293. A difficult trigonometric equation (third point !).

by Virgil Nicula, Jun 28, 2011, 12:02 AM

Proposed problem.

$1\blacktriangleright$ Find all the values of $\theta$, in the range $0^{\circ} < \theta < 180^{\circ}$, for which $\cos \theta = \sin 4\theta$. Hence show that $\sin 18^{\circ} = \frac{1}{4}(\sqrt{5} -1)$ .

$2\blacktriangleright$ Given that $4\sin^{2}x+1=4\sin^{2}2x$, find all possible values of $\sin x$, giving your answers in the form $p+q\sqrt{5}$ where $\{p,q\}\subset\mathbb Q$ .

$3\blacktriangleright$ Find two values of $x$ with $0^{\circ} < x < 90^{\circ}$ for which $\sin^{2} 3x + \sin^{2} 5x = \sin^{2}6x\ (\alpha )$ . Solve complete the equation $(\alpha )$ .


Proof. I"ll use the well-known equivalencies :

$\{x,y\}\subset \mathbb R\implies\left\{\begin{array}{ccc}
\sin x=\sin y & \iff &  (x-y)\in 2\pi\mathbb Z\ \ \vee\ \ x+y\in \pi +2\pi\mathbb Z\\\\
\cos x=\cos y & \iff & (x\pm y)\in 2\pi\mathbb Z\\\\
\tan x=\tan y & \iff & (x-y)\in \pi\mathbb Z\end{array}\right\|$

In the particular case $\{x,y\}\subset (0,\pi )\implies\left\{\begin{array}{ccc}
\sin x=\sin y & \iff &  x=y\ \ \vee\ \ x+y=\pi\\\\
\cos x=\cos y & \iff & x=y\\\\
\tan x=\tan y & \iff & x=y\end{array}\right\|$

$1.1\blacktriangleright\ \sin 4x=\cos x\iff$ $\sin 4x=\sin\left(\frac {\pi}{2}-x\right)\iff$ $(\exists )\ k\in\mathbb Z$ so that $4x=2k\pi +\left(\frac {\pi}{2}-x\right)$

or $4x=(2k+1)\pi -\left(\frac {\pi}{2}-x\right)$ $\iff$ $(\exists )\ k\in\mathbb Z$ so that $x=\frac {(4k+1)\pi}{10}\ \ \vee\ \ x=\frac {(4k+1)\pi}{6}$ .

In the particular case $x\in \left[0,\pi \right]$ obtain that $\left\{\frac {\pi}{10},\frac {\pi}{6},\frac {\pi}{2},\frac {5\pi}{6},\frac {9\pi}{10}\right\}$ .

$1.2\blacktriangleright$ For $x=36^{\circ}$ have $5x=180^{\circ}$ , i.e. $x=\frac {\pi}{5}$ . Thus, $\sin 3x=\sin 2x\iff$ $\sin x\left(3-4\sin^2x\right)=2\sin x\cos x\iff$

$3-4\left(1-\cos^2 x\right)=2\cos x\iff$ $4\cos^2x-2\cos x-1=0\iff$ $\cos x=\frac {1+\sqrt 5}{4}$ , i.e. $\boxed{\cos 36^{\circ}=\frac {1+\sqrt 5}{4}}$ . Therefore,

$\cos 18^{\circ}=\sin 72^{\circ}=4\sin 18^{\circ}\cos 18^{\circ}\cos 36^{\circ}\implies$ $\boxed{4\sin 18^{\circ}\cos 36^{\circ}=1}\implies $ $\sin 18^{\circ}=\frac {1}{\sqrt 5+1}\implies \boxed{\sin 18^{\circ}=\frac {\sqrt 5-1}{4}}$ .

