436. Two characterizations of A-right triangle ABC.

by Virgil Nicula, Dec 9, 2015, 8:16 AM

Lemma 1. Let a convex $ABNM$ and $C\in (AB)\ ,\ P\in (MN)$ so that $AM\parallel BN\parallel CP$ . Denote $CP=c$ and $\left\{\begin{array}{ccc}
AM=a & ; & BN=b\\\\
PM=m & ; & PN=n\end{array}\right\|$ . Then $\boxed{c=\frac {na+mb}{m+n}}\ (1)$ .

Proof. Suppose w.l.o.g. $a<b$ and let $S\in (CP)\ ,\ T\in (BN)$ so that $M\in ST\parallel AB$ . Thus, $SP=c-a\ ,\ TN=b-a$

and $\frac {MP}{MN}=\frac {SP}{TN}\iff$ $\frac m{m+n}=\frac {c-a}{b-a}\iff$ $(m+n)c=a(m+n)+m(b-a)\iff$ $(m+n)c=na+mb$ .

Remark. Prove easily that $\boxed{[APB]=\frac {m\cdot [ANB]+n\cdot [AMB]}{m+n}}\ (2)$ . Indeed, $\frac {[AMB]}a=\frac {[ANB]}b=\frac {[APB]}c=\frac 12\cdot\sin\phi$ , where $m\left(\widehat{MAB}\right)=\phi$ .


Lemma 2. $\triangle ABC\ ,\ \left\{\begin{array}{c}
a+b+c=2s\\\\
b^2+c^2-a^2=2\Delta\end{array}\right\|\implies$ $\Delta=2s^{2}-(a+b)(a+c)=2(s-a)^{2}-(a-b)(a-c)=2(s-b)^{2}-(a-b)(a+c)=2(s-c)^{2}-(a+b)(a-c)$


P1 . Let $\triangle ABC$ with the incenter $I$ and $a>\max\{b,c\}$. Prove that $\ :\boxed{\ \begin{array}{cccc}\\
1\blacktriangleright & A=90^{\circ} & \iff & IA^2=(a-b)(a-c)\iff IB^2=a(a-b)\iff IC^2=a(a-c)\\\\
2\blacktriangleright & A=90^{\circ} & \iff & \left(\sqrt{a+b}+\sqrt{a-b}\right)\left(\sqrt{a+c}+\sqrt{a-c}\right)=(a+b+c)\sqrt 2\\\
\end{array}}$ .

Proof. For the first equivalence see PP8 from here. Denote $E=(\sqrt{a+b}+\sqrt{a-b})(\sqrt{a+c}+\sqrt{a-c})\ .$ I"ll use the identities (here is the trick) from the lemma 2. Thus,

$\Delta<0\iff$ $\left\{\begin{array}{ccc}
\sqrt{(a+b)(a+c)} & > &  s\sqrt 2\\\\
\sqrt{(a-b)(a-c)} & > & (s-a)\sqrt 2\\\\
\sqrt{(a-b)(a+c)} & > & (s-b)\sqrt 2\\\\
\sqrt{(a+b)(a-c)} & > & (s-c)\sqrt 2\end{array}\right\|$ $\bigoplus\iff E> 2s\sqrt 2\ .$ Analogously prove that $\Delta>0\iff E<2s\sqrt 2$ and $\Delta=0\iff E=2s\sqrt 2\ .$



P2 (Edson Curahua). Let $\triangle ABC$ with incenter $I\ ,\ \left\{\begin{array}{ccc}
E & \in & BI\cap AC\\\\
F & \in & CI\cap AB\end{array}\right\|$ and $\left\{\begin{array}{cccc}
m  & = & [BIF]\\\\
n  & = & [CIE]\\\\
p & = & [EIF]\end{array}\right\|$ . Prove that $\boxed{(p+m)(p+n)=2\left(mn+p^2\cos A\right)}$.

Proof 1 (Franzua Ynfanzon). Denote $\left\{\begin{array}{ccc}
M\in (BC) & ; & BM=BF\\\\
N\in (BC) & ; & CN=CE\end{array}\right\|$ and $[MIN]=q$ . Observe that $\left\{\begin{array}{ccc}
BIM\sim BIF & \implies & [BIM]=m\\\\
CIN\sim CIE & \implies & [CIN]=n\end{array}\right\|$ and

$\left\{\begin{array}{cccc}
\widehat{NMI}\equiv\widehat{AFC} & \implies & m\left(\widehat{NMI}\right)=B+\frac C2\\\\
\widehat{MNI}\equiv\widehat{AEB} & \implies & m\left(\widehat{MNI}\right)=C+\frac B2\end{array}\right\|\implies$ $m\left(\widehat{MIN}\right)=180^{\circ}-m\left(\widehat{NMI}\right)-m\left(\widehat{MNI}\right)=$ $180^{\circ}-(B+C)-\left(\frac B2+\frac C2\right)=$

$A-\left(\frac B2+\frac C2\right)=A-\left(90^{\circ} -\frac A2\right)=\frac {3A}2-90^{\circ}\implies$ $\boxed{m\left(\widehat{MIN}\right)=\frac {3A}2-90^{\circ}}\ (*)\implies$ $\frac pq=\frac {[EIF]}{[MIN]}=$ $\frac {\sin\widehat{EIF}}{\sin\widehat{MIN}}\ \stackrel{(*)}{=}\ \frac {\sin\left(90^{\circ}+\frac A2\right)}{\sin\left(\frac {3A}2-90^{\circ}\right)}=$ $-\frac {\cos\frac A2}{\cos\frac {3A}2}=$

