415. Geometry 8.

by Virgil Nicula, Mar 21, 2015, 2:09 PM

Lemma (Sunken Rock). Let a circle $w$ and $\{A,B\}\subset w$ . Denote $T\in AA\cap BB$ where $XX$ is the tangent line to $w$ at $X\in w$ . Let $M\in w$ be a point

for what $AB$ doesn't separate $M$ and $T$ . Denote the projections $(X,Y,Z)$ of $M$ on $([AB],[BT],[AT])$ respectively. Prove that $MX^2=MY\cdot MZ$ .


Proof. $\left\{\begin{array}{ccc}
\widehat{MXZ}\equiv \widehat{MAZ}\equiv \widehat{MBA}\equiv \widehat{MBX}\equiv \widehat{MYX} & \implies & \widehat{MXZ}\equiv \widehat{MYX}\\\\
\widehat{MZX}\equiv \widehat{MAX}\equiv \widehat{MAB}\equiv \widehat{MBY}\equiv\widehat{MXY} & \implies & \widehat{MZX}\equiv \widehat{MXY}\end{array}\right\|$ $\implies$ $\triangle MXZ\sim\triangle MYX\implies$ $\frac {MX}{MY}=\frac {MZ}{MX}\implies$ $MX^2=MY\cdot MZ$ .

PP11. Let a cyclical $ABCD$ with the circumcircle $w$ and a point $P\in w$ . Define the projection $P_{xy}$ of $P$ on $XY$ . Prove that $PP_{ab}\cdot PP_{cd}=PP_{bc}\cdot PP_{ad}=PP_{ac}\cdot PP_{bd}$ .

Proof 1. Suppose w.l.o.g. that $CD$ separates $P$ and $A$ . Thus, $\left\{\begin{array}{ccc}
\widehat{PP_{ad}P_{cd}}\equiv\widehat{PDP_{cd}}\equiv\widehat{PDC}\equiv\widehat{PBC}\equiv\widehat{PBP_{bc}}\equiv\widehat{PP_{ab}P_{bc}} & \implies & \widehat{PP_{ab}P_{bc}}\equiv \widehat{PP_{ad}P_{cd}}\\\\
\widehat{PP_{bc}P_{ab}}\equiv\widehat{PBP_{ab}}\equiv \widehat{PBA}\equiv\widehat{PDP_{ad}}\equiv\widehat{PBC}\equiv\widehat{PP_{cd}P_{ad}}& \implies & \widehat{PP_{bc}P_{ab}}\equiv\widehat{PP_{cd}P_{ad}}\end{array}\right\|$ $\implies$

$\triangle PP_{ab}P_{bc}\sim \triangle PP_{ad}P_{cd}\implies$ $\frac {PP_{ab}}{PP_{ad}}=\frac {PP_{bc}}{PP_{cd}}\implies$ $\boxed{PP_{ab}\cdot PP_{cd}=PP_{bc}\cdot PP_{ad}}$ . Prove analogously that $\boxed{PP_{bc}\cdot PP_{ad}=PP_{ac}\cdot PP_{bd}}$ . Indeed,

$\left\{\begin{array}{ccc}
\widehat{PP_{ad}P_{bd}}\equiv\widehat{PDB}\equiv 180^{\circ}-\widehat{PCB}\equiv 180^{\circ}-\widehat{PCP_{bc}}\equiv\widehat{PP_{ac}P_{bc}} & \implies & \widehat{PP_{ad}P_{bd}}\equiv \widehat{PP_{ac}P_{bc}}\\\\
\widehat{PP_{bd}P_{ad}}\equiv\widehat{PDP_{ad}}\equiv \widehat{PBA}\equiv\widehat{PCA}\equiv\widehat{PCP_{ac}}\equiv\widehat{PP_{bc}P_{ac}}& \implies & \widehat{PP_{bd}P_{ad}}\equiv\widehat{PP_{bc}P_{ac}}\end{array}\right\|$ $\implies$ $\triangle PP_{ad}P_{bd}\sim \triangle PP_{ac}P_{bc}\implies$ $\frac {PP_{ad}}{PP_{ac}}=\frac {PP_{bd}}{PP_{bc}}$ .

Proof 2. Denote the distancies $\left(\delta_a,\delta_b,\delta_c,\delta_d\right)$ of the point $P$ to the tangent lines $(AA,BB,CC,DD)$ respectively where $XX$ is the tangent line to $w$ at $X\in w$ .

