371. Some problems from NMO (final stage) - 2013, Romania.

by Virgil Nicula, Apr 8, 2013, 12:29 AM

Lemma 1. Let $\triangle ABC$ for which the projection $D$ of $A$ on $BC$ belongs to the side $[BC]$ . Then $\boxed{\frac {DB}{DC}=\frac {a^2+c^2-b^2}{a^2+b^2-c^2}}\ (*)$ .

Proof. Apply the generalized Pythagoras' relation $\left\{\begin{array}{ccc}
b^2=a^2+c^2-2a\cdot DB & \implies & DB=\frac {a^2+c^2-b^2}{2a}\\\\
c^2=a^2+b^2-2a\cdot DC & \implies & DC=\frac {a^2+b^2-c^2}{2a}\end{array}\right|\implies$ $\frac {DB}{DC}=\frac {a^2+c^2-b^2}{a^2+b^2-c^2}$ . Otherwise. $AD\perp BC\iff$

$DB^2-DC^2=AB^2-AC^2\iff$ $\left\{\begin{array}{c}
DB^2-DC^2=c^2-b^2\\\\
DB+DC=a\end{array}\right|\iff$ $\left\{\begin{array}{c}
DB+DC=a\\\\
DB-DC=\frac {c^2-b^2}{a}\end{array}\right|\iff$ $\left\{\begin{array}{c}
DB=\frac {a^2+c^2-b^2}{2a}\\\\
DC=\frac {a^2+b^2-c^2}{2a}\end{array}\right|\implies$ $\frac {DB}{DC}=\frac {a^2+c^2-b^2}{a^2+b^2-c^2}$ .

Can show shorter with trigonometry (the Cosinus' theorem). Indeed, $\frac {DB}{DC}=\frac {c\cdot\cos B}{b\cdot \cos C}=\frac {c\cdot\frac {a^2+c^2-b^2}{2ac}}{b\cdot\frac {a^2+b^2-c^2}{2ab}}\implies$ $\frac {DB}{DC}=\frac {a^2+c^2-b^2}{a^2+b^2-c^2}$ .

Remark. Using relation $(*)$ can obtain Heron's formula. Indeed, $AD^2=AB^2-DB^2$ $\iff$ $h_a^2=c^2-\left(\frac {a^2+c^2-b^2}{2a}\right)^2=$ $\left(c+\frac {a^2+c^2-b^2}{2a}\right)\left(c-\frac {a^2+c^2-b^2}{2a}\right)\implies$

$16S^2=4a^2h_a^2=$ $\left[2ac+\left(a^2+c^2-b^2\right)\right]$ $\left[2ac-\left(a^2+c^2-b^2\right)\right]=$ $\left[(a+c)^2-b^2\right]$ $\left[b^2-(a-c)^2\right]\implies$ $\boxed{S=\sqrt{s(s-a)(s-b)(s-c)}}$ .

Remark. Let $[AL]$ be a diameter of the circumcircle $w=C(O,R)$ . Thus, $\triangle ABD\sim\triangle ALC\implies$ $\frac {AB}{AL}=\frac {AD}{AC}\implies$ $\frac {c}{2R}=\frac {h_a}{b}\implies$ $2Rh_a=bc\implies$ $2Rah_a=abc\implies$

$\boxed{4RS=abc}$ . in conclusion, $S=\frac {ah_a}{2}=\sqrt{s(s-a)(s-b)(s-c)}=\frac {abc}{4R}=$ $sr=(s-a)r_a=$ $(s-b)r_b=(s-c)r_c$ . Hence $\{a,b,c\}\iff\ \left\|\begin{array}{ccccc}
s & , & S & , & h_a\\\
s & , & R & , & r\\\
r_a & , & r_b & , & r_c\end{array}\right\|$ .


