223. An inequality with complex numbers-RMO shortlist 2010.

by Virgil Nicula, Feb 17, 2011, 12:22 PM

RMO shortlist 2010. Prove that $|x-y|+|x-z|+1\ge |y-z|$ , where $\{x,y,z\}\subset\mathbb C$ (the set of all complex numbers).

Proposed problem. Prove that $ \left(\forall\right)X$ from the plane $ (ABC)$ exists the inequality $ \boxed {\ b^2 + c^2 - a^2\ \ge\ XA^2 - XB^2 - XC^2\ }$ .

Proof. Denote the midpoints $M$ , $N$ of $[BC]$ , $[XA]$ respectively. Apply the theorem of the median in the triangles :

$\left\|\begin{array}{cccc}
\triangle ABC & : & 4m_a^2=2\left(b^2+c^2\right)-a^2 & (1)\\\\
\triangle AMX & : & 4\cdot MN^2=2\cdot\left(m_a^2+XM^2\right)-XA^2 & (2)\\\\
\triangle BXC & : & 4\cdot XM^2=2\cdot\left(XB^2+XC^2\right)-a^2 & (3)\end{array}\right\|\ \implies$ $8\cdot MN^2\stackrel{(2)}{=}4m_a^2+$ $4\cdot XM^2-2\cdot XA^2\stackrel{(1)\wedge (3)}{=}$

$2\left(b^2+c^2\right)-a^2+2\cdot\left(XB^2+XC^2\right)-a^2-2\cdot XA^2\ge 0\implies$ $\boxed{\ b^2+c^2-a^2+XB^2+XC^2-XA^2\ge 0\ }$ .

Remark. For $X:=O$ and $R=1$ , where $A(x)$ , $B(y)$ , $C(z)$ belong to the complex plane and $C(O,R)$

is the circumcircle of $\triangle ABC$ obtain that $|x|=|y|=|z|=1$ $\implies$ $|x-y|+|x-z|+1\ge |y-z|$ .

Another proof. If denote $x=e^{iu}$ , $y=e^{iv}$ and $z=e^{iw}$ , then the our inequality is equivalently with $\cos (u-v)+\cos (u-w)-\cos (v-w)\le\frac 32$ $\iff$

$\cos (u-v)+\cos (w-u)+\cos (\pi +v-w)\le\frac 32$ , what is truly because $(u-v)+(w-u)+(\pi +v-w)=\pi$ .



Generalization. Prove that for any $\{m,n\}\subset\mathbb R$ and for any $X$ from the plane of $ \triangle ABC$ exists the inequality

$\boxed{\ n\left[n(1-m)a^2-m(1-m)b^2+mc^2\right]\ge m(1-n)\cdot\left[-m\cdot XA^2+n\cdot XB^2-n(1-m)\cdot XC^2\right]\ }$ . See and
here.

Particular cases.

$1\blacktriangleright$ For $m=n$ obtain that $(1-m)\left(a^2-b^2\right)+c^2\ge (1-m)\cdot\left[XB^2-XA^2-(1-m)\cdot XC^2\right]$ .

$2\blacktriangleright$ For $m=n=2$ obtain above proposed problem, i.e. $b^2 + c^2 - a^2\ \ge\ XA^2 - XB^2 - XC^2$ .

$3\blacktriangleright$ For $n=1$ and $m:=1-m$ obtain that $m^2b^2-m\left(b^2+c^2-a^2\right)+c^2\ge 0$ for any $m\in\mathbb R$ .


Proof. Denote $\left\|\begin{array}{ccc}
 M\in BC & ; & \overline {MB}=m\cdot\overline {MC}\\\
 N\in XA & ; & \overline {NA}=n\cdot \overline{NX}\end{array}\right\|$ . Apply the Stewart's relation to the cevians in the mentioned triangles :

$[AM]/\triangle ABC\ :\ (1-m)^2\cdot AM^2=(1-m)\left(c^2-mb^2\right)+ma^2\ ;$

$[XM]/\triangle BXC\ :\ (1-m)^2\cdot XM^2=(1-m)\cdot\left(XB^2-m\cdot XC^2\right)+ma^2\ ;$

$[MN]/\triangle AMX\ :\ (1-n)^2\cdot MN^2=$ $(1-n)\cdot\left(MA^2-n\cdot MX^2\right)+n\cdot AX^2$ . By eliminating the lengths $AM$ , $XM$ obtain :

$0<(1-m)^2(1-n)^2\cdot MN^2=$ $(1-n)\left[(1-m)\left(c^2-mb^2\right)+ma^2\right]-$ $n(1-n)\cdot\left[(1-m)\cdot\left(XB^2-m\cdot XC^2\right)+ma^2\right]+$

$n(1-m)^2\cdot AX^2$ $\implies$ $(1-m)(1-n)c^2-m(1-m)(1-n)b^2+m(1-n)^2a^2\ge$

$n(1-m)(1-n)\cdot XB^2-mn(1-m)(1-n)\cdot XC^2-n(1-m)^2\cdot XA^2$ . For $m:=1-m$ and $n:=1-n$ obtain required inequality.
This post has been edited 30 times. Last edited by Virgil Nicula, Nov 22, 2015, 3:09 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a