Apply the previous lemma $:\ \left\{\begin{array}{ccc}
PP_{ab}^2=\delta_a\delta_b\ ; & PP_{bc}^2=\delta_b\delta_c\ ; & PP_{cd}^2=\delta_c\delta_d\\\\
PP_{da}^2=\delta_d\delta_a\ ; & PP_{ac}^2=\delta_a\delta_c\ ; & PP_{bd}^2=\delta_b\delta_d\end{array}\right\|$ $\implies$ $PP_{ab}\cdot PP_{cd}=PP_{ad}\cdot PP_{bc}=PP_{ac}\cdot PP_{bd}=\sqrt{\delta_a\delta_b\delta_c\delta_d}$ .



PP12. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the circles $\left\{\begin{array}{cccc}
w_a=\mathbb C(A,a)\ : & \left\{A,A_c\right\}=AB\cap w_a & ; & \left\{A,A_b\right\}=AC\cap w_a\\\\
w_b=\mathbb C(B,b)\ : & \left\{B,B_a\right\}=BC\cap w_b & ; & \left\{B,B_c\right\}=BA\cap w_b\\\\
w_c=\mathbb C(C,c)\ : & \left\{C,C_b\right\}=CA\cap w_c & ; & \left\{C,C_a\right\}=CB\cap w_c\end{array}\right\|$

where $\left\{\begin{array}{c}
BC=a\\\\
CA=b\\\\
AB=c\end{array}\right\|$ . Prove that there is a circle $\alpha$ so that $\left\{\ A_b\ ,\ A_c\ ;\ B_a\ ,\ B_c\ ;\ C_a\ ,\ C_b\ \right\}\ \subset \ \alpha$ .


Proof. Let $\left\{\begin{array}{c}
D\in BC\cap w\\\\
E\in CA\cap w\\\\
F\in AB\cap w\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
AE=AF=s-a\\\\
BF=BD=s-b\\\\
CD=CE=s-c\end{array}\right\|$ where $2s=a+b+c$ . Observe that $EA_b=FA_c=FB_c=DB_a=DC_a=EC_b=s$

and $IA_b=IA_c=IB_c=IB_a=IC_a=IC_b=\rho$ where $\rho^2=s^2+r^2$ , i.e. there is a circle $\alpha=\mathbb C(I,\rho )$ so that $\left\{\ A_b\ ,\ A_c\ ;\ B_a\ ,\ B_c\ ;\ C_a\ ,\ C_b\ \right\}\ \subset \ \alpha$.



PP13 (Elberling Vargas Diaz). Let a semicircle $w=\mathbb S(O,r)$ on the diameter $[AD]$ . Define $XX$ - the tangent line to $w$ at $X\in w$ .

For $\{B,C\}\subset w$ denote $\left\{\begin{array}{ccc}
L\in BB\ ,\ LA\perp AD & ; & LA=LB=a\\\\
N\in CC\ ,\ ND\perp AD & ; & ND=NC=c\\\\
M\in BB\cap CC & ; & MB=MC=b\end{array}\right\|$ . Prove that $\boxed{r^2=ab+bc+ca}$ .


Proof 1 (Pedro Solis). Denote $\left\{\begin{array}{ccc}
m\left(\widehat{LOA}\right)=m\left(\widehat{LOB}\right)=x\\\\
m\left(\widehat{MOB}\right)=m\left(\widehat{MOC}\right)=y\\\\
m\left(\widehat{NOC}\right)=m\left(\widehat{NOD}\right)=z\end{array}\right\|$ . Therefore, $x+y+z=90^{\circ}$ and $\left\{\begin{array}{ccc}
m\left(\widehat{MOL}\right)=m\left(\widehat{MNO}\right)=x+y=90^{\circ}-z\\\\
m\left(\widehat{MLO}\right)=m\left(\widehat{MON}\right)=y+z=90^{\circ}-x\\\\
m\left(\widehat{LMO}\right)=m\left(\widehat{OMN}\right)=z+x=90^{\circ}-y\end{array}\right\|$ $\implies$

$ \triangle MOL\sim\triangle MNO\implies$ $\frac {MO}{MN}=\frac {ML}{MO}\implies$ $\boxed{MO^2=ML\cdot MN}\implies$ $b^2+r^2=(b+a)(b+c)\implies$ $b^2+r^2=b^2+b(a+c)+ac\implies$ $r^2=ab+bc+ca$ .

Remark. Let $P\in ML$ so that $MP=MN$ . Thus, $\widehat{MOP}\equiv\widehat{MON}\implies$$\widehat{MOP}\equiv\widehat{MLO}$ , i.e. $MO$ is tangent to $\odot LOP\implies$ $MO^2=ML\cdot MP\implies$ $MO^2=ML\cdot MN$ .

Proof 2. $x+y+z=90^{\circ}\implies \boxed{\tan x\tan y+\tan y\tan z+\tan z\tan x=1}\ (*)$ and $\left\{\begin{array}{c}
\tan x=\frac ar\\\\
\tan y=\frac br\\\\
\tan z=\frac cr\end{array}\right\|\ \stackrel{(*)}{\implies}\ \frac ar$ $\cdot\frac br+\frac br\cdot\frac cr+\frac cr\cdot \frac ar=1\implies$ $r^2=ab+bc+ca$ .