PP1 (grade 7 - modified enunciation). Let an $A$-right $\triangle ABC$ with $AB=3a\ ,\ AC=b$ . Denote $\{S,T\}\subset (AB)$ so that $AS=ST=TB=a$ ,

$\left\{\begin{array}{cc}
M\in CS\ ; & AM\perp CS\\\\
N\in CT\ : & SN\perp CT\\\\
P\in CB\ ; & TP\perp CB\end{array}\right|$ and $\left\{\begin{array}{c}
X\in MN\cap AC\\\\
Y\in MN\cap AB\end{array}\right|$ . Prove that $P\in MN\iff 5b^2=6a^2$ and in this case find the ratios $\frac {XA}{XC}$ and $\frac {YA}{YB}$ .


Proof 1. Show easily that $AM\perp CS\iff$ $\boxed{\ \frac {MS}{MC}=\frac {a^2}{b^2}\ }\ (1)$ and $\left\{\begin{array}{ccc}
CS^2=a^2+b^2 & (2)\\\\
CT^2=b^2+4a^2 & (3)\\\\
CB^2=b^2+9a^2 & (4)\end{array}\right|$ . Apply the upper lemma: $SN\perp CT\implies \frac {NT}{NC}=\frac {CT^2+ST^2-CS^2}{CT^2+CS^2-ST^2}=$

$\frac {\left(b^2+4a^2\right)+a^2-\left(b^2+a^2\right)}{\left(b^2+4a^2\right)+\left(b^2+a^2\right)-a^2}$ $\implies$ $\boxed{\frac {NT}{NC}=\frac {2a^2}{b^2+2a^2}}\ (5)$ . Obtain analogously that $TP\perp CB\implies$ $\frac {PB}{PC}=\frac {\left(b^2+9a^2\right)+a^2-\left(b^2+4a^2\right) }{\left(b^2+9a^2\right)+\left(b^2+4a^2\right)-a^2}\implies$ $\boxed{\frac {PB}{PC}=\frac {3a^2}{b^2+6a^2}}\ (6)$ .

Method 1.1. I"ll use the property $P\in MN\iff$ $\frac {MS}{MC}\cdot TB+\frac {PB}{PC}\cdot ST=\frac {NT}{NC}\cdot SB$ . Hence $P\in MN\iff$ $\frac {MS}{MC}+\frac {PB}{PC}=2\cdot\frac {NT}{NC}\stackrel{(\ 1\ \wedge\ 6\ \wedge\ 7\ )}{\ \iff}$

$\frac {a^2}{b^2}+\frac {3a^2}{b^2+6a^2}=2\cdot\frac {2a^2}{b^2+2a^2}\iff$ $\boxed{\frac {1}{b^2}+\frac {3}{b^2+6a^2}=\frac {4}{b^2+2a^2}}\ (7)$ . Using substitution $\frac {a^2}{b^2}=t$ , relation $(7)$ becomes $1+\frac {3}{1+6t}=\frac {4}{1+2t}\iff$ $t=\frac 56\iff$ $\boxed{5b^2=6a^2}$

Method 1.2. Denote $\left\{\begin{array}{c}
U\in MN\cap AB\\\
V\in MP\cap AB\end{array}\right|$ . Apply the Menelaus' theorem to the transversals $\overline{MNU}\ ,\ \overline{MPV}$ in the triangles $CST\ ,\ CSB$ respectively:

$\blacktriangleright\ \overline{MNU}/\triangle CST\ :\ \frac {UT}{US}\cdot\frac {MS}{MC}\cdot \frac {NC}{NT}=1\implies$ $\frac {US}{UT}=$ $\frac {MS}{MC}\cdot\frac {NC}{NT}\stackrel{(1\ \wedge\ 5)}{\implies}\ \frac {US}{UT}=$ $\frac {a^2}{b^2}\cdot \frac {2a^2+b^2}{2a^2}\implies$ $\frac {US}{2a^2+b^2}=\frac {UT}{2b^2}=\frac {a}{2a^2-b^2}\implies$ $\frac {US}{a}=\frac {2a^2+b^2}{2a^2-b^2}$ .