$\frac 1{3-4\cos^2\frac A2}\implies$ $q=p\left(3-4\cos^2\frac A2\right)=$ $p[3-2(1+\cos A)]=$ $p(1-2\cos A)\implies$ $\boxed{q=p(1-2\cos A)}\ (1)$ . In conclusion, $[BIC]=m+n+q\ \stackrel{(1)}{\implies}$

$\boxed{[BIC]=m+n+p(1-2\cos A)}\ (2)$ and $[EIF]\cdot [BIC]=[BIF]\cdot [CIE]\ \stackrel{(2)}{\iff}\ p[m+n+p(1-2\cos A)]=mn\iff$ $(p+m)(p+n)=2\left(mn+p^2\cos A\right)\ .$

Proof 2. Van Aubel's theorem $:\ \left\{\begin{array}{cccc}
\frac mp=\frac {IB}{IE}=\frac {a+c}b\\\\
\frac np=\frac {IC}{IF}=\frac {a+b}c\end{array}\right\|\ (*)$ . I"ll use identity from lemma 2 $:\ (a+b+c)^2=\left(b^2+c^2-a^2\right)+2(a+b)(a+c)$ ,

i.e. $(a+b+c)^2=2bc\cdot\cos A+2(a+b)(a+c)\iff$ $\left(1+\frac {a+b}c\right)\left(1+\frac {a+c}b\right)=$ $2\cos A+2\cdot\frac {a+b}c\cdot\frac {a+c}b\ \stackrel{(*)}{\iff}$ $\left(1+\frac np\right)\left(1+\frac mp\right)=$

$2\cos A+2\cdot\frac np\cdot\frac mp\iff$ $(p+m)(p+n)=2\left(mn+p^2\cos A\right)$ . Particular cases: $\left\{\begin{array}{cccc}
A=90^{\circ}\iff & (p+m)(p+n) & = & 2mn\\\\
A=60^{\circ}\iff & \frac 1m+\frac 1n & = & \frac 1p\end{array}\right\|$.

Examples $:\ \left\{\begin{array}{ccc}
A=90^{\circ}\ ,\ m=5\ ,\ n=12 & \implies  & p=3\\\\
A=60^{\circ}\ ,\ m=6\ ,\ n=3 & \implies  & p=2\end{array}\right\|$



P3 (S.S. Palacios Paulino). Let $\triangle ABC$ with the $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)$ what touches the sidelines $BC$ ,

$CA$ , $AB$ at $M$ , $N$ , $P$ respectively. Denote $K\in (PN)$ so that $MK\perp NP$ . Prove that $MK=h_a\sin\frac A2$ .


Proof 1. Apply in $\triangle NMP$ an well-known or prove easily the identity $h_a=2R\sin B\sin  C$ (standard notations). Hence $MK=2r_a\cdot\sin\widehat{MPN}\cdot\sin\widehat{MNP}\implies$

$MK=2r_a\sin \frac C2\sin\frac B2=2r_a\cdot\sqrt{\frac {(s-a)(s-b)}{ab}\cdot\frac {(s-a)(s-c)}{ac}}=$ $\frac {2r_a(s-a)}a\cdot \sqrt{\frac {(s-b)(s-c)}{bc}}=$ $\frac {2S}a\cdot\sin\frac A2=h_a\sin\frac A2\implies$ $MK=h_a\sin\frac A2$ .

Proof 2. Denote $\{U,V\}\subset (NP)$ so that $BU\parallel CV\perp NP$ . Observe that $MB=PB=s-c$ , $MC=NC=s-b$ and $\frac {BU}{s-c}=\frac {CV}{s-b}=\cos\frac A2$ . Apply lemma 1

to the trapezoid $BCVU\ :\ MK=\frac {MC\cdot BU+MB\cdot CV}{MB+MC}=$ $\frac {(s-b)(s-c)\cos\frac A2+(s-c)(s-b)\cos\frac A2}{(s-b)+(s-c)}=$ $\frac {2(s-b)(s-c)}a\cdot\cos\frac A2=$ $\frac {2S}a\cdot \frac S{s(s-a)}\cdot\cos\frac A2=$

$h_a\cdot \frac r{s-a}\cdot\cos\frac A2=$ $h_a\cdot\tan\frac A2\cdot\cos\frac A2=h_a\sin\frac A2$ . In conclusion, $MK=h_a\sin\frac A2$ , where $h_a$ is the length of the $A$-altitude in the triangle $ABC$ (Franzua Ynfanzon).



P4 (S.S. Palacios Paulino). Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and the midpoints $E$ , $F$ of the sides $[AC]$ ,

$[AB]$ respectively. Suppose that $(\exists )\ \left\{\begin{array}{c}
P\in (BC)\\\\
M\in (AF)\\\\
N\in (EC)\end{array}\right\|$ so that $\left\{\begin{array}{ccc}
MB=MP\\\\
NC=NP\end{array}\right\|$ . Prove that $AMON$ is cyclically .


Proof 1. $\odot\begin{array}{ccccccc}
\nearrow & MB=MP=x\in \left(\frac c2,c\right) & \implies & AM=c-x & ; & MF=x-\frac c2 & \searrow\\\\
\searrow & NC=NP=y\in\left(0,\frac b2\right)  & \implies & AN=b-y & ; & NE=\frac b2-y & \nearrow\end{array}\odot\implies$ $PB+PC=a\iff$ $2x\cos B+2y\cos C=c\cos B+b\cos C$ .

