159. Multiple derivatives in a point.
by Virgil Nicula, Oct 18, 2010, 9:04 AM
PP1. Consider the function
. Prove that
and find
, where
.
Proof (inductive method).
PP2. Ascertain
, where
and
.
Proof. Using the Leibniz's formula obtain

for any
. For
results
, where
,
and
. Denote
. Therefore,
, where
,
and
. In conclusion, obtained a sequence/row defined by a second order recurrent linear relation a.s.o.
PP3. Prove that
, where
.
Proof (inductive method). For
is evidently. Suppose w.l.o.g.
(the substitution
preserves the initial relation). Suppose that for a certain 
the relation from the enunciation is truly. Observe that
.
Therefore,

, i.e. the initial relation for
. Observe that 
where
and
. Thus,
, where
.
PP4. Consider a function
,
. Prove that
, where
.
Proof (inductive method). For
is evidently. Suppose that for a certain
the relation from the enunciation is truly. Therefore,
![$x\cdot \left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n+1)}+(n+1)\cdot\left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n)}=$](//latex.artofproblemsolving.com/c/e/a/cead8189b481ed3fa86db4fc9e6b8ff9a5b1bbaa.png)


, i.e. the initial relation for
.
PP5. Find the polynominal
with minimum degree for which
and
.
Proof. From
and
obtain
. Thus,
for
obtain
. Thus,
. Therefore,
and
.
In conclusion, obtain the polynominal with minimum degree for the null polynominal
, i.e.
.
PP6. Find
such that
has exactly
solutions. If
is the largest from these solutions explain why
.
Proof.
.
See and here
PP7. Ascertain the sum
.
Proof.

![$=x\, \cdot\, \left[\left(2x\, +\, 3x^2\, +\, 4x^3\, +\, \ldots\, +\, (n+1)x^n\right)\, -\, \left(x\, +\, x^2\, +\, x^3\, +\, \ldots\, +\, x^n\right)\right]^{\prime}=$](//latex.artofproblemsolving.com/c/2/e/c2e970847083d40877578888d279be6adb1dfeaa.png)
![$x\, \cdot\, \left[\left(\frac {x^{n+2}-x^2}{x-1}\right)^{\prime}\, -\, \frac {x^{n+1}-x}{x-1}\right]^{\prime}=$](//latex.artofproblemsolving.com/6/6/3/6631c96681a21a0121cd1205c4e811cd5da3dd5d.png)
![$x\, \cdot\, \left[\frac {x\, \cdot\, \left(nx^{n+1}-(n+1)x^n+1\right)}{(x-1)^2}\right]^{\prime}=$](//latex.artofproblemsolving.com/3/f/0/3f0f193b386a4b4e5ac8ee98448fe40744133bc9.png)
, where
.
and
,
what for
becomes
.
PP8. Functia
este continua si
are exact trei zerouri.
ca
sa aiba exact
zerouri.
Profesorul Marcel Chirita a propus la O.J.M. urmatoarea problema
"Sa se arate ca nu exista functii continue
astfel incat
ecuatia
sa aiba exact 
zerouri". Vedeti exercitiul
, pagina
(cu solutia in detaliu la pagina
) din cartea Analiza Matematica pentru clasa a XI - a (teorie, exercitii si probleme) din Editura TEORA, 1999).
Indicatie. Se observa ca
avem
si restrictia
a functiei
pe
este
cu evolutia
Pentru orice
, graficul restrictiei
a functiei 
pe
este translatia graficului restrictiei
a functiei
pe
de vector
, unde
si




Proof (inductive method).
PP2. Ascertain



Proof. Using the Leibniz's formula obtain


for any











PP3. Prove that



Proof (inductive method). For




the relation from the enunciation is truly. Observe that
![$\sin\left[(n+1)\arctan\frac 1x\right]=$](http://latex.artofproblemsolving.com/8/9/b/89bc1629bc6c93476f6bcbd249d43f38e8031f14.png)

Therefore,
![$(\arctan x)^{(n+1)}=\left[(\arctan x)^{(n)}\right]'=$](http://latex.artofproblemsolving.com/f/5/f/f5f93c745f73cc2088505d7d9f796bd67d34f7df.png)

![$(-1)^nn!\cdot \frac {\sqrt {x^2+1}\cdot \sin\left[(n+1)\cdot\arctan\frac 1x\right]}{(x^2+1)\cdot\sqrt {(x^2+1)^n}}=$](http://latex.artofproblemsolving.com/1/0/a/10aa637c455c00d1e2579b3909343d74f6b4fdff.png)
![$(-1)^nn!\cdot \frac {\sin\left[(n+1)\cdot\arctan\frac 1x\right]}{\sqrt {(x^2+1)^{n+1}}}=$](http://latex.artofproblemsolving.com/a/f/e/afeee0aae055460495955ce7b5ed07341783bce6.png)


where


![$\cos^2f(x)=\cos f(x)\sin\left[\frac {\pi}{2}+f(x)\right]$](http://latex.artofproblemsolving.com/a/4/5/a45f02a5249552101a3103da0887fe57e8be8289.png)
![$f'(x)=\cos f(x)\sin\left[f(x)+\frac {\pi}{2}\right]$](http://latex.artofproblemsolving.com/4/7/8/478d97dfca1f352e1c234ec0eca6ccb3b4f2fe93.png)