$2\blacktriangleright\ 4\sin^{2}x+1=4\sin^{2}2x\iff$ $4\left(\sin^22x-\sin^2x\right)=1\iff$ $4\sin 3x\sin x=1\iff$

$4\sin^2x\left(3-4\sin^2x\right)=1\iff$ $16\sin^4x-12\sin^2x+1=0\iff$ $\boxed{\sin x\in\left\{\frac {\pm 1\pm\sqrt 5}{4}\right\}}$ .

I used the identities $\left\{\begin{array}{c}
\sin 3x=\sin x\left(3-4\sin^2x\right)\\\\
\sin^2x-\sin^2y=\sin (x+y)\sin (x-y)\end{array}\right\|$ and $\boxed{\sqrt {a\pm\sqrt b}=\sqrt{\frac {a+\sqrt{a^2-b}}{2}}\pm\sqrt{\frac {a-\sqrt{a^2-b}}{2}}}$ .

Remark. I"ll solve directly this equation $4\sin^{2}x+1=4\sin^{2}2x$ . Thus, $4\sin^{2}x+1=4\sin^{2}2x\iff$

$2(1-\cos 2x)+1=$ $4\left(1-\cos^22x\right)\iff$ $4\cos^2x-2\cos 2x-1=0\iff$ $\cos 2x\in\left\{\frac {1\pm\sqrt 5}{4}\right\}$ . Appears two case :

$\odot\ \cos 2x=\frac {1-\sqrt 5}{4}\iff$ $\cos 2x=\sin (-18^{\circ})\iff$ $\cos 2x=\cos 108^{\circ}\iff$ $2x\in \pm 108^{\circ}+2\pi\mathbb Z\iff$ $\boxed{x\in \pm 54^{\circ}+\pi\mathbb Z}$ .

$\odot\ \cos 2x=\frac {1+\sqrt 5}{4}\iff$ $\cos 2x=\cos 36^{\circ}\iff$ $2x\in \pm 36^{\circ}+2\pi\mathbb Z\iff$ $\boxed{x\in \pm 18^{\circ}+\pi\mathbb Z}$ .

In conclusion, the solutions of the equation $4\sin^{2}x+1=4\sin^{2}2x$ are $x_k=\frac {(2k+1)\pi}{18^{\circ}}$ , where $k\in \mathbb Z$ and $5$ doesn't divide $k$ .


$3\blacktriangleright$ Observe that $\cos^218^{\circ}=$ $\frac 12\cdot\left(1+\cos 36^{\circ}\right)=$ $\frac 12\cdot\left(1+\frac {1+\sqrt 5}{4}\right)=$ $\frac {5+\sqrt 5}8$ . The equation $\alpha$ is equivalently with

$(1-\cos 6x)+(1-\cos 10x)=(1-\cos 12x)\iff$ $1+\cos 12x=\cos 6x+\cos 10x\iff$ $\boxed{\cos^26x=\cos 2x\cos 8x}\ (*)$ .

The equation $\alpha$ is equivalently too with $\sin^25x=\sin^26x-\sin^23x\iff$ $\boxed{\ \sin^25x=\sin 3x\sin 9x\ }\ (**)$ .

The values $\boxed{x_1=6^{\circ}}$ , $\boxed{x_2=66^{\circ}}$ , $\boxed{x_3=42^{\circ}}$ and $\boxed{x_4=78^{\circ}}$ verify the equation $(\alpha )$ , i.e. the equation $(**)$ . Indeed,