Therefore, $(2x-c)\cos B=(b-2y)\cos C\iff$ $\boxed{\frac {2x-c}{\cos C}=\frac {b-2y}{\cos B}}\ (*)\ .$ Therefore, $\left\{\begin{array}{ccc}
m\left(\widehat{MOF}\right)=\gamma \\\\
m\left(\widehat{NOE}\right)=\beta\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
\tan \gamma =\frac {MF}{OF} & \implies & \tan\gamma =\frac {2x-c}{2R\cos C}\\\\
\tan\beta =\frac {NE}{OE} & \implies & \tan\beta =\frac {b-2y}{2R\cos B}\end{array}\right\|\ \stackrel{(*)}{\implies}$

$\tan\gamma=\tan\beta \implies$ $\gamma =\beta \implies$ $\widehat{MON}\equiv\widehat{EOF}\implies$ $A+\left(\widehat{MON}\right)=180^{\circ}\implies$ $AMON$ is cyclically .

Proof 2 (Stan Fulger). Let the symmetric $Q$ of $P$ w.r.t. $MN\implies$ $\widehat {MQN}\equiv \widehat{MPN}\equiv \widehat{BAC} \implies \widehat{MQN}\equiv\widehat{MAN}\implies$ $AMNQ$ is cyclic $\implies$ $\widehat{AMQ}\equiv \widehat{ANQ}$ $\implies$ isosceles

$\triangle BMQ$ and $CNQ$ are similarly $\implies$ $\widehat{MBQ}\equiv \widehat {NCQ}\implies$ $\widehat{ABQ}\equiv \widehat {ACQ}\implies$ $Q\in w\implies$ $m\left(\widehat{AOQ}\right)=2m\left(\widehat{ABQ}\right)$ $\implies$ $m\left(\widehat{AOQ}\right)=$ $m\left(\widehat{AMQ}\right)\implies$ $M$ belongs

to the circumcircle of the triangle $AMQ$ , i.e. the quadrilateral $AMON$ is cyclically.
$\bf\color{red}Very\  nice\ proof\ !$


P5. Let $ \triangle ABC$ and midpoint $ D$ of $ [BC]$ . $(\exists\ )\  M\in (AB)$ , $ N\in (AC)$ so that $ AM^2 + AN^2 = BM^2 + CN^2$ and $\widehat {MDN}\equiv\widehat {BAC}$ . Prove that $ AB\perp AC$ or $b=c$

Lemma (trigonometric form of the Ptolemy's theorem). Let $ ABC$ be a triangle. Then for any $ \phi\in R$ exists the identity $\boxed{ a\cdot\sin\phi + b\cdot\sin (C - \phi ) = c\sin (B + \phi )}\ (*)\ .$

Particular cases :
$ \left\{\begin{array}{ccccc} \blacktriangleright & \phi : = 0 & \implies & b\cdot\sin C = c\cdot\sin B & \mathrm {(Sinus'\ theorem)} \\
 \\
\blacktriangleright & \phi : = \frac {\pi}{2} - B & \implies & a\cdot\cos B + b\cdot\cos A = c & \mathrm {(Cosinus'\ theorem)}\end{array}\right\|$

Proof. Denote $ \left\{\begin{array}{c} BM = m\ ,\ CN = n \\
 \\
m(\widehat {BDM}) = x\ ,\ m(\widehat {CDN}) = y\end{array}\right\|$ . Thus, $ \left\{\begin{array}{c} AM = c - m\ ,\ AN = b - y \\
 \\
x + y + A = 180^{\circ}\end{array}\right\|$ and $ AM^2 + AN^2 = BM^2 + CN^2$ $ \Longleftrightarrow$ $ 2(mc + nb) = b^2 + c^2$ $ \Longleftrightarrow$

$ \boxed {\ c(2m - c) + b(2n - b) = 0\ }\ \ (1)$ . Apply the Sinus' theorem in $ B\triangle DM$ and $ \triangle CDN\ :\ \left\{\begin{array}{ccccc} \frac {BM}{\sin\widehat {BDM}} = \frac {DB}{\sin\widehat {DMB}} & \implies & \frac {m}{\sin x} = \frac {a}{2\sin (B + x)} & \implies & 2m = \frac {a\sin x}{\sin (B + x)} \\
 \\
\frac {CN}{\sin\widehat {CDN}} = \frac {DC}{\sin\widehat {DNC}} & \implies & \frac {n}{\sin y} = \frac {a}{2\sin (C + y)} & \implies & 2n = \frac {a\sin y}{\sin (C + y)}\end{array}\right\|$ .

From relation $ (1)$ obtain that $ \frac {c}{\sin (B + x)}\cdot[a\sin x - c\sin (B + x)] + \frac {b}{\sin (C + y)}\cdot[a\sin y - b\sin (C + y)] = 0$ . Using upper lemma obtain $ \frac {c}{\sin (B + x)}\cdot b\sin (x - C) +$

$ \frac {b}{\sin (C + y)}\cdot c\sin (y - B) = 0$ $ \iff$ $ \sin (x - C)\sin (C + y) + \sin (B + x)\sin (y - B) = 0$ $ \Longleftrightarrow$ $ \cos(2C + y - x) - \cos(x + y) + \cos (2B + x - y) - \cos (x + y) = 0$

$\iff$ $ 2\cos (x + y) = \cos (2C + y - x) + \cos (2B + x - y)$ $ \Longleftrightarrow$ $ \cos (x + y) = \cos (B + C)\cos (x - y)$ $ \Longleftrightarrow$ $ \cos A = \cos A\cos (x - y)$ $ \Longleftrightarrow$ $ A = 90^{\circ}$ or

$x = y = 90^{\circ} - \frac A2$ . Prove easily that $ x=y\ \Longleftrightarrow\ AB=AC$ and in this case $ [MN]$ is the $ A$ - middleline of $ \triangle ABC$ , i.e. $ MA=MB$ , $ NA=NC$ .



