156. Some problems with perpendicularities.

by Virgil Nicula, Oct 15, 2010, 1:42 PM

Quote:
Proposed problem 1. Let $ABC$ be a triangle with the $A$-angle bisector $[AD$ and the $A$-median $[AM$ , where $\{D,M\}\subset BC$ . Consider $N\in AB$

so that $MN\perp AD$ and $P\in AD$ so that $PN\perp AB$ . Prove that the point $P$ belongs to the circumcircle of the triangle $ABC$ , i.e. $PM\perp BC$ .
Proof 1 (synthetic). Denote the second intersection $R$ of $AD$ with the circumcircle of the given triangle. From the well-known properties $AD=\frac {2bc\cdot\cos\frac A2}{b+c}$ ,

$AD\cdot AR=bc$ and $AN\stackrel{(*)}{=}\frac {b+c}{2}$ obtain the chain of equalities $AP=\frac {AN}{\cos\frac A2}=$ $\frac {b+c}{2\cos\frac A2}=$ $\frac {bc}{AD}=AR$ , i.e. $P\equiv R$ $\implies$ $MP\perp BC$ .


Proof 2 (metric). Denote $T\in MN\cap AC$ and $R\in AD$ for which $RM\perp BC$ , i.e. the point $R$ is the second intersection of $AD$ with the circumcircle of $\triangle ABC$ .

Denote $AN=AT=x$ . Apply Menelaus' theorem to $\overline {NMT}/\triangle ABC\ :\ \frac {NB}{NA}\cdot\frac{TA}{TC}\cdot\frac {MC}{MB}=1$ $\iff$ $\frac {x-c}{x}\cdot\frac {x}{b-x}=1\implies$ $AN\stackrel{(*)}{=}\frac {b+c}{2}$ .

Observe that $\triangle ABR\sim\triangle ADC$ from where obtain $\boxed{\ AD\cdot AR=bc\ }$ . From the product of the relations $\left\|\begin{array}{c}
AD=\frac {2bc}{b+c}\cdot\cos\frac A2\\\\
AN=\frac {b+c}{2}\\\\
AP={\frac AN}{\cos\frac A2}\end{array}\right\|$

obtain that $\boxed{\ AD\cdot AP=bc\ }$ . In conclusion, $AD\cdot AP=AD\cdot AR$ , i.e. $P\equiv R$ $\implies$ $PM\perp BC$ .


Quote:
Proposed problem 2. Let $ABC$ be a triangle. Let $M$ and $N$ be the points in which the $A$-median and the $A$-angle bisector meet the side $[BC]$

respectively. Let $Q\in AM$ and $P\in AB$ for which $N\in QP\ ,\ QP\perp AN$ and $O\in AN$ for which $OP\perp AB$ . Prove that $QO\perp BC$ .

Proof. Denote the second intersection $L$ of $ AN$ with the circumcircle of $\triangle ABC$ and $\left\|\begin{array}{ccc}
 D\in AB & , & LD\perp AB\\\
E\in AC & , & LE\perp AC\end{array}\right\|$ . The Simson line $ (DME)$ of $L$

w.r.t. $\triangle ABC$ is perpendicular to $AN$. From $M\parallel PQ$ and $LD\parallel OP$ obtain that $ \frac{AO}{AL}=\frac{AP}{AD}=\frac{AQ}{AM}$ . Hence $ OQ\parallel LM\implies$ $OQ\perp BC$ .


Quote:
Proposed problem 3. Fie trapezul $ABCD$ with $AB\parallel CD$ and $AB=2\cdot CD$ , Consider a line $d\perp CD$

so that $C\in d$ . The circle $C(D,DA)$ cut $d$ in $\{P,Q\}$ . Prove that the point $P$ is the orthocenter of $\triangle AQB$ .
Proof. Denote $E\in AD\cap BC$ . Prove easily that $DA|=DP=DQ=DE$ , $DC\perp PQ$ , $CP=CQ$ and $PA\perp PE$ . $PBQE$ is a parallelogram

obtain that $PE\parallel BQ$ In conclusion, $PA\perp PE\implies$ $AP\perp BQ$ and $OP\perp AB\implies BP\perp AQ$ , i.e. the point $P$ is the orthocenter of $\triangle AQB$ .



Proposed problem 4. Let $ ABC$ be a triangle with the circumcircle $ w=C(O,R)$ and the incircle $ C(I,r)$.

Define the points $ \left\{\begin{array}{c}D\in (AB\ ,\ E\in (CB\\\ AD = CE = CA\end{array}\right\|$. Prove that $ OI\perp DE$ and $DE=2\cdot OI\cdot\sin B$ .


