159. Multiple derivatives in a point.

by Virgil Nicula, Oct 18, 2010, 9:04 AM

PP1. Consider the function $f(x)=\left\{\begin{array}{ccc}
0 & \mathrm{if} & x\le 0\\\\
e^{-\frac 1x} & \mathrm{if} & x>0\end{array}\right\|$ . Prove that $f\in\mathrm C^{\infty }$ and find $f^{(n)}(x)$ , where $n\in\mathbb N$ .

Proof (inductive method).


PP2. Ascertain $a_n=f^{(n)}(0)$ , where $f(x)=\frac {3x+2}{x^2-2x+5}$ and $n\in\mathbb N$ .

Proof. Using the Leibniz's formula obtain $(x^2-2x+5)f(x)=3x+2\implies$ $(x^2-2x+5)f^{(n)}(x)+2n(x-1)f^{(n-1)}(x)+n(n-1)f^{(n-2)}(x)=0$

for any $n\ge 2$ . For $x:=0$ results $5a_{n+2}-2(n+2)a_{n+1}+(n+2)(n+1)a_n=0$ , where $n\in\mathbb N$ , $a_0=\frac 25$ and $a_1=\frac {19}{25}$ . Denote $\boxed{b_n=\frac {a_n}{n!}}$ . Therefore, $\boxed{5b_{n+2}-2b_{n+1}+b_n=0}$ , where $n\in\mathbb N$ , $b_0=\frac 25$ and $b_1=\frac {19}{25}$ . In conclusion, obtained a sequence/row defined by a second order recurrent linear relation a.s.o.



PP3. Prove that $(\arctan x)^{(n)}=(-1)^{(n-1)}(n-1)!\cdot\frac {\sin\left(n\cdot \arctan\frac 1x\right)}{\sqrt {\left(x^2+1\right)^n}}=$ $(n-1)!\cdot\cos^n(\arctan x)\cdot\sin\left(n\arctan x+\frac {n\pi}{2}\right)$ , where $n\in\mathbb N^*$ .

Proof (inductive method). For $n:=1$ is evidently. Suppose w.l.o.g. $x>0$ (the substitution $x:=-x$ preserves the initial relation). Suppose that for a certain $n\in\mathbb N^*$

the relation from the enunciation is truly. Observe that $\sin\left[(n+1)\arctan\frac 1x\right]=$ $\frac {x}{\sqrt x^2+1}\cdot\sin \left(n\cdot\arctan\frac 1x\right)+\frac {1}{\sqrt {x^2+1}}\cdot\cos\left(n\cdot\arctan\frac 1x\right)$ .

Therefore, $(\arctan x)^{(n+1)}=\left[(\arctan x)^{(n)}\right]'=$ $(-1)^{n-1}(n-1)!\cdot n\cdot \frac {-\cos\left(n\cdot\arctan\frac 1x\right)-x\cdot\sin \left(n\cdot\arctan \frac 1x\right)}{(x^2+1)\sqrt {(x^2+1)^n}}=$

$(-1)^nn!\cdot \frac {\sqrt {x^2+1}\cdot \sin\left[(n+1)\cdot\arctan\frac 1x\right]}{(x^2+1)\cdot\sqrt {(x^2+1)^n}}=$ $(-1)^nn!\cdot \frac {\sin\left[(n+1)\cdot\arctan\frac 1x\right]}{\sqrt {(x^2+1)^{n+1}}}=$ , i.e. the initial relation for $n:=n+1$ . Observe that $\tan f(x)=x$

where $f(x)=\arctan x$ and $f'(x)=\frac {1}{x^2+1}=\frac {1}{\tan^2f(x)+1}=$ $\cos^2f(x)=\cos f(x)\sin\left[\frac {\pi}{2}+f(x)\right]$ . Thus, $f'(x)=\cos f(x)\sin\left[f(x)+\frac {\pi}{2}\right]$ , where $n\in\mathbb N^*$ .



PP4. Consider a function $f\in\mathrm C^{\infty }$ , $x\in\mathbb R$ . Prove that $\frac {1}{x^{n+1}}\cdot  f^{(n)}\left(\frac 1x\right)=(-1)^n\cdot\left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n)}$ , where $n\in\mathbb N^*$ .