PP14. Let $ ABC$ be a triangle. Consider a circle $ \mathcal C(I_{1})$ which is tangent to the sides $ AB$ and $ BC$ of $ \triangle\ ABC$ and which is internal tangent to the

circumcircle $ w$ of $ \triangle\ ABC$ at a point $ J$. Let $ I$ be the incenter of $ \triangle\ ABC$. Prove that the line $ JI$ is the bisector of the angle $ \widehat{AJC}$, i.e. $ \widehat{AJI}\equiv\widehat{CJI}$.


Proof. Denote the second intersections $ R$, $ S$ of $ w$ with $ JP$, $ JQ$ respectively. From here results $ \left\{\begin{array}{c}m\left(\widehat{CJN}\right)=m\left(\widehat{BJN}\right)=\frac{A}{2}\\\\ m\left(\widehat{AJM}\right)=m\left(\widehat{BJM}\right)=\frac{C}{2}\end{array}\right\|$. Apply the Pascal's theorem

to $ ABCMJN$, i.e. $ \left\{\begin{array}{c}Q\in AB\cap MJ\\\\ P\in BC\cap JN\\\\ I\in CM\cap NA\end{array}\right\|$ $ \implies$ $ I\in PQ$. Thus, $ \left\{\begin{array}{c}m\left(\widehat{CIP}\right)=m\left(\widehat{BPQ}\right)-m\left(\widehat{BCI}\right)=\left(90^{\circ}-\frac{B}{2}\right)-\frac{C}{2}=\frac{A}{2}=m\left(\widehat{CJP}\right)\implies \widehat{CIP}\equiv\widehat{CJP}\\\\
 m\left(\widehat{AIQ}\right)=m\left(\widehat{BQP}\right)-m\left(\widehat{BAI}\right)=\left(90^{\circ}-\frac{B}{2}\right)-\frac{A}{2}=\frac{C}{2}=m\left(\widehat{AJQ}\right)\implies \widehat{AIQ}\equiv\widehat{AJQ}\end{array}\right\|$ $ \implies$

the quadrilaterals $ CPIJ$ and $ AQIJ$ are cyclically $ \implies$ $ \widehat{CJI}\equiv\widehat{BPQ}\equiv\widehat{BQP}\equiv\widehat{AJI}$ $ \implies$ $ \widehat{CJI}\equiv\widehat{AJI}$.



PP15. Let $\triangle ABC$ with the circumcircle $C(O,R)$ and the incircle $C(I,r)$ . Prove that the Euler's relation $OI^2=R(R-2r)$ .

Proof 1. $\triangle ABC,\ w=C(O,R),\ D\in AI\cap BC,\ \{ A,A'\}\subset AI\cap w$ $\Longrightarrow \left\{\begin{array}{c}
\frac{DB}{c}=\frac{DC}{b}=\frac{a}{b+c}\\\\
\frac{IA}{b+c}=\frac{ID}{a}=\frac{AD}{2s}\end{array}\right\|$ and $AD\cdot AA'=bc;\ AD^2=DB\cdot DC-bc=$ $\frac{4bcs(s-a)}{(b+c)^2}.$

$R^2-OI^2=IA\cdot IA'=IA\cdot (ID+DA')=$ $\frac{b+c}{2s}\cdot AD\cdot \left( \frac{a}{2s}\cdot AD+DA'\right) =$ $\frac{a(b+c)}{4s^2}\cdot AD^2+\frac{b+c}{2s}\cdot AD\cdot DA'=$ $\frac{a(b+c)}{4s^2}\cdot \frac{4bcs(s-a)}{(b+c)^2}+$

$\frac{b+c}{2s}\cdot DB\cdot DC=$ $\frac{abc(s-a)}{s(b+c)}+\frac{b+c}{2s}\cdot \frac{ac}{b+c}\cdot \frac{ab}{b+c}=$ $\frac{2abc(s-a)+a^2 bc}{2s(b+c)}=$ $\frac{abc}{2s}=\frac{4Rsr}{2s}=2Rr\Longrightarrow$ $\boxed{OI^2=R^2-2Rr}$ .