$\blacktriangleright\ \overline{MPV}/\triangle CSB\ :\ \frac {VB}{VS}\cdot\frac {MS}{MC}\cdot \frac {PC}{PB}=1\implies$ $\frac {VS}{VB}=$ $\frac {MS}{MC}\cdot\frac {PC}{PB}\stackrel{(1\ \wedge\ 6)}{\implies}\ \frac {VS}{VB}=$ $\frac {a^2}{b^2}\cdot \frac {6a^2+b^2}{3a^2}\implies$ $\frac {VS}{6a^2+b^2}=\frac {UVB}{3b^2}=\frac {a}{3a^2-b^2}\implies$ $\frac {VS}{a}=\frac {6a^2+b^2}{3a^2-b^2}$ .

Therefore, $P\in MN\iff$ $U\equiv V\iff$ $US=VS\iff$ $\frac {2a^2+b^2}{2a^2-b^2}=\frac {6a^2+b^2}{3a^2-b^2}\iff$ $\frac {2a^2+b^2}{4a^2}=\frac {6a^2+b^2}{9a^2}\iff$ $9(2a^2+b^2)=4(6a^2+b^2)\iff$ $\boxed{5b^2=6a^2}$ .

Suppose that $\boxed{\frac {a^2}{5}=\frac {b^2}{6}}$ . In this case $\left\{\begin{array}{c}
\frac {MS}{MC}=\frac 56\\\\
\frac {NT}{NC}=\frac 58\\\\
\frac {PB}{PC}=\frac 5{12}\end{array}\right|$ . Apply the property $\frac {XA}{XC}+\frac {NT}{NC}=2\cdot\frac {MS}{MC}\iff$ $\frac {XA}{XC}=2\cdot \frac 56-\frac 58\implies$ $\boxed{\frac {XA}{XC}=\frac {25}{24}}$ . Apply the Menelaus' theorem to

$\overline{XPY}$ and $\triangle ABC\ :\ \frac {YB}{YA}$ $\cdot\frac {XA}{XC}\cdot\frac {PC}{PB}=1\iff$ $\frac {YA}{YB}=\frac {XA}{XC}\cdot\frac {PC}{PB}=$ $\frac {25}{24}\cdot\frac {12}5\implies$ $\boxed{\frac {YA}{YB}=\frac 52}$ . Thus, $\frac {YA}{5}=\frac {YB}{2}=\frac {AB}{3}\iff$ $YB=\frac 23\cdot AB\implies$ $\boxed{BY=BS}$ .

I"ll show that $BY=BS\iff$ $P\in MN$ . Indeed, apply the Menelaus' theorem to $\overline{MNY}/\triangle CST\ :\ \frac {YT}{YS}$ $\cdot\frac {MS}{MC}\cdot \frac {NC}{NT}=1\iff$ $\frac {YS}{YT}=\frac {MS}{MC}\cdot\frac {NC}{NT}\implies$

$\frac {YS}{YT}=\frac {a^2}{b^2}\cdot\frac {b^2+2a^2}{2b^2}$ . Therefore, $BY=BS\iff$ $BY=2a\iff$ $\frac {YS}{YT}=\frac 43\iff$ $\frac {b^2+2a^2}{2b^2}=\frac 43\iff $ $6a^2=5b^2\iff P\in MN$ .
See here.