$\boxed{\begin{array}{c}
<\ \underline{x_1=6}^{\circ}\ >\\\\
\sin^230^{\circ}=\sin 18^{\circ}\sin 54^{\circ}\\\\
1=4\sin 18^{\circ}\cos 36^{\circ}\\\\
\mathrm{O.K.}\end{array}}$ $\mathrm{\ \wedge\ }$ $\boxed{\begin{array}{c}
<\ \underline{x_2=66}^{\circ}\ >\\\\
\sin^2330^{\circ} =\sin 198^{\circ}\sin 594^{\circ}\\\\
\sin^230^{\circ}=\sin 18^{\circ}\sin 54^{\circ}\\\\
1=4\sin 18^{\circ}\cos 36^{\circ}\\\\
\mathrm{O.K.}\end{array}}$ $\mathrm{\ \wedge\ }$ $\boxed{\begin{array}{c}
<\ \underline{x_3=42}^{\circ}\ >\\\\
\sin^2210^{\circ}=\sin 126^{\circ}\sin 378^{\circ}\\\\
\sin^230^{\circ}=\sin 54^{\circ}\sin 18^{\circ}\\\\
1=4\sin 18^{\circ}\cos 36^{\circ}\\\\
\mathrm{O.K.}\end{array}}$ $\mathrm{\ \wedge\ }$ $\boxed{\begin{array}{c}
<\ \underline{x_4=78}^{\circ}\ >\\\\
\sin^2390^{\circ}=\sin 234^{\circ}\sin 702^{\circ}\\\\
\sin^230^{\circ}=\sin 54^{\circ}\sin 18^{\circ}\\\\
1=4\sin 18^{\circ}\cos 36^{\circ}\\\\
\mathrm{O.K.}\end{array}}$

Remark (entertainment). The values $x_k=-6^{\circ}\cdot k^2+54^{\circ}\cdot k-42^{\circ}$ for $k\in \overline {1,8}$ make up the set $\left\{6^{\circ},42^{\circ},66^{\circ},78^{\circ}\right\}$ .

Consider the equation $z^4+1=0$ with the roots $z_k\ ,\ k\in\overline{0,3}$ . Prove easily that $\arg\left(z_k\right)=\frac {(2k+1)\pi}{4}$ , where $k\in\overline{0,3}$ verify the equation $(\alpha )$ .

In conclusion, the values $\boxed{\ \left\{6^{\circ},42^{\circ},45^{\circ},66^{\circ},78^{\circ}\right\}\subset\left(0,90^{\circ}\right)\ }$ verify the equation $(\alpha )$ . I"ll try to find all solutions of this equation.

$\blacksquare\blacktriangleright$ Observe that the period of the equation $(\alpha )$ or $(*)$ is $T=\pi$ . Therefore, I"ll find its solutions in $[0,\pi )$ . Prove easily that exists the implication

$\boxed{z=\cos x+i\cdot \sin x\implies\cos nx=\frac {z^{2n}+1}{2 z^n}}$ , where $n\in\mathbb N$ . Thus the equation $(*)$ becomes a reciprocal polynomial equation over $\mathbb C\ :$

$\left(\frac {z^{12}+1}{z^6}\right)^2=\frac {z^4+1}{z^2}\cdot\frac {z^{16}+1}{z^8}\iff$ $\left(z^{12}+1\right)^2=z^2\left(z^4+1\right)\left(z^{16}+1\right)\iff$

$\left(z^4+1\right)^2\left(z^8-z^4+1\right)^2=z^2\left(z^4+1\right)\left(z^{16}+1\right)\iff$ $\boxed{z^4+1=0}\ \ \vee\ \ \left(z^4+1\right)\left(z^8-z^4+1\right)^2=z^2\left(z^{16}+1\right)$ , i.e.

$\left(z^2+\frac {1}{z^2}\right)\left(z^4+\frac {1}{z^4}-1\right)^2=z^8+\frac {1}{z^8}\ (1)$ . Denote $\boxed{z+\frac 1z=t}$ and $S_n=z^n+\frac {1}{z^n}$ for any $n\in\mathbb N$ . So $\boxed{S_{n+2}=t\cdot S_{n+1}-S_n}$ , where show :

$\left\{\begin{array}{ccc}
S_0 & = & 2\\\\
S_1 & = & t\\\\
S_2 & = & t^2-2\\\\
S_3 & = & t^3-3t\\\\
S_4 & = & t^4-4t^2+2\end{array}\right\|$ and $\left\{\begin{array}{ccc}
S_5 & = & t^5-5t^3+5t\\\\
S_6 & = & t^6-6t^4+9t^2-2\\\\
S_7 & = & t^7-7t^5+14t^3-7t\\\\
S_8 & = & t^8-8t^6+20t^4-16t^2+2\end{array}\right\|$ . So the equation $(1)$ becomes $S_2\cdot\left(S_4-1\right)^2=S_8$ $\iff$