Proof. Denote $ p_{w}(X)$- the power of the point $ X$ w.r.t. the circle $ w$. Thus, $ \left\{\begin{array}{c}p_{w}(D)\equiv OD^{2}-R^{2}=-b(c-b)\\\ p_{w}(E)\equiv OE^{2}-R^{2}=-b(a-b)\end{array}\right\|$ $ \implies$ $ \boxed{OD^{2}-OE^{2}=b(a-c)}$.

The relations $ IA^{2}=\frac{bc(p-a)}{p}$ a.s.o. are well-known. Apply the Stewart's theorem to the rays $ (ID$, $ (IE$ in $ \triangle IAB$, $ \triangle IAC$ respectively :

$ \left\{\begin{array}{c}b\cdot IB^{2}+(c-b)\cdot IA^{2}=c\cdot ID^{2}+bc(c-b)\\\ b\cdot IB^{2}+(a-b)\cdot IC^{2}=a\cdot IE^{2}+ab(a-b)\end{array}\right\|$ $ \implies$ $ \boxed{ID^{2}-IE^{2}=b(a-c)}$. In conclusion, $ OD^{2}-OE^{2}=ID^{2}-IE^{2}$, i.e. $ OI\perp DE$.

Let $D'$ and $E'$ be the orthogonal projections of $I$ on the perpendicular bisectors of $[BC]$ and $[AB]$ respectively; let $A'$ and $C'$ be the midpoints of $[BC]$ and $[AB]$ respectively;

let $X$ and $Z$ be the orthogonal projections of $I$ on $BC$ and $AB$ respectively, i. e. the points where the incircle of triangle $ABC$ touches the sides $[BC]$ and $[AB]$ . It is well-known

that $BX = s - b$ , where $2s=a+b+c$ is the semiperimeter of $\triangle ABC$ . Thus, $XA^{\prime }=BX-BA^{\prime }=$ $\left( s-b\right) -\frac{a}{2}=\frac{c-b}{2} $ . Since the quadrilateral $IXA'D'$

is a rectangle (it has three right angles: at $X$ , at $A'$ and at $D'$), we have $ID' = XA'$ , so $ID^{\prime }=\frac{c-b}{2}$ . Now we have $BD = AB - AD = $ $AB - CA = c - b$ ; therefore,

$ID^{\prime }=\frac{c-b}{2}=\frac{1}{2}\cdot BD$. Similarly, $IE^{\prime }=\frac{1}{2}\cdot BE$ . Finally, we have $D^{\prime }I\perp A^{\prime }D^{\prime }$ and $A^{\prime }D^{\prime }\perp BC$ , i. e. $A^{\prime }D^{\prime }\perp EB$ , so that $D'I\parallel EB$ . Similarly, $E'I\parallel DB$ . Hence,

$\widehat{ D'IE'}\equiv\widehat{DBE}$ , since the sides of the two angles are respectively parallel. Together with $ID^{\prime }=\frac{1}{2}\cdot BD$ and $IE^{\prime }=\frac{1}{2}\cdot BE$ , this shows that $\triangle DBE\sim\triangle D'IE'$ are similar,

with the ratio of similitude $\frac{1}{2}$ . Hence, $D^{\prime }E^{\prime }=\frac{1}{2}\cdot DE$ . Now, since $m\left(\widehat{OD'I}\right) = 90^{\circ}$ and $m\left(\widehat{OE'I}\right)= 90^{\circ}$ , the points $D'$ and $E'$ lie on the circle with diameter $OI$ .

In other words, the circumcircle of triangle $D'IE'$ has $[OI]$ as diameter. Therefore, after the extended law of sines, $D^{\prime }E^{\prime }=OI\cdot \sin \measuredangle D^{\prime }IE^{\prime }$ . Hence we have

$\frac{1}{2}\cdot DE=D^{\prime }E^{\prime }=OI\cdot \sin \measuredangle D^{\prime }IE^{\prime }=OI\cdot \sin \measuredangle DBE=OI\cdot \sin B$ , and thus $DE=2\cdot OI\cdot \sin B=2\sin B\cdot OI$ .



PP5. In $\triangle ABC$ Denote $\left\{\begin{array}{ccc}
D\in BC & ; & AD\perp BC\\\\
E\in AC & ; & DE\perp AC\end{array}\right\|$ and $K\in DE$ such that $\frac {KE}{KD}=\frac {DB}{DC}$ . Prove that $AK\perp BE$ .