P6. Let a convex $ABCD$ with $A=C=90^{\circ}$ and $AB+BC=AD$ . Denote the projections $N$ , $M$ on $BD$ of $A$ , $C$ respectively. Prove that $MD=2\cdot AN$ .

Proof 1. Suppose w.l.o.g. $BD=1$ , $AB=x$ , $BC=y$ , $CD=z$ , $AD=x+y$ and $\left\{\begin{array}{ccc}
MD\cdot BD=CD^2 & \implies & MD=z^2\\\\
AN\cdot BD=AB\cdot AD & \implies & AN=x(x+y)\end{array}\right\|$ $\implies$ $\frac {MD}{AN}=\frac {z^2}{x(x+y)}\ (*)$

Therefore, $\left\{\begin{array}{cccccc}
C=90^{\circ} & \implies & y^2+z^2=1 & \implies & 1-y^2=z^2 & (1)\\\\
A=90^{\circ} & \implies & x^2+(x+y)^2=1 & \implies & 1-y^2=2x(x+y) & (2)\end{array}\right\|$ . In conclusion, from the relations $(*)$ , $(1)$ and $(2)$ obtain that $\frac {MD}{AN}=2\ .$

Proof 2. Suppose w.l.o.g. $BD=1$ and denote $\left\{\begin{array}{ccc}
m\left(\widehat{BAN}\right)=u\\\\
m\left(\widehat{BDC}\right)=v\end{array}\right\|\ .$ Thus, $\left\{\begin{array}{ccc}
\widehat{ADB} & \equiv & \widehat{BAN}\\\\
AB & = & BD\cdot\sin \widehat{ADB}\end{array}\right\|\implies$ $AB=BD\cdot\sin \widehat{BAN}\implies$ $\boxed{AB=\sin u}\ (1)\ ;$

$BC=BD\cdot\sin\widehat {BDC}\implies$ $\boxed{BC=\sin v}\ (2)\ ;\ AD=$ $BD\cdot\cos\widehat{ADB}\implies$ $\boxed{AD=\cos u}\ (3)$ . Therefore, $AB+BC=AD\ \stackrel{1\wedge 2\wedge 3}{\iff}\ \sin u+$ $\sin v=\cos u\iff$

$\sin v=\cos u-\sin u\iff$ $\cos^2v=1-\sin^2v=$ $1-(\cos u-\sin u)^2=$ $2\sin u\cos u\implies$ $\boxed{\cos^2 v=2\sin u\cos u}\ (*)$ . In conclusion, $\frac {MD}{AN}=\frac {BD\cos^2v}{BD\cos u\sin u}\ \stackrel{(*)}{=}\ 2\ .$



P7. Let $\triangle ABC$ and the points $(X,D,Y)\subset (BC)$ so that the ray $[AD$ is the common bisector of the angles $\widehat{BAC}$ and $\widehat {XAY}$ . Prove that $\frac 1{DB}+\frac 1{DY}=\frac 1{DC}+\frac 1{DX}$ .

Proof. Let $\left\{\begin{array}{c}
m\left(\widehat{XAD}\right)=m\left(\widehat{YAD}\right)=u\\\\
m\left(\widehat{XAB}\right)=\left(\widehat{YAC}\right)=v\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
\frac {AB}{AC} & = & \frac {DB}{DC}\\\\
\frac {XB}{XD} & = & \frac {AB}{AD}\cdot\frac {\sin v}{\sin u}\\\\
\frac {YD}{YC} & = & \frac {AD}{AC}\cdot\frac {\sin u}{\sin v}\end{array}\right\|\ \bigodot\implies$ $\frac {XB}{XD}\cdot\frac {YD}{YC}=\frac {DB}{DC}\iff$ $\frac {DB-DX}{DX}\cdot\frac {DY}{DC-DY}=\frac {DB}{DC}\iff$

$\frac 1{DB}\cdot\frac {DB-DX}{DX}=\frac 1{DC}\cdot\frac {DC-DY}{DY}\iff$ $\frac 1{DB}\cdot\left(\frac {DB}{DX}-1\right)=\frac 1{DC}\cdot\left(\frac{DC}{DY}-1\right)\iff$ $\frac 1{DX}-\frac 1{DB}=\frac 1{DY}-\frac 1{DC}\iff$ $\frac 1{DB}+\frac 1{DY}=\frac 1{DC}+\frac 1{DX}$ .



P8. Let $\triangle ABC$ with $E\in (AC)\ ,\ F\in (AB)$ and $X\in BE\cap CF$ so that $BF=FE=EC$ and $XB=XC$ . Prove that $AB=AC\ \vee\ A=60^{\circ}$ and $AEXF$ is cyclically.

Proof 1. Construct the equilateral $\triangle KEF$ so that $EF$ separates $K$ , $X$ . Thus, $F$ is the circumcenter of $\triangle BEK$ and $E$ is the circumcenter of $\triangle CFK$ $\implies$ $m\left(\widehat{EBK}\right)=$

$m\left(\widehat{FCK}\right)=30^{\circ}$ $\implies$ $\widehat{BCK}\equiv\widehat{CBK}$ $\implies$ $KB=KC$ $\implies$ isosceles $\triangle BFK=\triangle CEK$ $\implies$ $\widehat{AFK}\equiv\widehat{AEK}$ $\implies$ $AFEK$ is cyclically $\implies$ $A=60^{\circ}$
(Stan Fulger).