$\left(t^2-2\right)\cdot\left(t^4-4t^2+1\right)^2=t^8-8t^6+20t^4-16t^2+2\ \ (2)$ . Denote $\boxed {t^2=u}$ . Thus, the equation $(2)$ becomes

$(u-2)(u^2-4u+1)^2=u^4-8u^3+20u^2-16u+2\iff$ $u^5-11u^4+42u^3-64u^2+33u-4=0\iff$

$(u-4)\left(u^4-7u^3+14u^2-8u+1\right)=0\iff$ $\boxed {u=4}$ or $u^4-7u^3+14u^2-8u+1=0$ , i.e. $\boxed{f(u)\equiv u(u-1)(u-2)(u-4)+1=0}\ (3)$ .

For $u=4$ obtain $z+\frac 1z=t\in\{\pm 2\}\implies$ $z\in \{\pm 1\}$ , i.e. $x\in\{0,\pi\}$ .

Prove easily that $u^4-7u^3+14u^2-8u+1=0\iff$ $\left(2u^2-7u+3\right)^2-5(u-1)^2=0\iff$

$\left[\left(2u^2-7u+3\right)-(u-1)\sqrt 5\right]\cdot\left[\left(2u^2-7u+3\right)+(u-1)\sqrt 5\right]=0\iff$

$\left[2u^2-\left(7+\sqrt 5\right)u+\left(3+\sqrt 5\right)\right]\cdot\left[2u^2-\left(7-\sqrt 5\right)u+\left(3-\sqrt 5\right)\right]=0\ (\beta )$ .

$\blacktriangleright\ \boxed{x_1+x_2}=4\left(\cos^26+\cos^266\right)=$ $2(2+\cos 12+\cos 132)=$ $2(2+2\cos 60\cos 72)=2(2+\sin 18)=$ $4+\frac {-1+\sqrt 5}{2}=$ $\boxed{\frac {7+\sqrt 5}{2}}$ .

$\boxed{x_1x_2}=16\cos^26\cos^266=$ $(4\cos 6\cos 66)^2=$ $[2(\cos 60+\cos 72)]^2=$ $(1+2\sin 18)^2=$ $\left(1+\frac {-1+\sqrt 5}{2}\right)^2=$ $\boxed{\frac {3+\sqrt 5}{2}}$ .

Observe that $x_1$ , $x_2$ are roots of equation $\boxed{2u^2-\left(7+\sqrt 5\right)u+\left(3+\sqrt 5\right)=0}$ - the first factor in $(\beta )$ and $\boxed{\begin{array}{c}
x_1=4\cos^26=\frac {7+\sqrt 5+\sqrt {6\left(5+\sqrt 5\right)}}{4}\\\\
x_2=4\cos^266=\frac {7+\sqrt 5-\sqrt {6\left(5+\sqrt 5\right)}}{4}\end{array}}$ .

$\blacktriangleright\ \boxed{x_3+x_4}=4\left(\cos^242+\cos^278\right)=$ $2(2+\cos 84+\cos 156)=$ $2(2+2\cos 120\cos 36)=2(2-\sin 36)=$ $4-\frac {1+\sqrt 5}{2}=\boxed{\frac {7-\sqrt 5}{2}}$ .

$\boxed{x_3x_4}=16\cos^242\cos^278=$ $(4\cos 42\cos 78)^2=$ $[2(\cos 120+\cos 36)]^2=$ $(-1+2\cos 36)^2=$ $\left(-1+\frac {1+\sqrt 5}{2}\right)^2=$ $\boxed{\frac {3-\sqrt 5}{2}}$ .