$\blacksquare\ \triangle ABA'\sim \triangle ADC\Longrightarrow AD\cdot AA'=bc\Longrightarrow AD\cdot (AD+DA')=bc\Longrightarrow AD^2+DB\cdot DC=bc.$

Proof 2 (C.D.P. - Gh. Titeica, 1935). Let the diameter $ [NS]$ (north-south) of the circumcircle so that $ NS\perp BC$ and $ BC$ separates the points $ A$ and $ S$. The incircle touches

the side $ [CA]$ in the point $ E$. Is well-known that $ SC = SI$ and the power of the incenter $ I$ w.r.t. the circumcircle $ w$ is $ p_{w}(I) =-IA\cdot IS = OI^{2}-R^{2}$, i.e. $OI^{2}= R^{2}-IA\cdot IS$.

Prove easily that $ \triangle AIE\sim\triangle NSC$, i.e. $ \frac{IA}{SN}=\frac{IE}{SC}$ $ \implies$ $ IA\cdot SC = 2Rr$ $ \implies$ $ IA\cdot IS = 2Rr$ $ \implies$ $ \boxed{OI^{2}= R^{2}-2Rr}.$ This proof is the shortest and the oldest!



PP16. The incircle $C(I,r)$ of the $A$-isosceles $\triangle ABC$ touches it at $D\in BC\ ,\ E\in CA\ ,\ F\in AB$ .

Let $N\in IE\cap DF\ ,\ M\in BN\cap CA$ and $P\in BM\ ,\ AP\perp BM$. Suppose that $BP=AP+2\cdot PM$. Ascertain the ratio $\frac{AB}{BC}$.

Lemma. The incircle $C(I,r)$ of $\triangle ABC$ touches it at $D\in BC\ ,\ E\in CA\ ,\ F\in AB$ . Let: $M\in (BC)\ ,\ MB=MC\ ;\ P\in EF\cap BI\ ;\ R\in EF\cap CI\ ;$

$S\in BR$. Then $:\ EF\cap ID\cap AM\ne\emptyset\ ;\ P\ ,\ R$ belong to the circle with the diameter $[BC]\ ;\ S\in ID$ (the incenter $I$ is the orthocenter of $\triangle BSC)$.


Proof. Let $N\in EF\cap ID$. Observe that $\left\{\begin{array}{c}\widehat{AEN}\equiv\widehat{AFN}\\\\
\widehat{NIE}\equiv\widehat{ACB}\\\\
\widehat{NIF}\equiv\widehat{ABC}\end{array}\right\|$. Therefore, $\frac{NE}{NF}=\frac{IE}{IF}\cdot\frac{\sin\widehat{NIE}}{\sin\widehat{NIF}}=\frac{\sin C}{\sin B}=\frac{AB}{AC}$ $\Longrightarrow$ $NE\cdot AC\cdot \sin\widehat{AEN}=$ $NF\cdot AB\cdot\sin \widehat{AFN}$ $\Longrightarrow$

$[NAC]=[NAB]$ $\Longrightarrow$ $N\in AM$, i.e. $EF$, $ID$, $AM$ are concurrently. Prove easily that the quadrilaterals $IEPC$ and $IFRB$ are cyclically because $m(\widehat{AEF})=m(\widehat{AFE})=$

$\frac{B+C}{2}=m(\widehat{PIC})=m(\widehat{RIB})$. The point $S$ is the radical center of the circles with the diameters $[IB]$, $[IC]$, $[BC]$, i.e. the point $S$ is the orthocenter of $\triangle BSC$.


Remark. Using this lemma (the point $M$ is even the middle of the side $[AC]$), the proposed problem becomes the following very easy problem ...

In the $A$- isosceles $\triangle ABC$ let $\left\{\begin{array}{c}M\in AC\ ,\ MA=MC\\\ P\in BM\ ,\ AP\perp BM\end{array}\right\|$. Prove that $\boxed{\ BP=AP+2\cdot PM\Longleftrightarrow AB\perp AC\mathrm{\ \ or\ \ }\frac{AB}{3}=\frac{BC}{2}\Longleftrightarrow\tan\widehat{ABM}=\frac{1}{2}\ }$.

Proof. Denote $AB=AC=b$, $BC=a$, $A=2x$ and $m(\widehat{ABM})=\phi$, i.e. $m(\widehat{CBM})=90^{\circ}-x-\phi$. Thus, $2b\sin x=a$, i.e. $\frac{AB}{BC}=\frac{b}{a}=\frac{1}{2\sin x}$.

$\frac{MA}{MC}=\frac{BA}{BC}\cdot\frac{\sin\widehat{MBA}}{\sin\widehat{MBC}}=\frac{b}{a}\cdot \frac{\sin \phi}{\cos (x+\phi)}=1$ $\Longleftrightarrow$ $2\sin x\cos (x+\phi )=\sin \phi$ $\Longleftrightarrow$ $\boxed{\sin (2x+\phi )=2\sin \phi}$ $\Longleftrightarrow$ $\boxed{\tan\phi =\frac{\sin 2x}{2-\cos 2x}}$.