PP4. Consider a function


![$\frac {1}{x^{n+1}}\cdot f^{(n)}\left(\frac 1x\right)=(-1)^n\cdot\left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n)}$](http://latex.artofproblemsolving.com/c/b/0/cb07a2fff2399d3f16b8c32082798e7363d7fed1.png)

Proof (inductive method). For


![$\left[x^n\cdot f\left(\frac 1x\right)\right]^{(n+1)}=$](http://latex.artofproblemsolving.com/3/2/c/32c84cd7ec8a936afe654239b4c0c845d3fc722e.png)
![$\left[x\cdot x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n+1)}=$](http://latex.artofproblemsolving.com/1/2/e/12ea22e42d61cd0c8397f1248ffb109c7e27f37d.png)
![$x\cdot \left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n+1)}+(n+1)\cdot\left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n)}=$](http://latex.artofproblemsolving.com/c/e/a/cead8189b481ed3fa86db4fc9e6b8ff9a5b1bbaa.png)
![$x\cdot \left\{\left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{n}\right\}'+$](http://latex.artofproblemsolving.com/f/a/0/fa0878c80e58bac56abdd998c20b878dfc021af5.png)

![$x\cdot \left[(-1)^n\cdot\frac {1}{x^{n+1}}\cdot f^{(n)}\left(\frac 1x\right)\right]'+$](http://latex.artofproblemsolving.com/a/6/b/a6b67ba0d97849cb38b4e4a7e7537d4c968227a2.png)

![$(-1)^n\cdot \left[\frac {1}{x^{n+1}}\cdot f^{(n+1)}\left(\frac 1x\right)\cdot\frac {-1}{x^2}-\frac {n+1}{x^{n+2}}\cdot f^{(n)}\left(\frac 1x\right)\right]\cdot x+$](http://latex.artofproblemsolving.com/8/4/c/84c4a0d80be693d410a72f76829ddceff74d6363.png)



![$\left[x^n\cdot f\left(\frac 1x\right)\right]^{(n+1)}=$](http://latex.artofproblemsolving.com/3/2/c/32c84cd7ec8a936afe654239b4c0c845d3fc722e.png)


PP5. Find the polynominal



Proof. From





for











In conclusion, obtain the polynominal with minimum degree for the null polynominal


PP6. Find





Proof.





See and here
PP7. Ascertain the sum

Proof.


![$=x\, \cdot\, \left[\left(2x\, +\, 3x^2\, +\, 4x^3\, +\, \ldots\, +\, (n+1)x^n\right)\, -\, \left(x\, +\, x^2\, +\, x^3\, +\, \ldots\, +\, x^n\right)\right]^{\prime}=$](http://latex.artofproblemsolving.com/c/2/e/c2e970847083d40877578888d279be6adb1dfeaa.png)
![$x\,\cdot\, \left[\left(x^2\, +\, x^3\, +\, \ldots\, +\, x^{n+1}\right)^{\prime}\, -\, \left(x\, +\, x^2\, +\, \ldots\, +\, x^n\right)\right]^{\prime}=$](http://latex.artofproblemsolving.com/e/6/5/e655747a0d248225b810882a1ca244aa3c0d8209.png)
![$x\, \cdot\, \left[\left(\frac {x^{n+2}-x^2}{x-1}\right)^{\prime}\, -\, \frac {x^{n+1}-x}{x-1}\right]^{\prime}=$](http://latex.artofproblemsolving.com/6/6/3/6631c96681a21a0121cd1205c4e811cd5da3dd5d.png)
![$x\, \cdot\, \left[\frac {x\, \cdot\, \left((n+1)x^{n+1}-(n+2)x^n-x+2\right)}{(x-1)^2}\, -\, \frac {x^{n+1}-x}{x-1}\right]^{\prime}=$](http://latex.artofproblemsolving.com/e/a/9/ea9efdc817cefaac570b339dded8be7ea085d56a.png)
![$x\, \cdot\, \left[\frac {x\, \cdot\, \left(nx^{n+1}-(n+1)x^n+1\right)}{(x-1)^2}\right]^{\prime}=$](http://latex.artofproblemsolving.com/3/f/0/3f0f193b386a4b4e5ac8ee98448fe40744133bc9.png)







what for




PP8. Functia
![$\left\{\begin{array}{c}
F\ :\ \mathbb R\ \rightarrow\ R\\\\
F(x)=2[x]-\cos\left(3\pi\{x\}\right)\end{array}\right\|$](http://latex.artofproblemsolving.com/4/d/9/4d9e172fb44559b52b8fcba6eefb18c06031206c.png)









Profesorul Marcel Chirita a propus la O.J.M. urmatoarea problema





zerouri". Vedeti exercitiul



Indicatie. Se observa ca




![$[0,1]$](http://latex.artofproblemsolving.com/e/8/6/e861e10e1c19918756b9c8b7717684593c63aeb8.png)





pe
![$[\ p+1\ ,\ p+2\ ]$](http://latex.artofproblemsolving.com/3/1/1/3118f2bf9568c4c0c78c9a9613aec3dae09b4b58.png)


![$[\ p\ ,\ p+1\ ]$](http://latex.artofproblemsolving.com/7/f/6/7f60ee7184837ca250af20342fde38e0267e7719.png)



This post has been edited 87 times. Last edited by Virgil Nicula, May 24, 2016, 2:36 PM