Observe that $x_3$ , $x_4$ are roots of equation $\boxed{2u^2-\left(7-\sqrt 5\right)u+\left(3-\sqrt 5\right)=0}$ - the second factor in $(\beta )$ and $\boxed{\begin{array}{c}
x_3=4\cos^242=\frac {7-\sqrt 5+\sqrt {6\left(5-\sqrt 5\right)}}{4}\\\\
x_4=4\cos^278=\frac {7-\sqrt 5-\sqrt {6\left(5-\sqrt 5\right)}}{4}\end{array}}$ .

In conclusion, the solution from $\left[0,\pi\right)$ of the equation $(\alpha )$ or $(*)$ is $S=\left\{0^{\circ} ,6^{\circ},42^{\circ},45^{\circ},66^{\circ},78^{\circ}, 135^{\circ}\right\}$ . Finally, the solution from $\mathbb R$ is $\cup_{s\in S}(s+\pi Z)$ .

Remarks (entertainment).

$\blacktriangleright\ z=\cos 6^{\circ}+i\cdot\sin 6^{\circ}\implies$ $t=z+\frac 1z=2\cos 6^{\circ}\implies$ $u=t^2=4\cos^2 6^{\circ}$ verifies the equation $(3)$ . Indeed ,

$f\left(4\cos^26^{\circ}\right)\ =\ \left\{\begin{array}{c}
4\cos^26^{\circ}\left(4\cos^26^{\circ}-1\right)\left(4\cos^26^{\circ}-2\right)\left(4\cos^26^{\circ}-4\right)+1=\\\\
4\cos^26^{\circ}\cdot 4\left(\sin^284^{\circ}-\sin^230^{\circ}\right)\cdot 2\cos 12^{\circ}\cdot\left(-4\sin^26^{\circ}\right)+1=\\\\
1-128\cos^26^{\circ}\sin 114^{\circ}\sin 54^{\circ}\cos 12^{\circ}\sin^26^{\circ}=\\\\
1-32\sin^212^{\circ}\sin 66^{\circ}\cos 36^{\circ}\cos 12^{\circ}=\\\\
1-16\sin 12^{\circ}\sin 24^{\circ}\cos 24^{\circ}\cos 36^{\circ}=\\\\
1-8\sin 12^{\circ}\sin 48^{\circ}\cos 36^{\circ}=\\\\
1-4\cos 36^{\circ}(\cos 36^{\circ}-\cos 60^{\circ})=\\\\
4\cos^2 36^{\circ}-2\cos 36^{\circ}-1=0\\\\
\mathrm{because}\ \cos 36^{\circ}=\frac {1+\sqrt 5}{4}\\\\
\mathrm{O.K.}\end{array}\right\|$

$\blacktriangleright\ z=\cos 42^{\circ}+i\cdot\sin 42^{\circ}\implies$ $t=z+\frac 1z=2\cos 42^{\circ}\implies$ $u=t^2=4\cos^2 42^{\circ}$ verifies the equation $(3)$ . Indeed ,

$f\left(4\cos^242^{\circ}\right)\ =\ \left\{\begin{array}{c}
4\cos^242^{\circ}\left(4\cos^242^{\circ}-1\right)\left(4\cos^242^{\circ}-2\right)\left(4\cos^242^{\circ}-4\right)+1=\\\\
1-4\cos^242^{\circ}\cdot 4\left(\sin^248^{\circ}-\sin^230^{\circ}\right)\cdot 2\cos 84^{\circ}\cdot 4\sin^242^{\circ}=\\\\
1-\sin^284^{\circ}\cdot 4\sin 78^{\circ}\sin 18^{\circ}\cdot 8\cos 84^{\circ}=\\\\
1-32\cos^26^{\circ}\cos 12^{\circ}\sin 18^{\circ}\sin 6^{\circ}=\\\\
1-16\cos 6\sin 12^{\circ}\cos 12^{\circ}\sin 18^{\circ}=\\\\
1-8\cos 6^{\circ}\sin 24^{\circ}\sin 18^{\circ}=\\\\
4\sin 18^{\circ}+2\sin 18^{\circ}-1=0\\\\
\mathrm{because}\ \sin 18^{\circ}=\frac {-1+\sqrt 5}{4}\\\\
\mathrm{O.K.}\end{array}\right\|$