Therefore, $BP=AP+2\cdot PM$ $\Longleftrightarrow$ $b\cdot\cos\phi = \frac{b}{2}\cdot\sin (2x+\phi )+b\cdot |\cos (2x+\phi )|$ $\Longleftrightarrow$ $\boxed{\ \cos\phi =\sin\phi+|\cos (2x+\phi )|\ }$ $\Longleftrightarrow$

$(\cos\phi-\sin\phi )^{2}=1-\sin^{2}(2x+\phi)$ $\Longleftrightarrow$ $\sin 2\phi=4\sin^{2}\phi$ $\Longleftrightarrow$ $\tan\phi =\frac{1}{2}$ $\Longleftrightarrow$ $\frac{\sin 2x}{2-\cos 2x}=\frac{1}{2}$ $\Longleftrightarrow$ $2\sin 2x+\cos 2x=2$ $\Longleftrightarrow$ $x\in \left\{45^{\circ},\arctan\frac{1}{3}\right\}$ $\Longleftrightarrow$

$\boxed{\ A\in\left\{90^{\circ},\arctan\frac{3}{4}\right\}\ }$ and in the both cases $\boxed{\ \tan\phi =\frac{1}{2}\ }$. In conclusion, for the initial proposed problem $\frac{AB}{BC}\in \left\{\frac{\sqrt 2}{2},\frac{\sqrt{10}}{2}\right\}$.



PP17. Let a scalen $\triangle ABC$ with the circumcircle $C(O,R)$ . The incircle $C(I,r)$ is tangent to $BC$ , $CA$ , $AB$ at $D$ , $E$ , $F$ respectively and $G'$ - centroid of $\triangle DEF$. Prove that $G'\in OI$ .

Proof 1 (metric). Suppose w.l.o.g. $b>c$ . Define the midpoint $M$ of $[BC]$ and $\left\{\begin{array}{c}
L\in AI\cap EF\\\\
K\in AI\cap BC\\\\
S\in G'I\cap BC\end{array}\right\|$ . The following relations are well-known or can prove easily :

$\begin{array}{ccc}\left\{\begin{array}{ccc}abc=4RS & ; & S=pr\\\\ a=2R\sin A & ; & r=(p-a)\tan\frac{A}{2}\\\\ \sin A=2\sin\frac{A}{2}\cos\frac{A}{2} & ; & \cos A=1-2\sin^{2}\frac{A}{2}\end{array}\right| & ; & \left\{\begin{array}{ccc}DM=\frac{b-c}{2} & ; & DK=\frac{(b-c)(p-a)}{b+c}\\\\ AK^{2}=\frac{4bcp(p-a)}{(b+c)^{2}} & ; & IL\cdot IA=r^{2}\\\\ OM=R\cdot |cos A & ; & \frac{IA}{b+c}=\frac{IK}{a}=\frac{AK}{2p}\end{array}\right|\end{array}$ .

$1\blacktriangleright\frac{IK}{IL}=\frac{IK\cdot IA}{IL\cdot IA}=$ $\frac{a(b+c)}{4p^{2}r^{2}}\cdot AK^{2}=$ $\frac{a(b+c)}{4p^{2}r^{2}}\cdot \frac{4bcp(p-a)}{(b+c)^{2}}=$ $\frac{abc(p-a)}{pr^{2}(b+c)}$ $\Longrightarrow$ $\boxed{\frac{IK}{IL}=\frac{4R(p-a)}{r(b+c)}}\ \ (1)$.

$2\blacktriangleright$ Apply the Menelaus' theorem to the transversal $\overline{SG'I}$ and $\triangle LDK$ : $\frac{SD}{SK}\cdot\frac{IK}{IL}\cdot\frac{G'L}{G'D}=1$ $\Longrightarrow$ $\boxed{\frac{SD}{SK}=\frac{r(b+c)}{2R(p-a)}}\ \ (2)$.

$3\blacktriangleright$ $\frac{SD}{r(b+c)}=\frac{SK}{2R(p-a)}=\frac{DK}{2R(p-a)-r(b+c)}=$ $\frac{(b-c)(p-a)}{(b+c)[2R(p-a)-r(b+c)]}$ $\Longrightarrow$ $SD=\frac{r(b-c)(p-a)}{2R(p-a)-r(b+c)}$

and $SM=SD+DM=\frac{r(b-c)(p-a)}{2R(p-a)-r(b+c)}+\frac{b-c}{2}$ $\Longrightarrow$ $\boxed{SM=(b-c)\cdot \frac{2R(p-a)-ar}{2[2R(p-a)-r(b+c)]}}\ \ (3)$.