Proof 1. Denote $X\in AK\cap BE$ and $L\in AC$ so that $BL\parallel DE$ . Observe that $\frac {EL}{EC}=\frac {DB}{DC}$ $\implies$ $\frac {EL}{EC}=\frac {KE}{KD}$ . Thus, $\triangle BCL\sim\triangle ADE$ and the points $E\in CL$ , $K\in DE$

are homologously w.r.t. this similarity. Therefore, $\widehat{XBD}\equiv\widehat {XAD}$ , i.e. the quadrilateral $ABDX$ is cyclically. In conclusion, $\widehat{AXB}\equiv\widehat{ADB}$ , i.e. $XA\perp XB\iff$ $AK\perp BE$ .

Proof 2.



PP6 (old problem). Let $ABCD$ be a rectangle and let $E$ be the projection of $B$ on the diagonal $AC$ . Consider two points $X\in (AE)$ and $Y\in (CD)$ so that $\frac {EX}{EA}=\frac {CY}{CD}$ . Prove that $XY\perp XB$ .

Proof 1. Define the point $Z\in (BE)$ so that $XZ\parallel AB$ and $T\in CZ\cap BX$ . Observe that $\triangle ABE\sim\triangle BCE\ (*)$ and $\frac {EX}{EA}=\frac {EZ}{EB}$ . Therefore, the points $X$ and $Z$ are homologously in the similarity $(*)$ ,

i.e. $\widehat{TBE}\equiv\widehat{XBE}\stackrel{(*)}{\equiv}\widehat{ZCE}\equiv\widehat{TCE}\implies$ $\widehat{TBE}\equiv\widehat{TCE}\implies$ the quadrilateral $BTEC$ is inscribed in the circle with the diameter $[BC]\implies CZ\perp BX$ . Since $\frac {XZ}{AB}=$ $\frac {EX}{EA}=$ $\frac {CY}{CD}$

and $AB=CD$ obtain that $XZ=CY$ . Since $XZ\parallel AB\parallel CY$ obtain that $XZ\parallel CY$ . In conclusion, $XYCZ$ is a parallelogram $\implies XY\parallel CZ$ . Since $CZ\perp XB$ obtain that $XY\perp XB$ .

Proof 2 (analytic). Let $A(0,0)\ ,\ B(0,b)\ ,\ C(a,b)\ ,\ D(a,0)$ . Thus, $\left\{\begin{array}{cc}
AC\ : & bx-ay=0\\\\
BE\ : & ax+b(y-b)=0\end{array}\right\|\implies$ $E\left(\frac {ab^2}{a^2+b^2},\frac {b^3}{a^2+b^2}\right)$ . Denote $\frac {\overline{EX}}{\overline{EA}}=\frac {\overline{CY}}{\overline{CD}}=\lambda$ . Therefore,

$\left\{\begin{array}{ccc}
X=\lambda\cdot A+(1-\lambda )\cdot E & \implies X\left(\frac {(1-\lambda )ab^2}{a^2+b^2},\frac {(1-\lambda )b^3}{a^2+b^2}\right)\\\\
Y=\lambda\cdot D+(1-\lambda )\cdot C & \implies Y\left(a,(1-\lambda )b\right)\end{array}\right\|$ . Thus, $XB\perp XY\iff$ $s_{XB}\cdot s_{XY}=-1\iff$ $\frac {b\cdot\left[ \frac {(1-\lambda )b^2}{a^2+b^2}-1\right]}{ab^2\cdot \frac {1-\lambda}{a^2+b^2}}$ $\cdot\frac {(1-\lambda )b\cdot \left[\frac {b^2}{a^2+b^2}-1\right]}{a\cdot \left[\frac {(1-\lambda )b^2}{a^2+b^2}-1\right]}=-1$ , what is true.



PP7. Let $\triangle ABC$ with the incircle $w=C(I,r)$ . Denote the midpoint $M$ of $[BC]$ . Prove that $\left\{\begin{array}{ccccc}
\mathrm{Case}\ 1\blacktriangleright\ b>c\ : & IM\perp IB & \iff & a+b=3c\ .\\\\
\mathrm{Case}\ 2\blacktriangleright\ b<c\ : & IM\perp IC & \iff & a+c=3b\ .\end{array}\right\|$

Proof 1 (metric). $IB\perp IM$ $\iff$ $IB^2+IM^2=MB^2$ $\iff$ $\frac {ac(s-b)}{s}+r^2+\left(\frac {b-c}{2}\right)^2=$ $\left(\frac a2\right)^2$ $\iff$ $ac(s-b)+sr^2=s(s-b)(s-c)$ $\iff$

$ac(s-b)+(s-a)(s-b)(s-c)=s(s-b)(s-c)$ $\iff$ $ac(s-b)=a(s-b)(s-c)$ $\iff$ $s=2c\iff$ $\boxed{a+b=3c}$ .