Proof 2. $\left\{\begin{array}{c}
BF=FE=EC=x\\\\
XB=XC=y\\\\
XE=u\ ;\ XF=v\end{array}\right\|$. Apply Stewart's theorem in $:\ \left\{\begin{array}{ccccc}
FX/\triangle BEF &  : & v^2+uy & = & x^2\\\\
EX/\triangle CEF & : & u^2+vy & = & x^2\end{array}\right\|$ $\implies$ $v^2+uy=x^2=u^2+vy\implies$ $v^2+uy=u^2+vy\implies$

$y(u-v)=\left(u^2-v^2\right)\implies$ $u=v$ , i.e. $b=c$ or $y=u+v$ , i.e. $x^2=u^2+v(u+v)$ , what means $x^2=u^2+uv+v^2$ , i.e. in $\triangle XEF$ we have $m\left(\widehat{EXF}\right)=120^{\circ}$ a.s.o.

Proof 3. $\left\{\begin{array}{ccccc}
m\left(\widehat{XBC}\right) & = & m\left(\widehat{XCB}\right) & = & x\\\
m\left(\widehat{FEB}\right) & = & m\left(\widehat{FBE}\right) & = & y\\\
m\left(\widehat{EFC}\right) & = & m\left(\widehat{ECF}\right) & = & z\end{array}\right\|\implies$ $m\left(\widehat{XBC}\right)+m\left(\widehat{XCB}\right)=$ $m\left(\widehat{BXF}\right)=$ $m\left(\widehat{XFE}\right)+m\left(\widehat{XEF}\right)$ $\implies$ $x+x=m\left(\widehat{BXF}\right)=z+y$ $\implies$

$\boxed{y+z=2x}\ (*)$ and $180^{\circ}=A+B+C=$ $A+(x+y)+(x+z)=$ $A+2x+(y+z)\ \stackrel {(*)}{=}\ A+4x$ $\implies$ $\boxed{A=180^{\circ}-4x}\ (1)$ . Apply the theorem of Sines to $:$

$\left\{\begin{array}{cc}
\triangle BXF\ : & \frac {BX}{BF}=\frac {\sin \widehat{BFX}}{\sin\widehat{BXF}}\implies\frac {BX}{BF}=\frac {\sin(2x+y)}{\sin 2x}\\\\
\triangle CXE\ : & \frac {CX}{CE}=\frac {\sin \widehat{BFX}}{\sin\widehat{BXF}}\implies\frac {BX}{BF}=\frac {\sin(2x+z)}{\sin 2x}\end{array}\right\|$. So $BX=CX\ ,\ BF=CE\implies$ $\sin (2x+y)=\sin (2x+z)\iff$ $y=z\ \vee\ (2x+y)+(2x+z)=180^{\circ}\iff$

$y=z\ \vee\ 6x=180^{\circ}\iff$ $y=z\ \vee\ x=30^{\circ}\ \stackrel{(1)}{\iff}\ \boxed{b=c\ \vee A=60^{\circ}}$ . Prove easily that if $b=c$ , then $\frac 1x=\frac 1a+\frac 1b$ and if $A=60^{\circ}$ , then $x=\frac {a^2}{b+c}$ .
(İxtiyar İsmayilov).

Remark. If $b\ne c$ , then prove easily that $\frac xa=\frac {u\sqrt 3}{2c-b}=\frac {v\sqrt 3}{2b-c}=\frac {y\sqrt 3}{b+c}=\frac a{b+c}$ , where $\frac bc\in \left(\frac 12,2\right)$ , i.e. $2\left(b^2+c^2\right)< 5bc\iff$ $|b-c|\sqrt 2<\sqrt{bc}$ and $AEXF$ is cyclically .


P9. Let $\triangle ABC$ with the points $\left\{\begin{array}{ccc}
\{M,N\}\subset (BC) & ; & BM=CN=x\\\\
\{S,R\}\subset (CA) & ; & CS=AR=y\\\\
\{P,Q\}\subset (AB) & ; & AP=BQ=z\end{array}\right\|$ and $\left\{\begin{array}{c}
A'\in QM\cap SN\\\\
B'\in NS\cap PR\\\\
C'\in RP\cap MQ\end{array}\right\|$ , where $\left\{\begin{array}{c}
PR\equiv B'C'\\\\
QM\equiv C'A'\\\\
NS\equiv A'B'\end{array}\right\|$ . Prove that $AA'\cap BB'\cap CC'\ne\emptyset$ .


Proof. Denote $\left\{\begin{array}{c}
X\in PR\cap BC\\\\
Y\in QM\cap CA\\\\
Z\in NS\cap AB\end{array}\right\|$ . Apply the Menelaus' theorem to $\triangle ABC$ and the transversals $:\ \left\{\begin{array}{cccc}
\overline{XPR}\ : & \frac {XB}{XC}\cdot\frac {RC}{RA}\cdot\frac {PA}{PB}=1 & \implies & \frac {XB}{XC}=\frac {y(c-z)}{z(b-y)}\\\\
\overline{YMQ}\ : & \frac {YC}{YA}\cdot\frac {QA}{QB}\cdot\frac {MB}{MC}=1 & \implies & \frac {YC}{YA}=\frac {z(a-x)}{x(c-z)}\\\\
\overline{ZNS}\ : & \frac {ZA}{ZB}\cdot\frac {NB}{NC}\cdot\frac {SC}{SA}=1 & \implies & \frac {ZA}{ZB}=\frac {x(b-y)}{y(a-x)}\end{array}\right\|\ \bigodot\ \implies$

$\frac {XB}{XC}\cdot\frac {YC}{YA}\cdot \frac {ZA}{ZB}=$ $\frac {y(c-z)}{z(b-y)}\cdot\frac {z(a-x)}{x(c-z)}\cdot\frac {x(b-y)}{y(a-x)}=1\implies$ $Z\in XY$. Apply the Desargues' theorem to the triangles $ABC$ and $A'B'C'$ , i.e. $AA'\cap BB'\cap CC'\ne\emptyset$ .



