65. Parallel to BC through I .

by Virgil Nicula, Jul 22, 2010, 1:12 AM

Nice parallel to BC through I (<== click).

Lemma (new). Points $\{A,C,B,D\}\subset d$ (in this order) is harmonical division on line $d\ \Longleftrightarrow\ \frac {\overline{CA}}{\overline {CB}}\stackrel{\mathrm{def}}{\ =\ }-\frac {\overline{DA}}{\overline{DB}}\ \Longleftrightarrow\ \frac {\overline{CA}}{\overline{CB}}=-\frac {\overline{EA}}{\overline{EC}}$ $\Longleftrightarrow$ $\frac {\overline{CA}}{\overline{CB}}=-\frac {\overline{EC}}{\overline{EB}}$,
where $E$ is midpoint of $[CD]$ .

Proof. $\frac {\overline{CA}}{\overline {CB}}\stackrel{\mathrm{def}}{\ =\ }-\frac {\overline{DA}}{\overline{DB}}$ $\Longleftrightarrow$ $(a-c)(b-d)+(a-d)(b-c)=0$ $\Longleftrightarrow$ $\boxed {(a+b)(c+d)=2(ab+cd)}$ . Observe that $2e=c+d$ and $\frac {\overline{CA}}{\overline{CB}}=-\frac {\overline{EA}}{\overline{EC}}$ $\Longleftrightarrow$ $(a-c)(c-e)+(a-e)(b-c)=0$ $\Longleftrightarrow$ $e(a+b)=2ec+ab-c^2$ $\Longleftrightarrow$ $(c+d)(a+b)=2c(c+d)+2ab-2c^2$ $\Longleftrightarrow$ $\boxed {(a+b)(c+d)=2(ab+cd)}$ . Prove analogously and second equivalence.
Sunken Rock wrote:
Let $ABC$ be a triangle with incenter $I$ and circumcircle $w$ . Denote $D\in AI\cap BC$ and $\{A,E\}=AI\cap w$ . For $M\in BC$ define midpoint $N$ of $[IM]$ , $R\in EN\cap BC$ and $P\in EN\cap AM$ . Prove that $RIPM$ is a parallelogram.
Proof. Prove easily that $\{A,I,D,I_a\}$ is an harmonical division . Indeed, $\frac {DI}{DI_a}=\frac {r}{r_a}=$ $\frac {s-a}{s}=$ $\frac {AI}{AI_a}$ . Since $E$ is midpoint of $II_a$ obtain $EP\parallel MI_a$ $\Longleftrightarrow$ $\frac {PA}{PM}=\frac {EA}{EI_a}=\frac {EA}{EI}$ $\stackrel{\mathrm{lemma}}{\ \Longleftrightarrow\ }$ $\frac {PA}{PM}=\frac {IA}{ID}$ $\Longleftrightarrow$ $\boxed{PI\parallel BC}\ \ (1)$ . Apply Menelaus's theorem to transversal $\overline{ERN}$ for $\triangle\  IDM\ :\ \frac {ED}{EI}\cdot \frac {NI}{NM}\cdot \frac {RM}{RD}=1$ $\Longleftrightarrow$ $\frac {RD}{RM}=\frac {ED}{EI}$ $\stackrel{\mathrm{lemma}}{\Longleftrightarrow}$ $\frac {RD}{RM}=\frac {ID}{IA}$ $\Longleftrightarrow$ $\boxed{IR\parallel AM}\ \ (2)$ . From relations $(1)$ and $(2)$ obtain that $RIPM$ is a parallelogram.
This post has been edited 14 times. Last edited by Virgil Nicula, Nov 23, 2015, 4:08 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a