$\blacktriangleright\ z=\cos 66^{\circ}+i\cdot\sin 66^{\circ}\implies$ $t=z+\frac 1z=2\cos 66^{\circ}\implies$ $u=t^2=4\sin^2 24^{\circ}$ verifies the equation $(3)$ . Indeed ,

$f\left(4\sin^224^{\circ}\right)\ =\ \left\{\begin{array}{c}
4\sin^224^{\circ}\left(4\sin^224^{\circ}-1\right)\left(4\sin^224^{\circ}-2\right)\left(4\sin^224^{\circ}-4\right)+1=\\\\
4\sin^224^{\circ}\cdot 4\left(\sin^224^{\circ}-\sin^230^{\circ}\right)\cdot 2\cos 48^{\circ}\cdot 4\cos^224^{\circ}+1=\\\\
1-128\sin^224^{\circ}\sin 54^{\circ}\sin 6^{\circ}\cos 48^{\circ}\cos^224^{\circ}=\\\\
1-32\sin^248^{\circ}\sin 54^{\circ}\sin 6^{\circ}\cos 48^{\circ}=\\\\
1-16\sin 48\sin 96^{\circ}\cos 36^{\circ}\sin 6^{\circ}=\\\\
1-16\sin 48\cos 6^{\circ}\cos 36^{\circ}\sin 6^{\circ}=\\\\
1-8\sin 48^{\circ}\sin 12^{\circ}\cos 36^{\circ}=\\\\
1-4\left(\cos 36^{\circ}-\cos 60^{\circ}\right)\cos 36^{\circ}=\\\\
4\cos^236^{\circ}-2\cos 36^{\circ}-1=0\\\\
\mathrm{because}\ \cos 36^{\circ}=\frac {1+\sqrt 5}{4}\\\\
\mathrm{O.K.}\end{array}\right\|$

$\blacktriangleright\ z=\cos 78^{\circ}+i\cdot\sin 78^{\circ}\implies$ $t=z+\frac 1z=2\sin 12^{\circ}\implies$ $u=t^2=4\sin^212^{\circ}$ verifies the equation $(3)$ . Indeed ,

$f\left(4\sin^212^{\circ}\right)\ =\ \left\{\begin{array}{c}
4\sin^212^{\circ}\left(4\sin^212^{\circ}-1\right)\left(4\sin^212^{\circ}-2\right)\left(4\sin^212^{\circ}-4\right)+1=\\\\
4\sin^212^{\circ}\left(1-2\cos 24^{\circ}\right)\left(-2\cos 24^{\circ}\right)\left(-4\cos^212^{\circ}\right)+1=\\\\
32\sin^212^{\circ}\cos^212^{\circ}\cos 24^{\circ}\left(1-2\cos 24^{\circ}\right)+1=\\\\
8\sin ^224^{\circ}\cos 24^{\circ}\left(1-2\cos 24^{\circ}\right)+1=\\\\
4\sin 24^{\circ}\sin 48^{\circ}\left(1-2\cos 24^{\circ}\right)+1=\\\\
4\sin 24^{\circ}\cos 42^{\circ}-8\sin 24^{\circ}\cos 24^{\circ}\sin 48^{\circ}+1=\\\\
4\sin 24^{\circ}\sin 48^{\circ}-4\sin^248^{\circ}+1=\\\\
-4\sin 48^{\circ}\left(\sin 48^{\circ}-\sin 24^{\circ}\right)+1=\\\\
-8\sin 48^{\circ}\sin 12^{\circ}\cos 36^{\circ}+1=\\\\
-4\left(\cos 36^{\circ}-\cos 60^{\circ}\right)\cos 36^{\circ}+1=\\\\
-\left(4\cos^236^{\circ}-2\cos 36^{\circ}-1\right)=0\\\\
\mathrm{because}\ \cos 36=\frac {1+\sqrt 5}{4}\\\\
\mathrm{O.K.}\end{array}\right\|$ .