P10 Let a square $ABCD$ with $AB=1$ and the circles $w_a=\mathbb C(A,x)$ , $w_b=\mathbb C(B,x)$ where $x\in (0,1)$ . For $I\in (BC)$ where $IC=y\in \left(0,\frac 12\right)$ let $w=\mathbb C(I,y)$ be the circle

what is exterior tangent to $w_a$ . Denote $:\ T\in w_a\cap w_b\ ;\ E\in w_b$ such that $TE\parallel AB\ ;\ F\in AB$ such that $TF\perp AB$ . Prove that $k\equiv\frac {TE}{TF}=\frac {3x^2+2x-2}{x^3+2x^2}$ and $y=\frac {2-x^2}{2(x+1)}$ .


Proof. Denote $Z\in (BC)\cap ET\ ,\ TZ=z$ . Observe that $:\ AI^2=BA^2+BI^2$ $\implies$ $(x+y)^2=1+(1-y)^2$ $\implies$ $\boxed{ x^2+2xy=2(1-y)}\ (*)\ ;\ TF\parallel IB$ $\implies$

$\frac {AT}{AI}=$ $\frac {AF}{AB}=$ $\frac {TF}{IB}$ $\implies$ $\frac {x}{x+y}=1-z=\frac {TF}{1-y}$ $\implies$ $z=\frac y{x+y}\ ,\ \boxed{TF=\frac {x(1-y)}{x+y}}\ (1)$ and $TE=1-2z=1-\frac {2y}{x+y}\implies$ $\boxed{TE=\frac {x-y}{x+y}}\ (2)\ .$ From

$(1)$ and $(2)$ obtain that $\boxed{k=\frac {TE}{TF}=\frac {x-y}{x(1-y)}}\implies$ $y=\frac {x(1-k)}{1-kx}\ \stackrel{(*)}{\implies}\ kx^3+(2k-3)x^2-2x+2=0\implies$ $\boxed{k=\frac {3x^2+2x-2}{x^3+2x^2}\ \wedge\ y=\frac {2-x^2}{2(x+1)}}\ .$

Particular case. $x=1\implies k=1$ , i.e. $TE=TF$ and $y=\frac 14$
(Cristian Tello).


P11 Let $ABCD$ be a square with $AB=1$ . Construct the circles $w_a=\mathbb C(A,r)\ ,\ w_b=\mathbb C(B,r)$ , where $r\in\left(\frac 12,1\right]$ and the following circles $:$

$\mathbb C(X,x)$ what is tangent to $CD$ and exterior tangent to $w_a$ , $w_b\ ;\ \mathbb C(Y,y)$ what is tangent to $AD$ , interior tangent to $w_a$ and exterior tangent to $w_b\ ;$

$\mathbb C(Z,z)$ what is tangent to $AB$ and interior tangent to $w_a\ ,\ w_b\ .$ Prove that $(\forall )\ r\in\left(\frac 12,1\right]$ there is the relation $\boxed{(x+z)(2y-1)=2y(2x-1)}\ (*)$ .


Proof. $\left\{\begin{array}{c}
M\in (AB)\ ;\ MA=MB\\\\
V\in AB\ ;\ YV\perp AB\end{array}\right\|\implies$ $\boxed{\begin{array}{c}
XM\perp AB\implies MX^2+MB^2=XB^2\implies (1-x)^2+\left(\frac 12\right)^2=(r+x)^2\implies  
4r^2+8xr+(8x-5)=0\\\\
YV\perp AB\implies YB^2-YA^2=VB^2-VA^2\implies (r+y)^2-(r-y)^2=(1-y)^2-y^2\implies 4yr+(2y-1)=0\\\\
MZ\perp MB\implies MZ^2+MB^2=ZB^2\implies z^2+\left(\frac 12\right)^2=(r-z)^2\implies 4r^2-8zr-1=0\end{array}}$

I"ll eliminate the variable $r$ between these three upper relations, i.e. $\left|\begin{array}{ccc}
4 & 8x & 8x-5\\\\
0 & 4y & 2y-1\\\\
4 & -8z & -1\end{array}\right|=0\iff$ $\left|\begin{array}{ccc}
1 & 2x & 8x-5\\\\
0 & y & 2y-1\\\\
1 & -2z & -1\end{array}\right|=0\iff$ $\left|\begin{array}{ccc}
1 & 2x & 8x-5\\\\
0 & y & 2y-1\\\\
0 & 2(x+z) & 4(2x-1)\end{array}\right|=0\iff (*).$



P12. Let an $A$-right $\triangle ABC$ with the incircle $w=\mathbb C(I,r)\ ,\ a=1$ and the centroid $G\in w\ .$ Ascertain the semiperimeter $s\ ,$ where $a+b+c=2s\ .$

Proof 1. $a=1\ ,\ A=90^{\circ}\implies$ $\left\{\begin{array}{ccc}
b+c=2s-1 & ; & b^2+c^2=1\\\\
r=s-1 & ; & 2m_a=1\end{array}\right\|$ and $bc=2S=2sr=2s(s-1)\implies$ $\boxed{bc=2s(s-1)}\ (1)\ .$ Observe that $(b-c)^2=1-2bc\ \stackrel{(1)}{\implies}$