$4\blacktriangleright$ Therefore, $\frac{SM}{SD}=$ $\frac{2R(p-a)-ar}{2r(p-a)}=$ $\frac{2R(p-a)-a(p-a)\tan\frac{A}{2}}{2r(p-a)}=$ $\frac{2R-a\tan\frac{A}{2}}{2r}=$ $\frac{2R-2R\sin A\tan\frac{A}{2}}{2r}=$

$\frac{R}{r}\cdot\left(1-2\sin\frac{A}{2}\cos\frac{A}{2}\tan\frac{A}{2}\right)=$ $\frac{R}{r}\cdot\left(1-2\sin^{2}\frac{A}{2}\right)=$ $\frac{R\cos A}{r}=$ $\frac{OM}{ID}$ $\Longrightarrow$ $S\in OI$ $\Longrightarrow$ $O\in SI\equiv G'I$ $\Longrightarrow$ $G'\in OI$.


Lemma. Let $\triangle ABC$ with the orthocenter $H$ and the circumcircle $C(O)$. Then there is the Sylvester's identity $\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\cdot\overrightarrow{HO}\iff$ $\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}$ .

Remark. If we"ll choose $O$ as the origin of the vectorial system, i.e. $X\equiv \overrightarrow{OX}$ and $\overrightarrow{XY}=Y-X$, then Sylvester's identity becomes $\boxed{A+B+C=H}$ .

Proof 2 (Gemath). Denote the second intersections $A',B',C'$ of the lines $IA,IB,IC$ with the circumcircle of $\triangle ABC$ . Prove easily that the incenter $I$ of $\triangle ABC$

is the orthocenter of $\triangle A'B'C'\iff$ $A'+B'+C'=I$ . From $\frac{OA'}{ID}=\frac{R}{r}$ and $OA'\parallel ID$ obtain $r\cdot\overrightarrow{OA'}=R\cdot\overrightarrow{ID}\iff$ $r\cdot A'=R\cdot (D-I)$ a.s.o.

Thus, $r\cdot I=r\cdot (A'+B'+C')=$ $R\cdot (D+E+F-3I)=3R\cdot (G'-I)\iff$ $r\cdot \overrightarrow{OI}=$ $3R\cdot \overrightarrow{IG'}$ , what means $G'\in OI$ . If $H'$ is the orthocenter of $\triangle DEF$ ,

then $3\cdot \overrightarrow{IG'}=\overrightarrow{IH'}$ (the line $\overline{H'G'I}$ is the Euler's line for $\triangle DEF$) and the previous relation becomes $\boxed{\ r\cdot \overrightarrow{OI}=R\cdot \overrightarrow{IH'}\ }$ .



PP18. Let $D$ be an interior point of $\triangle ABC$ for which $\widehat {DAB}\equiv\widehat {DBC}$ and $\widehat {DAC}\equiv\widehat {DCB}\ .$ Denote $:\ M\in AD\cap BC\ ;$ the symmetrical point $E$ of $A$ w.r.t. $M\ ;$

the circumcircles $w_b=C\left(O_b,r_b\right)$ and $w_c=C\left(O_c,r_c\right)$ of $\triangle ADB$ and $\triangle ADC$ respectively $;$ the intersections $\{E,U\}=EB\cap w_b$ and $\{E,V\}=EC\cap w_c\ .$

Prove that $:\ M$ is the midpoint of $[BC]\ ;\ BDCE$ is a cyclical quadrilateral $;\ \frac {r_b}{r_c}=\left(\frac cb\right)^2\ ;\ A\in UV\ ;\ EA$ is the $E$-symmedian in the triangle $UEV\ .$


Proof.

$\blacktriangleright$ $\left\{\begin{array}{ccccc}
\widehat {DAB}\equiv\widehat {DBC} & \implies & \triangle MCD\sim\triangle MAC & \implies & MC^2=MD\cdot MA\\\\
\widehat {DAC}\equiv\widehat {DCB} & \implies & \triangle MBD\sim\triangle MAB & \implies & MB^2=MD\cdot MA\end{array}\right\|$ $\implies$

$\boxed{\ MB=MC\ }$ , i.e. $M$ is the midpoint of $[BC]$ . Remark that $BC$ is a common tangent of $w_b$ and $w_c$ .

$\blacktriangleright\ ABEC$ is a parallelogram, i.e. $CE=AB=c$ and $BE=AC=b$ $\implies$ $\widehat{BED}\equiv\widehat{MAC}\equiv\widehat{BCD}\implies$

$\widehat{BED}\equiv\widehat{BCD}\implies$ $\boxed{BDCE\mathrm{\  is\ cyclically\ }}$ . Remark that $\left\{\begin{array}{c}
\widehat{CBE}\equiv\widehat {CDE}\\\\
\widehat{BCE}\equiv\widehat{BDE}\end{array}\right\|\ (*)$ .