Proof 2 (analytic). Let $A(0,0)\ ,\ \left\{\begin{array}{ccc}
B(3a,0) & ; & C(0,b)\\\\
S(a,0) & ; & T(2a,0)\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
M\in\ \left|\begin{array}{cc}
CS\ : & bx+ay-ab=0\\\\
AM\ : & ax-by=0\end{array}\right| & \implies & M\left(\frac {b^2a}{b^2+a^2}\ ;\ \frac {ba^2}{b^2+a^2}\right)\\\\
N\in\ \left|\begin{array}{cc}
CT\ : & bx+2ay-2ab=0\\\\
SN\ : & 2ax-by-2a^2=0\end{array}\right| & \implies & N\left(\frac {2a\left(b^2+2a^2\right)}{b^2+4a^2}\ ;\ \frac {2ba^2}{b^2+4a^2}\right)\\\\
P\in\ \left|\begin{array}{cc}
CB\ : & bx+3ay-3ab=0\\\\
AM\ : & 3ax-by-6a^2=0\end{array}\right| & \implies & P\left(\frac {3a\left(b^2+6a^2\right)}{b^2+9a^2}\ ;\ \frac {3ba^2}{b^2+9a^2}\right)\\\\\end{array}\right\|$ . So $P\in MN\iff$

$\left|\begin{array}{ccc}
b^2a & ba^2 & b^2+a^2\\\\
2a\left(b^2+2a^2\right) & 2ba^2 & b^2+4a^2\\\\
3a\left(b^2+6a^2\right) & 3ba^2 & b^2+9a^2\end{array}\right|=0\iff$ $\left|\begin{array}{ccc}
b^2+0 & 1 & b^2+a^2\\\\
2b^2+4a^2 & 2 & b^2+4a^2\\\\
3b^2+18a^2 & 3 & b^2+9a^2\end{array}\right|=0\iff$ $\left|\begin{array}{ccc}
0 & 1 & b^2+a^2\\\\
2 & 2 & b^2+4a^2\\\\
9 & 3 & b^2+9a^2\end{array}\right|=0\iff$ $\left|\begin{array}{ccc}
0 & 1 & b^2+a^2\\\\
2 & 1 & 3a^2\\\\
9 & 2 & 8a^2\end{array}\right|=0\iff$ $\boxed{5b^2=6a^2}$


Lemma 2. Let $\triangle ABC$ and $D\in (BC)$ . Then there is the relation $\frac {DB}{DC}=\frac {\sin C}{\sin B}\cdot\frac {\sin\widehat {DAB}}{\sin\widehat{DAC}}$ .

Proof 3.. Let $\left\{\begin{array}{c}
m\left(\widehat {ACS}\right)=x\\\\
m\left(\widehat {SCT}\right)=y\\\\
m\left(\widehat {TCB}\right)=z\end{array}\right|$ . Thus, $ACNS$ , $ACPT$ are cyclic, i.e. $\left\{\begin{array}{c}
m\left(\widehat {TSN}\right)=x+y\\\\
m\left(\widehat {BTP}\right)=x+y+z\end{array}\right|$ and $\left\{\begin{array}{c}
\tan x=\boxed{\frac ab=t}\\\\
\tan (x+y)=\frac {2a}{b}=2t\\\\
\tan (x+y+z)=\frac {3a}{b}=3t\end{array}\right|\implies$ $\left\{\begin{array}{c}
\tan y=\frac {t}{1+2t^2}\\\\
\tan z=\frac {t}{1+6t^2}\end{array}\right|$ . Apply

lemma 2 and get $\left\{\begin{array}{c}
\frac {MS}{MC}=\tan ^2x=t^2\\\\
\frac {NT}{NC}=\tan y\tan (x+y)=\frac {2t^2}{1+2t^2}\\\\
\frac {PB}{PC}=\tan z\tan (x+y+z)=\frac {3t^2}{1+6t^2}\end{array}\right|$ . I"ll use method 1.1 $:\ \frac {MS}{MC}+\frac {PB}{PC}=2\cdot\frac {NT}{NC}\iff$ $1+\frac {3}{1+6t^2}=\frac {4}{1+2t^2}\iff$ $5=6t^2\iff$ $\boxed{5b^2=6a^2}$ .