Observe that $4\cos^26^{\circ} \cdot 4\cos^242^{\circ}\cdot 4\cos^266^{\circ}\cdot 4\cos^278^{\circ}=1\iff$ $4(2\cos 6^{\circ}\cos 66^{\circ})(2\cos 42^{\circ}\cos 78^{\circ})=1\iff$

$2(\cos 72^{\circ}+\cos 60^{\circ})\cdot 2(\cos 36^{\circ}+\cos 120^{\circ})=1\iff$ $(1+2\cos 72^{\circ})(-1+2\cos 36^{\circ})=1\iff$ $(1+2\sin 18^{\circ})(2\cos 36^{\circ}-1)=1\iff$

$\left(1+\frac {-1+\sqrt 5}{2}\right)\left(\frac {1+\sqrt 5}{2}-1\right)=1\iff$ $(1+\sqrt 5)(\sqrt 5-1)=1$ , what is truly. In conclusion, $\boxed{\cos 6^{\circ} \cos 42^{\circ}\cos 66^{\circ}\cos 78^{\circ}=\frac {1}{16}}$ .

Proof. Prove easily that the identity $4\cos\left(60^{\circ}-x\right)\cdot\cos x\cdot\cos\left(60^{\circ}+x\right)=\cos 3x\ (*)$ . Thus, $\cos 6^{\circ}\cdot\cos 42^{\circ}\cdot\cos 66^{\circ}\cdot\cos 78^{\circ}=$

$\frac{1}{4\cos \left(60^{\circ}-6^{\circ}\right)}\cdot 4\cos\left(60^{\circ}-6^{\circ}\right)\cdot\cos 6^{\circ}\cdot\cos\left(60^{\circ}+6^{\circ}\right)\cdot\cos 42^{\circ}\cdot\cos 78^{\circ}=$ $\frac{1}{4\cos 54^{\circ}}\cdot\cos3\left(6^{\circ}\right)\cdot\cos 42^{\circ}\cdot\cos 78^{\circ}=$

$\frac{1}{16\cos 54^{\circ}}\cdot 4\cos \left(60^{\circ}-18^{\circ}\right)\cdot\cos 18^{\circ}\cdot\cos \left(60^{\circ}+18^{\circ}\right)=$ $\frac{1}{16\cos 54^{\circ}}\cdot \cos 3\left(18^{\circ}\right)=$ $\frac{1}{16}$ . A proof of the identity $(*)$ . $\cos 3x=$

$\cos x\left(4\cos^2x-3\right)=$ $4\cos x\left(\cos^2x-\cos^230^{\circ}\right)=$ $4\cos x\left(\sin ^230^{\circ}-\sin^2x\right)=$ $4\cos x\sin(30^{\circ}+x)\sin (30^{\circ}-x)=$

$4\cos\left(60^{\circ} -x\right)\cdot\cos x\cdot\cos\left(60^{\circ}+x\right)$ .I used the well-known identity $\sin^2x-\sin^2y=\sin (x+y)\sin (x-y)$ . Another proof of the identity $(*)$ .

$4\cos\left(60^{\circ} -x\right)\cdot\cos x\cdot\cos\left(60^{\circ}+x\right)\iff$ $2\cos x\left(\cos 2x-\frac 12\right)=$ $2\cos x\cos 2x-\cos x=$ $\cos 3x+\cos x-\cos x=$ $\cos 3x$ .



PP4. Solve the equation $ \sin^{8}x+\cos^{8}x=\frac{41}{128} $ , where $x\in \mathbb R$ .