$\boxed{(b-c)^2=1-4s(s-1)}\ (2)\ .$ Denote the midpoint $M$ of $[BC]$ and $D\in BC\cap w\ .$ Thus, $IA^2=2r^2\ ,\ IM^2=ID^2+DM^2=r^2+\left(\frac {b-c}2\right)^2\ .$ Apply the

Stewart's relation to the cevian $IG$ in $\triangle AIM\ ,$ where $IG=r\ :\ IG^2+\frac {2m_a^2}9=\frac 13\cdot IA^2+\frac 23\cdot IM^2\iff$ $9\cdot IG^2+2m_a^2=3\cdot \left[IA^2+2\left(ID^2+DM^2\right)\right]\iff$

$9r^2+\frac 12=3\cdot \left[2r^2+2r^2+\frac {(b-c)^2}2\right]\iff$ $1=6r^2+3(b-c)^2\iff$ $1=6(s-1)^2+3\left(1+4s-4s^2\right)^2\iff$ $6s^2=8\iff s=\frac {2}{\sqrt 3}\ ,$ i.e. $\boxed{a+b+c=\frac {4\sqrt 3}3}\ (*)\ .$

Remark. Prove similarly that generally $(\forall )\ X\in (ABC)\ ,\  XA^2+XB^2+XC^2=3\cdot XG^2+\frac {a^2+b^2+c^2}3\ .$ Since $\boxed{IA^2=bc-4Rr}$ a.s.o., then in the particular case

for $X:=I$ obtain that $\sum \left(bc-4Rr\right)=$ $3\cdot IG^2+\frac {2\left(s^2-r^2-4Rr\right)}3$ $\implies$ $9\cdot IG^2=3\left(s^2+r^2+4Rr\right)-36Rr-2\left(s^2-r^2-4Rr\right)=$ $s^2-16Rr+5r^2\implies$

$\boxed{IN^2=9\cdot IG^2=s^2-16Rr+5r^2}\ \implies\  \boxed{s^2+5r^2\ge 16Rr}\ .$ Our concrete problem becomes $G\in \mathbb C(I,r)\iff$ $IG=r\iff$ $9r^2=s^2-16Rr+5r^2\iff$

$s^2=16Rr+4r^2\iff $ $\boxed{s^2=4r(4R+r)}\ .$ If $A=90^{\circ}\ ,$ then $4R=2a\ ,\ r=s-a$ and $s^2=4(s-a)(s+a)\ ,$ i.e. $3s^2=4a^2\iff \boxed{s\sqrt 3=2a}\ .$

Proof 2. Suppose w.l.o.g. $c<b\ .$ Observe that $m\left(\widehat{IAG}\right)=45^{\circ}-C$ and $\cos\widehat{IAG}=\frac {(b+c)\sqrt 2}2=\frac {(2s-1)\sqrt 2}2\ .$ Apply the Pythagoras' theorem to the side $[IG]$ of

$\triangle IAG\ ,$ when $G\in w\ ,$ i.e. $IG=r\ :\ IG^2=AI^2+AG^2-2\cdot AI\cdot AG\cdot\cos\widehat{IAG}\iff$ $(s-1)^2=2(s-1)^2+\frac 19-2\cdot (s-1)\sqrt 2\cdot \frac 13\cdot \frac {(2s-1)\sqrt 2}2\iff$

$0=(s-1)^2+\frac 19-\frac {2(s-1)(2s-1)}3\iff$ $9(s-1)^2+1=6(s-1)(2s-1)\iff$ $9s^2-18s+10=12s^2-18s+6\iff$ $3s^2=4\iff$ $\boxed{s\sqrt 3=2}\ .$



P13. Let an $A$-right $\triangle ABC$ with the incircle $w=\mathbb C(I,r)\ .$ Prove that there is the relations $:\ \left\{\begin{array}{ccc}
IB^2=a(a-b) & ; & IC^2=a(a-c)\\\\
IA^2=(a-b)(a-c) & ; & IB\cdot IC=a\cdot IA\end{array}\right\|$ (standard notations).

Proof. $\left\{\begin{array}{ccc}
X\in (BC)\ ,\ CX=b \implies XB=a-b\ ;\ \widehat{BIX}=\widehat{CXI}-\widehat{XBI}=45^{\circ}-\frac B2=\frac C2 \implies \widehat{BIX}=\frac C2=\widehat{BCI} \implies BI^2=BX\cdot BC & \implies & \boxed{BI^2=a(a-b)}\ (1)\\\\
Y\in (BC)\ ,\ BY=c \implies YC=a-c\ ;\ \widehat{CIY}=\widehat{BYI}-\widehat{YCI}=45^{\circ}-\frac C2=\frac B2 \implies \widehat{CIY}=\frac B2=\widehat{CBI} \implies CI^2=CY\cdot CB & \implies & \boxed{CI^2=a(a-c)}\ (2)\end{array}\right\|$

Observe that $IX=IY=IA=r\sqrt 2=(s-a)\sqrt 2\ ,$ i.e. $I$ is the circumcenter of $\triangle XAY\ ,\ XY=b+c-a=2(s-a)$ and $IX\perp IY\ .$ Therefore,