Proof 2 (metric). Denote $T\in BC\cap w$ and suppose that $b>c$ . In this case $\underline{IM\perp IB}$ $\iff$ $TB\cdot TM=IT^2$ $\iff$ $(s-b)(b-c)=2r^2$ $\iff$ $s(s-b)(b-c)=2(s-a)(s-b)(s-c)$ $\iff$

$s(b-c)=2(s-a)(s-c)$ $\iff$ $(a+b+c)(b-c)=b^2-(a-c)^2$ $\iff$ $\underline{a+b=3c}$ . Prove analogously that in the second case exists the equivalence $IM\perp IC\iff \boxed{a+b=3c}$ .

Proof 3 (synthetic). Denote $S\in AB\cap w$ and suppose that $b>c$ . Observe that $IM\perp IB\iff$ $\triangle BSI\sim\triangle BIM$ $\iff$

$\frac {BS}{BI}=\frac {BI}{BM}\iff$ $BI^2=BM\cdot BS\iff$ $\frac {ac(s-b)}{s}=\frac a2\cdot (s-b)\iff$ $s=2c\iff$ $\boxed{a+b=3c}$ .

Proof 4 (synthetic). Suppose $b>c$ . Denote the midpoint $N$ of $[AC]$ and $\{B,S\}=BI\cap w$ . Observe that $\triangle BIM\sim\triangle ANS$ $\iff$ $\frac {BI}{AN}=\frac {BM}{AS}$ $\iff$

$\frac {BI}{AN}=\frac {BM}{IS}$ $\iff$ $AN\cdot BM=IB\cdot IS$ $\iff$ $\frac {ab}{4}=2Rr$ $\iff$ $abc=8Rrc$ $\iff$ $4Rrs=8Rrc$ $\iff$ $s=2c\iff$ $\boxed{a+b=3c}$ .

Proof 5 (Yetty -synthetic). Suppose $b>c$ and denote $T\in BC\cap w$ , the diameter $[TN]$ of $w$ and $T'\in BC\cap AN$ . Is well-known that $T'$ belongs ro the $A$-exincircle

and $IM\parallel NT'$ . In conclusion, $IB\perp IM$ $\iff$ $IB\perp NT'$ $\iff$ $\triangle ABT'$ is $B$-isosceles $\iff$ $BA=BT'$ $\iff$ $c=s-c$ $\iff$ $s=2c$ $\iff$ $\boxed{a+b=3c}$ .

Proof 6 (underzero -synthetic). Denote $E\in AC\cap w$ , $F\in AB\cap w$ and $P\in EF\cap BI$ . Is well-known that $PC\perp PB$ . Thus, $IM\parallel PC$ , i.e, $I$ is the midpoint of $[BP]$ . Therefore, $1=\frac {IP}{IB}=$

$\frac {CP}{CB}\cdot\frac {\sin\widehat{ICP}}{\sin\widehat{ICB}}\implies$ $1=\sin\frac B2\cdot \frac {\sin \frac A2}{\sin\frac C2}\implies$ $\sin \frac C2=\sin\frac B2\sin\frac A2\implies$ $\sqrt {\frac {(s-a)(s-b)}{ab}}=\sqrt{\frac {(s-a)(s-c)}{ac}\cdot\frac {(s-b)(s-c)}{bc}}\implies$ $c=s-c\implies$ $\boxed{a+b=3c}$ .



PP8 (Ochoa Sanchez). Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and $\left\{\begin{array}{ccc}
X\in BC\cap w\ : & Q\in XI\cap AC\ ; & P\in XI\cap AB\\\\
Y\in CA\cap w\ : &  S\in YI\cap BC\ ; & R\in YI\cap BA\\\\
Z\in AB\cap w\ ; &  U\in ZI\cap CA\ ; & T\in ZI\cap CB\end{array}\right\|$ so that $\left\{\begin{array}{cc}
A\in (QC)\ ; & P\in (AB)\\\
B\in (SC)\ ; & R\in (AB)\\\
C\in (AU)\ ; &  T\in (BC)\end{array}\right\|$ $\implies PQ=RS+TU$ .

Proof. $\left\{\begin{array}{ccc}
\triangle XQC\equiv\triangle YSC & \implies & XQ=YS\\\
\triangle YRA\equiv\triangle ZUA & \implies & YR=ZU\\\
\triangle ZTB\equiv\triangle XPB & \implies & ZT=XP\end{array}\right\|$ $\implies$ $RS+TU=(YS-\underline{YR})+(\underline{ZU}-ZT)=$ $YS-ZT=XQ-XP=PQ\implies PQ=RS+TU$ .
This post has been edited 84 times. Last edited by Virgil Nicula, Nov 22, 2015, 9:11 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a