Proof (inductive method). For $n:=1$ is evidently. Suppose that for a certain $n\in\mathbb N^*$ the relation from the enunciation is truly. Therefore,

$\left[x^n\cdot f\left(\frac 1x\right)\right]^{(n+1)}=$ $\left[x\cdot  x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n+1)}=$ $x\cdot \left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n+1)}+(n+1)\cdot\left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{(n)}=$

$x\cdot \left\{\left[x^{n-1}\cdot f\left(\frac 1x\right)\right]^{n}\right\}'+$ $(-1)^n(n+1)\cdot\frac {1}{x^{n+1}}\cdot f^{(n)}\left(\frac 1x\right)=$ $x\cdot \left[(-1)^n\cdot\frac {1}{x^{n+1}}\cdot f^{(n)}\left(\frac 1x\right)\right]'+$ $(-1)^n(n+1)\cdot\frac {1}{x^{n+1}}\cdot f^{(n)}\left(\frac 1x\right)=$

$(-1)^n\cdot \left[\frac {1}{x^{n+1}}\cdot f^{(n+1)}\left(\frac 1x\right)\cdot\frac {-1}{x^2}-\frac {n+1}{x^{n+2}}\cdot f^{(n)}\left(\frac 1x\right)\right]\cdot x+$ $(-1)^n(n+1)\cdot\frac {1}{x^{n+1}}\cdot f^{(n)}\left(\frac 1x\right)=$ $(-1)^{n+1}\frac {1}{x^{n+2}}\cdot  f^{(n+1)}\left(\frac 1x\right)$ $\implies$

$\left[x^n\cdot f\left(\frac 1x\right)\right]^{(n+1)}=$ $(-1)^{n+1}\frac {1}{x^{n+2}}\cdot  f^{(n+1)}\left(\frac 1x\right)$ , i.e. the initial relation for $n:=n+1$ .



PP5. Find the polynominal $p$ with minimum degree for which $\max_{x\in\mathbb R} f(x)=f(1)=6$ and $\min_{x\in\mathbb R} f(x)=f(3)=2$ .

Proof. From $f'(1)=f'(3)=0$ and $x:=1$ obtain $\left\|\begin{array}{ccc}
f(x)=(x-1)^2g(x)+ax+b & \implies & 6=f(1)=a+b\\\\
f'(x)=(x-1)g_1(x)+a & \implies & 0=f'(1)=a\end{array}\right\|$ $\implies$ $a=0\ \wedge\ b=6$ . Thus,

for $x:=3$ obtain $\left\|\begin{array}{ccc}
\boxed{f(x)=(x-1)^2g(x)+6} & \implies & 2=f(3)=4g(3)+6\\\\
0=f'(3)=2(x-1)g(x)+(x-1)^2g'(x) & \implies & 0=f'(3)=4g(3)+4g'(3)\end{array}\right\|$ $\implies$ $g(3)=-1\ \wedge\ g'(3)=1$ . Thus,

$\left\|\begin{array}{ccc}
g(x)=(x-3)^2h(x)+cx+d & \implies & -1=g(3)=3c+6\\\\
g'(x)=(x-3)h_1(x)+c & \implies & 1=g'(3)=c\end{array}\right\|$ $\implies$ $c=1\ \wedge\ d=-4$ . Therefore, $\boxed{g(x)=(x-3)^2h(x)+x-4}$ and

$f(x)=(x-1)^2(x-3)^2h(x)+(x-1)^2(x-4)+6$ $\implies$ $f(x)=(x-1)^2(x-3)^2h(x)+x^3-6x^2+9x+2$ .

In conclusion, obtain the polynominal with minimum degree for the null polynominal $h$ , i.e. $\boxed{f(x)=x^3-6x^2+9x+2}$ .



PP6. Find $c>0$ such that $\sin x = cx$ has exactly $5$ solutions. If $X$ is the largest from these solutions explain why $\tan X = X$ .

Proof. $\left\|\begin{array}{c}
X\in \left(2\pi ,2\pi +\frac {\pi}{2}\right)\\\\
\sin X=cX\\\\
(\sin x)^{\prime}\|_{X}=(cx)^{\prime}\|_{X}\end{array}\right\|$ $\implies$ $\left\|\begin{array}{c}
X\in \left(2\pi ,2\pi +\frac {\pi}{2}\right)\\\\
\sin X=cX\\\\
\cos X=c\end{array}\right\|$ $\implies$ $\left\|\begin{array}{ccc}
*** & \boxed{X\in \left(2\pi ,2\pi +\frac {\pi}{2}\right)} & ***\\\\
\boxed{\tan X=X}& \implies & \sin X=\frac {X}{\sqrt {1+X^2}}\\\\
c=\frac {\sin X}{X} & \implies & \boxed{c=\frac {1}{\sqrt {1+X^2}}}\end{array}\right\|$ .

See and
here


PP7. Ascertain the sum $\sum_{k=1}^nk^2x^k$ .