$\left\{\begin{array}{ccccc}
\triangle BIX\sim \triangle BCI & \implies & \frac {BX}{BI}=\frac {IX}{CI} & \implies & IX=\frac {IC\cdot (a-b)}{IB}\\\\
\triangle CIY\sim \triangle CBI & \implies & \frac {CY}{CI}=\frac {IY}{BI} & \implies & IY=\frac {IB\cdot (a-c)}{IC}\end{array}\right\|\implies$ $IA^2=IX\cdot IY=\frac {IC\cdot (a-b)}{IB}\cdot\frac {IB\cdot (a-c)}{IC}=(a-b)(a-c)\implies$ $\boxed{IA^2=(a-b)(a-c)}\ (3)\ .$

Observe that $IB^2\cdot IC^2=a(a-b)\cdot a(a-c)=a^2\cdot (a-b)(a-c)=(a\cdot IA)^2\implies$ $IB\cdot IC=a\cdot IA\ .$

Remark. Prove easily that $(\forall )\ \triangle ABC$ there are the relations $\boxed{IA^2=\frac {bc(s-a)}{s}}=bc-\frac {abc}s=bc-4Rr$ a.s.o. Observe that

$\frac{IB\cdot IC}{IA}=\sqrt{\frac {a\cancel c(s-b)}{s}\cdot \frac {a\cancel b(s-c)}{\cancel s}\cdot\frac {\cancel s}{\cancel{bc}(s-a)}}=a\cdot\sqrt{\frac {(s-b)(s-c)}{s(s-a)}}=a\cdot\tan\frac A2\implies$ $\boxed{IB\cdot IC=a\cdot IA\cdot\tan\frac A2}\ .$



P14 (Miguel Ochoa Sanchez). Let an $A$-right $\triangle ABC$ with the $A$-internal angle-bisector $AD,$ where $D\in (BC),$ $BD=1$ and $BD+AD=DC\ .$ Ascertain the length of the cathetus $[AB]\ .$

Proof (Barış Altay). Denote $CD=x\ .$ Hence $a=x+1,$ $AD=x-1$ and $\frac {AB}{DB}=\frac {AC}{DC}\iff$ $\frac c1=\frac bx\iff \boxed{b=cx}\ (1)\ .$ I"ll use the remarkable identity $\boxed{AD^2=bc-DB\cdot DC}\ .$ Hence:

$\left\{\begin{array}{ccccccccccc}
AD^2=bc-DB\cdot DC & \iff & (x-1)^2=xc^2-x\ & \iff & x^2-x+1=xc^2 & \iff & c^2=\frac {x^2-x+1}x & \iff & c^2=\left(x+\frac 1x\right)-1 & \iff & c^2=y-1\\\\
b^2+c^2=a^2  & \stackrel{(1)}{\iff} & c^2\left(x^2+1\right)=(x+1)^2 & \iff & \left(x^2+1\right)\left(c^2-1\right)=2x & \iff & c^2-1=2\cdot \frac x{x^2+1}  & \iff & c^2=1+\frac 2{x+\frac 1x} & \iff & c^2=1+\frac 2y
 \end{array}\right\|\implies$

$y-1=1+\frac 2y\implies y^2-2y-2=0\implies y=1+\sqrt 3\implies c^2=y-1=\left(1+\sqrt 3\right)-1=\sqrt 3\implies 
  c^2=\sqrt 3\implies\boxed{c=\sqrt[4]{3}}\ .$


Extension. Let $\triangle ABC$ with the internal angle-bisector $AD,$ where $D\in (BC),$ $BD=1$ and $BD+AD=DC\ .$ Ascertain the length $c$ of the cathetus $[AB]$ depending on the value of the angle $\widehat{BAC}\ .$

Proof. Denote $CD=x\ .$ Hence $a=x+1,$ $AD=x-1$ and $\frac {AB}{DB}=\frac {AC}{DC}\iff$ $\frac c1=\frac bx\iff \boxed{b=cx}\ (1)\ .$ I"ll use the remarkable identity or prove easily that $AD^2=bc-DB\cdot DC\ .$ Hence:

$\left\{\begin{array}{ccccccccccc}
AD^2=bc-DB\cdot DC & \iff & (x-1)^2=xc^2-x\ & \iff & x^2-x+1=xc^2 & \iff & c^2=\frac {x^2-x+1}x & \iff & c^2=\left(x+\frac 1x\right)-1 & \iff & c^2=y-1\\\\
a^2=b^2+c^2-2bc\cdot\cos A  & \stackrel{(1)}{\iff} & (x+1)^2=\left(1+x^2\right)\cdot c^2-2x\cos A\cdot c^2 & \iff & c^2\left(x^2-2x\cos A+1\right)=(x+1)^2 & \iff &  c^2=\frac {x^2+2x+1}{x^2-2x\cdot\cos A+1}  & \iff & c^2=\frac {\left(x+\frac 1x\right)+2}{\left(x+\frac 1x\right)-2\cos A} & \iff & c^2=\frac {y+2}{y-2\cos A}\end{array}\right\|$

where $y:=x+\frac 1x\ .$ Thus, $y-1=\frac {y+2}{y-2\cos A}\implies$ $y^2-(1+2\cos A)y+2\cos A=y+2\implies$ $y^2-2(1+\cos A)y-2(1-\cos A)=0\ .$ Hence $\Delta^{\prime}=(1+\cos A)^2+2(1-\cos A)=3+\cos^2A$ and $y=1+\cos A+\sqrt {3+\cos ^2A}\implies$ $c^2=y-1=\cos A+\sqrt {3+\cos ^2A}\implies$ $\boxed{\ c=\sqrt{\cos A+\sqrt {3+\cos ^2A}}\ }$ (standard notations).





.
This post has been edited 435 times. Last edited by Virgil Nicula, Jun 28, 2017, 6:33 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a