263. Newton's sums. Applications.

by Virgil Nicula, Apr 7, 2011, 10:29 PM

Newton's sums. Applications.

Consider the polynom $f\equiv \sum_{k=0}^n(-1)^ks_kX^{n-k}$ , $n\in\mathbb N^*$ , $s_0=1$ with the roots $x_j$ , $j\in\overline{1,n}$ . Denote $S_p=x_1^p+x_2^p+\cdots +x_{n-1}^p+x_n^p$ ,

where $p\in \mathbb N$ and $S_0=n$ . From the relation $0=\sum_{j=0}^n\sum_{k=0}^n(-1)^ks_kx_j^{n+p-k}=\sum_{k=0}^n(-1)^ks_k\sum_{j=1}^nx_j^{n+p-k}=\sum_{k=0}^n(-1)^ks_kS_{n+p-k}$ ,

i.e. for any $p\in\mathbb N^*$ we have $\boxed{\ S_{n+p}=s_1S_{n+p-1}-s_2S_{n+p-2}+\cdots +(-1)^{n-1}S_p\ }\ (*)$ . Since $f'(X)=\sum_{k=1}^n\frac {f(X)}{X-x_k}\ (1)$

and $f'(X)=\sum_{k=0}^{n-1}(-1)^k(n-k)s_kX^{n-k-1}$ for any $k\in\overline{1,n}$ obtain that (appling to the polynom $f$ the Horner's schema for $x:=x_k$) :

$\frac {f(X)}{X-x_k}=$ $X^{n-1}-\left(s_1-x_k\right)\cdot X^{n-2}+\left(s_2-s_1x_k+x_k^2\right)\cdot X^{n-3}$ $+\cdots +(-1)^{n-1}\left[s_{n-1}-s_{n-2}x_k+\cdots+(-1)^{n-1}x_k^{n-1}\right]$ .

After identification of the same coefficients obtain that :

\[\boxed{\ \begin{array}{c}
S_1=s_1\\\\
S_2=s_1S_1-2s_2=s_1^2-2s_2\\\\
S_3=s_1S_2-s_2S_1+3s_3=s_1^3-3s_1s_2+3s_3\\\\
S_4=s_1S_3-s_2S_2+s_3S_1-4s_4=s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2-4s_4\\\\
\cdots\ \cdots\ \cdots\\\\\
S_{n-1}=s_1S_{n-2}-s_2S_{n-3}+\cdots +(-1)^n(n-1)s_{n-1}\end{array}\ }\ (**)\]


Application 1. Prove that if $x_1^k+\cdots+x_n^k = 0$ for all $k\in\mathbb{N^*}$ , then $x_1=x_2=\cdots=x_n=0$ , where $x_i$ , $i\in\overline{1,n}$ are complex numbers.

Proof. A quick answer is by using Newton's sums recurrence formulae $(**)$ or from here. Work with the

polynomial $P(X)$ having $x_j$ as roots, $j\in\overline{1,n}$ and thus find that $P(X)=aX^n$ for some $a\ne 0$ .


Application 2. If $x_k$ , $k\in\overline{1,n}$ are the roots of the equation $P(x)\equiv x^n+2x^{n-1}+3x^{n-2}+\cdots +nx+(n+1)=0$ , then for any $p\in\overline{1,n}$ , $\sum_{k=1}^nx_k^p=-2$ .

Proof. $P(x)=\sum_{k=0}^n(n+1-k)x^k=$ $(n+1)\cdot \sum _{k=0}^nx^k-\sum_{k=1}^nkx^k=$ $(n+1)\cdot\frac {x^{n+1}-1}{x-1}-x\cdot\left(\sum_{k=1}^nx^k\right)'=$

$(n+1)\cdot\frac {x^{n+1}-1}{x-1}-x\cdot\frac {nx^{n+1}-(n+1)x^n+1}{(x-1)^2}=$ $\frac {x^{n+2}-(n+2)x+(n+1)}{(x-1)^2}$ . Thus, the polynom $Q(x)$ ,

where $Q(x)\equiv (x-1)^2\cdot P(x)=$ $x^{n+2}-(n+2)x+(n+1)$ has the roots $1$ , $1$ and $x_k$ , $k\in\overline{1,n}$ . Observe that

it has the basic symmetrical forms $s_1=s_2=\ldots =s_n=0$ , $s_{n+1}=(-1)^n(n+2)$ , $s_{n+2}=(-1)^n(n+1)$ .