PP2 (grade 7). Let $\triangle ABC$ with $\left\{\begin{array}{ccc}
A-bisector\ AD & , & D\in BC\\\\
B-median\ BE & , & E\in AC\end{array}\right\|$ and $\left\{\begin{array}{c}
P\in AD\cap BE\\\\
F\in CP\cap AB\end{array}\right\|$ and $M\in FD$ so that $BM\parallel FC$ . Prove that $DM=BF$ .

Proof. $P$ belong to the $B$-median $\implies \overline {FDM}\parallel AC$ .Thus, $\frac {DM}{BF}=$ $\frac {DM}{DF}\cdot\frac {DF}{BF}=$ $\frac {DB}{DC}\cdot \frac {AC}{AB}=$ $\frac {AB}{AC}\cdot \frac {AC}{AB}=1$ . Hence $DM=BF$ . This problem is very easy.


PP3 (grade 8). Ascertain $x\in\mathbb R^*_+$ and $n\in\mathbb N^*$ so that $[x] +\left\{\frac 1x\right\}=1.005\cdot n$ .

Proof. Show easily that $x>1$ . Hence $0<\frac 1x<1$ , i.e. $\left\{\frac 1x\right\}=\frac 1x$ . Denote $n=200q+r$ , where $q\in\mathbb N$ and $0\le r<200$ . Thus, the equation becomes

$[x] +\left\{\frac 1x\right\}=\left(1+\frac 1{200}\right)\cdot n\iff$ $[x] +\left\{\frac 1x\right\}=n+q+\frac r{200}$ . Hence $[x]=n+q$ , i.e. $[x]=201q+r$ and $\left\{\frac 1x\right\}=\frac r{200}$ . Thus, $\frac 1x=\frac r{200}$ , i.e.

$r\ne 0$ and $x=\frac {200}{r}$ . From $[x]\le x<[x]+1$ obtain that $201q+r\le \frac {200}{r}<201q+r+1\implies$ $201qr+r^2\le 200<201qr+r(r+1)$ .

Since $r\ne 0$ and $qr\ge 1$ obtain that $q=0$ and $r^2\le 200<r(r+1)\implies$ $\boxed{n=14}$ and $\boxed{x=\frac {100}{7}}$ .



PP4 (grade 9). Let an interior point $P$ of $\triangle ABC$ for which denote $\left\{\begin{array}{c}
D\in AP\cap BC\\\
E\in BP\cap CA\\\
F\in CP\cap AB\end{array}\right|$ . and the radius-length $\rho$ of the incircle for $\triangle DEF$ . Prove that $[DEF]\le \frac S4$ and $\rho\le\frac R4$ .

Proof. Show easily that $\left\{\begin{array}{c}
\frac {DB}{DC}=x\\\\
\frac {EC}{EA}=y\\\\\
\frac {FA}{FB}=z\end{array}\right|$ , where $xyz=1$ $\implies$ $[DEF]=\frac {2S}{(x+1)(y+1)(z+1)}\le$ $\frac {2S}{2\sqrt {x}\cdot 2\sqrt{y}\cdot 2\sqrt {z}}=$ $\frac {2S}{8\sqrt{xyz}}=\frac S4\implies$

$\boxed{[DEF]\le\frac S4}$ . It is well-known or show easily that $\left\{\begin{array}{c}
S=[ABC]=2R^2\sin A\sin B\sin C\\\\
s_{\mathrm{orth}}=2R\sin A\sin B\sin C\end{array}\right|$ and the perimeter of $DEF$ is at least equally to the

perimeter $2s_{\mathrm{orth}}$ of the orthic triangle for $\triangle ABC$ . Thus, $\rho =\frac {[DEF]}{s_{DEF}}\le$ $ \frac {\frac S4}{s_{\mathrm{orth}}}=$ $\frac {2R^2\prod \sin A}{4\cdot 2R\prod\sin A}=$ $\frac R4$ .
This post has been edited 85 times. Last edited by Virgil Nicula, Nov 15, 2015, 3:20 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Wow!! Your post is great!!!

by shinichiman, Apr 27, 2013, 7:08 AM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a