$\blacktriangleright\ \left\{\begin{array}{ccc}
b=2r_c\sin\widehat {CDE} & \stackrel{(*)}{=} & 2r_c\sin\widehat {CBE}\\\\
c=2r_b\sin\widehat {BDE} & \stackrel{(*)}{=} & 2r_b\sin\widehat {BCE}\end{array}\right\|\implies$ $\frac bc=\frac {r_c}{r_b}\cdot\frac {\sin \widehat {CBE}}{\sin\widehat {BCE}}$ $\implies\frac bc=\frac {r_c}{r_b}\cdot\frac cb\implies $ $\boxed{\frac {r_b}{r_c}=\left(\frac cb\right)^2}\ .$

$\blacktriangleright\ \widehat{AUE}+\widehat{AVE}+\widehat{UEV}=$ $\widehat{BDE}+\widehat{CDE}+\widehat{UEV}=$ $\widehat{BDC}+\widehat{BEC}=$ $180^{\circ}\implies$ $\widehat{AUE}+\widehat{AVE}+\widehat{UEV}=180^{\circ}\implies$ $A\in UV$ .

$\blacktriangleright$ . Prove easily that $\triangle ABC\sim\triangle BUA\sim \triangle CAV\sim\triangle EUV$ . Thus, $\frac {AU}{AV}=\frac {2r_b\sin A}{2r_c\sin A}=\frac {r_b}{r_c}=\left(\frac cb\right)^2=\left(\frac {EU}{EV}\right)^2$ , i.e. $EA$ is the $E$-symmedian in the triangle $UEV\ .$



PP19 (JBMO 2015). Let an acute $\triangle{ABC}\ ,$ $\left\{\begin{array}{ccc}
M\in (AB) & : & MA=MB\\\\
l_1 & : & A\in l_1\perp AB\\\\
l_2 & : & B\in l_2\perp AB\end{array}\right\|$ and $\left\{\begin{array}{cc}
E\in l_1\ ; & ME\perp CA\\\\
F\in l_2\ ; & MF\perp CB\end{array}\right\|$ . Let $D\in MC\cap EF$ . Prove that $\widehat{ADB}\equiv\widehat{EMF}$ .

Proof. $\left\{\begin{array}{ccc}
ME\perp AC & \implies & MA^2-MC^2=EA^2-EC^2\\\\
MF\perp BC & \implies & MB^2-MC^2=FB^2-FC^2\end{array}\right\|$ $\implies EA^2-EC^2=FB^2-FC^2\implies$ $\left(ME^2-MA^2\right)-CE^2=\left(MF^2-MB^2\right)-CF^2\implies$

$ME^2-MF^2=CE^2-CF^2\implies$ $\boxed{MC\perp EF}\ (*)$ . Thus, the quadrilaterals $MAED$ and $MBFD$ are cyclically. Therefore, $\widehat{EMF}=\widehat{EMD}+\widehat{DMF}=$

$\widehat{EAD}+\widehat{DBF}=\left(90^{\circ}-\widehat{MAD}\right)+\left(90^{\circ}-\widehat{MBD}\right)=$ $180^{\circ}-\left(\widehat{BAD}+\widehat{ABD}\right)=$ $\widehat{ADB}\ .$ In conclusion, $\widehat{ADB}\equiv\widehat{EMF}$ . Nice problem !



PP20. Let $\triangle ABC$ which isn't isosceles. Construct the triangles $ABD$ , $ABE$ such that $AB\cap\triangle  CDE=\emptyset$ and $\triangle BDA\sim\triangle EAB\sim\triangle ABC$ . Prove that $\triangle EDC\sim\triangle ABC$ .

Proof 1 . Let $\left\{\begin{array}{ccc}
BC & = & a\\\\
CA & = & b\\\\
AB & = & c\end{array}\right\|$ . Therefore, $\left\{\begin{array}{ccccc}

\triangle BDA\sim\triangle ABC & \implies & \frac {BD}c=\frac {DA}a=\frac cb & \implies & \begin{array}{cccc}
\nearrow & BD & = & \frac {c^2}b\\\\
\searrow & AD & = & \frac {ac}b\end{array}\\\\
\triangle EAB\sim\triangle ABC & \implies & \frac {EA}c=\frac ca=\frac {EB}b & \implies & \begin{array}{cccc}
\nearrow & EA & = & \frac {c^2}a\\\\
\searrow & EB & = & \frac {bc}a\end{array}\end{array}\right\|$ . Suppose w.l.o.g. $A>B>C$ . Observe that

