\right)^2\iff$ $\left(\frac {1}{1-a}+\frac {1}{1-b}\right)\cdot\left[m(1-a)+n(1-b)\right]\ge \left(\sqrt m+\sqrt n\right)^2\iff$

$\frac {1}{1-a}+\frac {1}{1-b}\ge \frac {\left(\sqrt m+\sqrt n\right)^2}{m+n-1}$ . Observe that $\frac {1-ab}{(1-a)(1-b)}=\frac {1}{1-a}+\frac {1}{1-b}-1\ge\frac {m+n+2\sqrt{mn}}{m+n-1}-1$ . In conclusion, $\frac {1-ab}{(1-a)(1-b)}\ge \frac {1+2\sqrt{mn}}{m+n-1}$ .



PP30. Let a rectangle $ ABCD$ , $\{E,M\}\subset AC$ and $N\in CD$ so that $BE\perp AC$ and $\frac {MA}{ME}=\frac {ND}{NC}$ . Prove that $MN\perp MB$ .

Proof 1. Let $P\in AB$ so that $NP\parallel BC$ . Thus, $\frac {MA}{ME}=\frac{ND}{NC}=\frac {PA}{PB}\implies$ $MP\parallel BE\implies$ $ME\perp AC\implies$ $BCNMP$ is inscribed in the circle with the diameter $[CP]$ or $[BN]\implies$ $MN\perp MB$ .

Proof 2. $\triangle ABE\sim\triangle DBC\implies$ $M\in (AE)$ and $N\in (DC)$ are omologously $\implies\widehat{BME}\equiv\widehat{BNC}\implies$ $BCMN$ is cyclically $\implies$ $MN\perp MB$ .


An easy extension. Let a convex cyclical $ ABCD$ , $\{E,M\}\subset (AC)$ , $N\in (CD)$ so that $\widehat{AEB}\equiv\widehat {DCB}$ and $\frac {MA}{ME}=\frac {ND}{NC}$ . Prove that $BCNM$ is a cyclically.
This post has been edited 278 times. Last edited by Virgil Nicula, Nov 20, 2015, 8:57 AM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
I hav easy solution PP6
$(x^2+\frac{y^2}{2})+(\frac{y^2}{2}+z^2)\geq \sqrt{2}xy+\sqrt{2}yz=\sqrt{2}(xy+yz)$

by Uzbekistan, Jun 10, 2012, 12:14 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a