Using the Newton's relations obtain : $S_k=0$ , $k\in\overline{1,n}$ $\implies$ $x_1^k+x_2^k+\cdots +x_n^k=-2$ , $k\in\overline{1,n}$ ;

$S_{n+1}=(-1)^{n+2}(n+1)s_{n+1}=(n+1)(n+2)$ $\implies$ $x_1^{n+1}+x_2^{n+1}+\cdots +x_n^{n+1}=n(n+3)$ ;

$S_{n+2}=(-1)^{n+3}(n+2)s_{n+2}=-(n+1)(n+2)$ $\implies$ $x_1^{n+2}+x_2^{n+2}+\cdots +x_n^{n+2}=-(n^2+3n+4)$ .


Application 3.

Proof.

Application 4. For any positive numbers $a$ , $b$ , $c$ , $d$ there is the inequality $\boxed{\ \sum a\cdot\sum a^2\cdot\sum \frac{1}{a}\ge 3\cdot\left(\sum a\right)^2+\sum a^3\cdot\sum\frac{1}{a}\ }\ (1)$ .

Generalization. For $n\in N,\ n>3$ and any $0<a_k,\ k\in \overline{1,n}$ there is the inequality $\boxed{\ s_1\cdot s_2\cdot s_3\ge \frac{3n}{2(n-2)}\cdot s^2_3+\frac{n-1}{n-3}\cdot s^2_1\cdot s_4\ }\ (2)$ ,

where $s_k,\ k\in \overline{1,n}$ are the symetric basic forms of order k between $a_k,\ k\in \overline{1,n}$ , i.e. $s_1=a_1+a_2+\dots +a_n$ ,

$s_2=a_1a_2+a_1a_3+\dots+a_1a_n+a_2a_3+a_2a_4+\dots+a_2a_n+\dots +a_{n-1}a_n$ , $\ldots$ , $s_n=a_1a_2\dots a_n$ .

The inequality $(1)$ is a easy processing of the inequality $(2)$ for $n=4$ .


Proof. I will use the Newton's inequality : $ P_k=\frac{s_k}{\binom nk},\ k\in \overline {0,n}\Longrightarrow P_{k-1}\cdot P_{k+1}\le P^2_k$ . For $k\in\overline{1,3}$ obtain :

$k:=1\Longrightarrow P_0\cdot P_2\le P^2_1\Longrightarrow 2n\cdot s_2\le (n-1)\cdot s^2_1\ (1)$ .

$k:=2\Longrightarrow P_1\cdot P_3\le P^2_2\Longrightarrow 3(n-1)\cdot s_1\cdot s_3\le 2(n-2)\cdot s^2_2\ (2)$ .

$k:=3\Longrightarrow P_2\cdot P_4\le P^2_3\Longrightarrow 4(n-2)\cdot s_2\cdot s_4\le 3(n-3)\cdot s^2_3\ (3)$ .

We multiply the ineq. $(1)$ with the ineq. $(2)$ and the ineq. $(2)$ with the ineq. $(3)$ . Obtain $(4)\ \ s_1\cdot s_2\ge \frac {3n}{n-2}\cdot s_3\ \ \ \ \ (5)\ \  s_2\cdot s_3\ge \frac{2(n-1)}{n-3}\cdot s_1\cdot s_4$ .

Multiply the ineq. $(4)$ with $s_3$ and add to the the ineq. $(5)$ multiplied with $s_1$ . Obtain finally $2\cdot s_1\cdot s_2\cdot s_3\ge \frac{3n}{n-2}\cdot s^2_3+\frac{2(n-1)}{n-3}\cdot s^2_1\cdot s_4$ .
This post has been edited 38 times. Last edited by Virgil Nicula, Nov 22, 2015, 8:48 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a