$\left\{\begin{array}{cccccc}
\begin{array}{cccccc}
\frac {CA}{CB} & = & \frac ba & = & \frac {AE}{BD} & \searrow\\\\
m\left(\widehat{CAE}\right) & = & A-B & = & m\left(\widehat{CBD}\right) & \nearrow\end{array}\stackrel{(s.a.s)}{\implies} & \triangle CAE\sim \triangle CBD & \implies & \widehat {ACE}\equiv\widehat{BCD} & \implies & \widehat{DCE}\equiv\widehat{BCA}\\\\
\begin{array}{cccccc}
\frac {DA}{CB} & = & \frac cb & = & \frac {AE}{BE} & \searrow\\\\
m\left(\widehat{DAE}\right) & = & B-C & = & m\left(\widehat{CBE}\right) & \nearrow\end{array}\stackrel{(s.a.s)}{\implies} & \triangle DAE\sim \triangle CBE & \implies & \widehat {AED}\equiv\widehat{BEC} & \implies & \widehat{DEC}\equiv\widehat{BAC}\end{array}\right\|$ $\stackrel{(a.a)}{\implies}\ \triangle EDC\sim\triangle ABC$ .


Proof 2 (Sunken Rock). a solution avoiding boring calculations: take $P$ so that $ABPC$ is an isosceles trapezoid and construct the circle $O$ tangent at $B$ to $AB$ and passing through $C$; it will

intersect $BP, AC$ at $Q,R$ respectively. Since $\angle BQC=\angle ABC$, it follows that the parallel through $A$ to $CQ$ intersects $BQ$ at $D$, and $E\in AP\cap BR$. As $\angle APB=\angle ABE$ implies

that $AB$ is tangent to circle $\odot (BPE)$, thus $AE\cdot AP=AB^2$ or $AE\cdot BC=AB^2\ (\ 1\ )$. Also $AR\cdot AC=AB^2$ or $BD\cdot AC=AB^2\ (\ 2\ )$ (as constructed, $BD=AR$). From

$(1)$ and $(2)$ with $\angle CAE=\angle CAP=\angle CBP=\angle CBD$ we get $\triangle CAE\sim\triangle CBD$, hence there is a spiral similarity centered at $C$, sending $A$ to $B$ and $E$ to $D$, thus being done.


PP21 (B.Komal). Prove that if $\alpha,\ \beta,\ \gamma$ are the angles of an acute-angled $\triangle ABC\ ,$ then $\tan^3\alpha+\tan^3\beta+\tan^3\gamma\ge 9\sqrt{3}\ .$

Proof. Denote $\tan\alpha=x\ ,\ \tan\beta=y\ ,\ \tan\gamma=z\ ,$ where $x+y+z=xyz$ and $\{\alpha ,\beta ,\gamma\}\subset \left(0,\frac {\pi}2\right)\implies$ $\{x,y,z\}\subset \mathbb R^*_{+}\equiv (0,\infty )\ .$

Thus, $xyz=x+y+z\ge 3\sqrt[3]{xyz}\implies$ $(xyz)^3\ge 27(xyz)\implies \boxed{xyz\ge 3\sqrt 3}\ (*)\ .$ Hence $x^3+y^3+z^3\ge 3xyz\ \stackrel{(*)}{\implies}\ x^3+y^3+z^3\ge 9\sqrt 3\ .$



PP22 (Ruben Dario). Let $\triangle ABC$ with incircle $w=\mathbb C\left(I,r\right)$ and $B$-excircle $w_b=\mathbb C\left(I_b,r_b\right).$ Denote $\left\{\begin{array}{ccc}
N & \in & BC\cap w_b\\\
R & \in & CA\cap w_b\\\
M & \in & AB\cap w_b\end{array}\right\|$ and $P\in MN\cap BR\ .$ Prove that $\frac {IC}{IA}=\sqrt{\frac {PM}{PN}}\ .$

Proof. Is well known that $:\ BM=BN=s\ ;\  RA=s-c\ ,\ RC=s-a$ and $IA^2=\frac{bc(s-a)}s$ a.s.o. Therefore, $\left(\frac {IC}{IA}\right)^2=\frac {a\cancel b(s-c)}{\cancel bc(s-a)}\implies$ $\boxed{\frac {IC}{IA}=\sqrt{\frac {a(s-c)}{c(s-a)}}}\ (1)$ Apply

a remarkable identity $\frac {RA}{RC}=\frac {PM}{PN}\cdot\frac {BA}{BC}\cdot\frac {BN}{BM}\iff$ $\frac {s-c}{s-a}=\frac {PM}{PN}\cdot\frac ca\cdot\frac ss\iff$ $\boxed{\frac {PM}{PN}=\frac {a(s-c)}{c(s-a)}}\ (2).$ In conclusion, from the relations $(1)$ and $(2)$ obtain the required identity.
This post has been edited 108 times. Last edited by Virgil Nicula, Nov 11, 2016, 9:19 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a