Proof. $ \sin^{8}x+\cos^{8}x=\frac{41}{128}\iff $ $128\left(\sin ^8x+\cos^8x\right)=41\left(\sin^2x+\cos^2x\right)^4\stackrel{\left(\tan^2x=t>0\right)}{\iff}$ $128\left(t^4+1\right)=41(t^2+2t+1)^2\iff$

$128\left(t^2+\frac {1}{t^2}\right)=41\left(t+\frac 1t+2\right)^2$ $\stackrel{(t+\frac 1t=y\ge 2)}{\iff}$ $128\left(y^2-2\right)=41(y+2)^2\iff$ $87y^2-164y-420=0\iff$ $(3y-10)(29y+140)=0\ ,$

$y\ge 2$ . Therefore, $y=\frac {10}{3}\iff$ $t+\frac 1t=\frac {10}{3}\iff$ $t\in\left\{\frac 13,3\right\}\iff$ $\tan^2x\in\left\{\frac 13,3\right\}$ . Since $\cos 2x=\frac {1-\tan^2x}{1+\tan^2x}$ , obtain that $\cos 2x\in\left\{\pm\frac 12\right\}$ .

In conclusion, $x\in\left(\pm\frac {\pi}{6}+\pi\mathbb Z\right)\cup\left(\pm\frac {\pi}{3}+\pi\mathbb Z\right)$ , i.e. shortly $x\in\left\{\left|\ \frac {k\pi}{6}\ \right|\ k\in\mathbb Z\ ,\ 3\nmid k\ \right\}$ .



PP5. Solve the cubic equation $4x^3 - 3x + \dfrac{\sqrt{6} - \sqrt{2}}{4} = 0$ .

Proof. $\frac{\sqrt{6} - \sqrt{2}}{4}=$ $\frac {\sqrt 3}{2}\cdot\frac {\sqrt 2}{2}-$ $\frac {\sqrt 2}{2}\cdot\frac 12=$ $\sin 60^{\circ}\cos 45^{\circ}-\sin 45^{\circ}\cos 60^{\circ}=$ $\sin (60^{\circ}-45^{\circ})$ $\implies$ $\sin\frac {\pi}{12}=\frac{\sqrt{6} - \sqrt{2}}{4}$ .

Observe that $\left\{\begin{array}{ccccc}
4x^3-3x\le 1 & \iff & 4x^3-3x-1\le 0 & \iff & (x-1)(2x+1)^2\le 0\\\\
4x^3-3x\ge -1 & \iff & 4x^3-3x+1\ge 0 & \iff & (x+1)(2x-1)^2\le 0\end{array}\right\|\ (*)$ . Thus,

our equation becomes $3x-4x^3=\sin\frac {\pi}{12}\in [-1,1]$ $\stackrel{(*)}{\implies}$ $x\in [-1,1]\implies$ $(\exists )\ \phi\in \left[-\frac {\pi}{2},\frac {\pi}{2}\right]$ so that $\sin\phi =x$ .

Since $\sin 3\phi =3\sin \phi-4\sin^3\phi$ obtain that the initial equation is equivalently with the trigonometrical equation

$\boxed{\ \sin 3\phi=\sin\frac {\pi}{12}\ }$ , where $\phi\in\left[-\frac {\pi}{2},\frac {\pi}{2}\right]$ . In conclusion, the roots of this equation are $\left\{-\frac {13\pi}{36},\frac {\pi}{36},\frac {11\pi}{36}\right\}$ and

the roots of the initial equation are $\left\{\begin{array}{ccccc}
x_1 & = & -\sin\frac {13\pi}{36} & = & \cos\frac {31\pi}{36}\\\\
x_2 & = & \sin\frac {\pi}{36} & = & \cos\frac {17\pi}{36}\\\\
x_3 & = & \sin \frac {11\pi}{36} & = & \cos\frac {7\pi}{36}\end{array}\right\|$ .
This post has been edited 171 times. Last edited by Virgil Nicula, Nov 21, 2015, 12:39 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a