Proof. $1^2\cdot x\, +\, 2^2\cdot x^2\, +\, \ldots\, +\, n^2\cdot x^n=$ $x\, \cdot\, \left(x\, +\, 2\cdot x^2\, +\, 3\cdot x^3\, +\, \ldots\, +\, n\cdot x^n\right)^{\prime}=$

$=x\, \cdot\, \left[\left(2x\, +\, 3x^2\, +\, 4x^3\, +\, \ldots\, +\, (n+1)x^n\right)\, -\, \left(x\, +\, x^2\, +\, x^3\, +\, \ldots\, +\, x^n\right)\right]^{\prime}=$

$x\,\cdot\, \left[\left(x^2\, +\, x^3\, +\, \ldots\, +\, x^{n+1}\right)^{\prime}\, -\, \left(x\, +\, x^2\, +\, \ldots\, +\, x^n\right)\right]^{\prime}=$ $x\, \cdot\, \left[\left(\frac {x^{n+2}-x^2}{x-1}\right)^{\prime}\, -\, \frac {x^{n+1}-x}{x-1}\right]^{\prime}=$

$x\, \cdot\, \left[\frac {x\, \cdot\, \left((n+1)x^{n+1}-(n+2)x^n-x+2\right)}{(x-1)^2}\, -\, \frac {x^{n+1}-x}{x-1}\right]^{\prime}=$ $x\, \cdot\, \left[\frac {x\, \cdot\, \left(nx^{n+1}-(n+1)x^n+1\right)}{(x-1)^2}\right]^{\prime}=$

$\frac {n^2x^{n+3}\, +\, (-2n^2-2n+1)x^{n+2}\, +\, (n+1)^2x^{n+1}\, -\, x^2-x}{(x-1)^3}$ , where $x\ne 1\, ,\, n\in\mathbb{N}^{\ast}$ .

$\blacktriangleright\ \ \left(1+x\right)^n=$ $\sum_{k=0}^n\, C_n^kx^k\implies$ $nx\cdot\left(1+x\right)^{n-1}=$ $\sum_{k=1}^n\, kC_n^kx^k$ and $\boxed{\ n\left(1+x\right)^{n-1}\, +\, nx\left(n-1\right)\left(1+x\right)^{n-2}=\sum_{k=1}^n\, k^2C_n^kx^{k-1}}$ ,

what for $x=1$ becomes $\sum_{k=1}^n\, k^2C_n^k=$ $n\cdot 2^{n-1}+n(n-1)\cdot 2^{n-2}=$ $n(n+1)\cdot 2^{n-2}$ .



PP8. Functia $\left\{\begin{array}{c} 
 F\ :\ \mathbb R\ \rightarrow\ R\\\\
 F(x)=2[x]-\cos\left(3\pi\{x\}\right)\end{array}\right\|$ este continua si $(\forall )\ y\in \mathbb R$ $\mathrm{\ ,\ }$ $F(x)=y$ are exact trei zerouri.

$(\forall )\ k\in 2\mathbb N^*$ $\mathrm{non}\ (\exists )\ f\in\mathrm C\ ,\ f\ :\ \mathbb R \ \rightarrow\ \mathbb R$ ca $(\forall )\ y\in\mathrm{Im}f$ $\mathrm{\ ,\ }$ $f(x)=y$ sa aiba exact $k$ zerouri.


Profesorul Marcel Chirita a propus la O.J.M. urmatoarea problema $:$ "Sa se arate ca nu exista functii continue $f\ :\ \mathbb R \ \rightarrow\ \mathbb R$ astfel incat $(\forall )\ y\in\mathrm{Im}f$ ecuatia $f(x)=y$ sa aiba exact $2$

zerouri"
. Vedeti exercitiul $\mathrm {8.3}^*$, pagina $\mathrm{439}$ (cu solutia in detaliu la pagina $\mathrm{477}$) din cartea Analiza Matematica pentru clasa a XI - a (teorie, exercitii si probleme) din Editura TEORA, 1999).

Indicatie. Se observa ca $(\forall )\ x\in\mathbb R$ avem $F(x+1)=F(x)+2$ si restrictia $F_0$ a functiei $F$ pe $[0,1]$ este

$F_0(x)=\left\{\begin{array}{ccc}
 -1 & \mathrm{,} & x=0\\\\
 -\cos(3\pi x) & \mathrm{,} & 0<x<1\\\\
 1 & \mathrm{,} & x=1\end{array}\right\|$ cu evolutia $\boxed{\begin{array}{cccccccccc}
 x & 0 & & \frac 13 & & \frac 23 & & 1 & \\\\
 \hline
   & & & 1  & & & & 1 & \\\\
 F(x) & & \nearrow & & \searrow &  & \nearrow & &  \\\\
 & -1 & & & &  -1 & & & & \end{array}}$ Pentru orice $p\in\mathbb Z$ , graficul restrictiei $F_{p+1}$ a functiei $F$

pe $[\ p+1\ ,\ p+2\ ]$ este translatia graficului restrictiei $F_p$ a functiei $F$ pe $[\ p\ ,\ p+1\ ]$ de vector $\overrightarrow{OA}$, unde $A(1,2)$ si $F_{p+1}(p+1)=F_p(p+1)\ .$
This post has been edited 87 times. Last edited by Virgil Nicula, May 24, 2016, 2:36 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a