327. Some geometrical/algebraic extremum problems.

by Virgil Nicula, Oct 31, 2011, 7:52 AM

PP1. Prove that in an isosceles triangle $ \triangle ABC$ with $ AC = BC = b$ following inequality holds $ \frac br > 1 + \sqrt 5 > \pi$, where $ r$ is inradius.

Proof 1. Observe that $ \frac br = \frac {b}{\frac c2}\cdot\frac {\frac c2}{r} = \frac {1}{\cos A}\cdot\frac {1}{\tan\frac A2} = f\left(\tan\frac A2\right)$ , where $ f\ : \ (0,1)\ \rightarrow\ \mathbb R$ , $ f(t) = \frac {t^2 + 1}{t - t^3}$ . Prove (with derivatives) that for any $ t\in (0,1)$

we have $ f(t)\ge f\left(\sqrt {\sqrt 5 - 2}\right) = \frac {\sqrt 5 - 1}{(3 - \sqrt 5)\sqrt {\sqrt 5 - 2}}$ . But $ \sqrt {\sqrt 5 - 2} < \frac 12$ . Thus $ f(t) > \frac {2(\sqrt 5 - 1)}{3 - \sqrt 5} = \frac {(\sqrt 5 - 1)(3 + \sqrt 5)}{2} = \sqrt 5 + 1 > \pi$ .

Remark. If the triangle $ ABC$ is no acute, then $ \frac br\ge 2+\sqrt 2>1+\sqrt 5>\pi$ . This $ \sqrt {10}$ is a good idea and yet $ 1 + \sqrt 5 > \sqrt {10}\ !$

Proof 2. $ a = b\implies \left\|\begin{array}{c} p = \frac {2b + c}{2} \\
 \\
p - a = p - b = \frac c2 \\
 \\
p - c = \frac {2b - c}{2}\end{array}\right\|$ and $ pr^2 = (p - a)(p - b)(p - c)\implies$ $ r^2 = \frac {c^2(2b - c)}{4(2b + c)}$ . We"ll show $ \boxed {\ b > r\sqrt {10}\ }$ , i.e. $ b^2 > 10r^2$ $ \Longleftrightarrow$

$ 2b^2(2b + c) > 5c^2(2b - c)$ $ \Longleftrightarrow$ $ 4b^3 + 2b^2c - 10bc^2 + 5c^3 > 0$ for any $ 0 < c < 2b$ (inequality of triangle : $ a + b > c\implies 2b > c$ ). Denote $ t = \frac bc > \frac 12$ .

Obtain $ 4t^3 + 2t^2 - 10t + 5 > 0$ for any $ t > \frac 12$ . Let $ x = 2t - 1 > 0$ , i.e. $ t: = \frac {x + 1}{2}$ . Obtain $ x^3 + (4x^2 - 5x + 2) > 0$ for any $ t > 0$. It is truly because $ x^3 > 0$

and the discriminant $ \Delta$ of $ 4x^2 - 5x + 2 = 0$ is $ \Delta = ( - 5)^2 - 4\cdot 4\cdot 2 = - 7 < 0$ (negative), i.e $ 4x^2 - 5x + 2 > 0$ . So, $ \frac br > \sqrt {10} > \pi$ , i.e. $ b > \pi\cdot r$ .

Remark. I like this problem. We can find a better approximation if consider the hexagon $ MNUVXY$ which is circumscribed to the incircle and $ \left\|\begin{array}{c} \{M,N\}\subset (CA)\\\\
\{U,V\}\subset (AB)\\\\
\{X,Y\}\subset (BC)\end{array}\right\|$ so that $ \left\|\begin {array}{c} MY\parallel AB\\\\
NU\parallel CB\\\\
VX\parallel CA\end{array}\right\|$ . Observe that $ \left\|\begin{array}{c} MY = UV = \frac {c(p - c)}{p}\\\\
XV = MN = \frac {b(p - b)}{p}\\\\
NU = XY = \frac {a(p - a)}{p}\end{array}\right\|$ and the semiperimeter of this hexagon is greater than the semiperimeter of the incircle, i.e. $ \sum \frac {a(p - a)}{p} > \pi\cdot r$ .

Directly, $ \sum \frac {a(p - a)}{p}=\frac {2r(4R+r)}{p}\ge \frac {2r}{p}\cdot p\sqrt 3=2r\sqrt 3>\pi\cdot r$ .



PP2. (USAMTS 2009 Round 2 #5). Let $\triangle ABC$ with the circumcircle $w$ and $b=4$ , $c=3$ . For $P\in (BC)$ denote $\{A,Q\}=AP\cap w$ . Prove that $PQ\le \frac{25}{4\sqrt{6}}$ .

Proof. First we set up a coordinate system with $A(0, 0)$ , $  B(3, 0)$ , $C(0, 4)$ . Try to come up with an expression in $m(\angle QAB) = \theta$ for $PQ$ . First we find the polar equation for

the circumcircle of $ABC$ , then find the polar equation for line $BC$ , then subtract the two values of $r$ to get length $PQ$ . For the circumcircle of $ABC$ the rectangular equation is

$(x-1.5)^2 +(y -2)^2 = 6.25$ . We then let $\left\{\begin{array}{c}
x = r \cos \theta\\\
y = r \sin \theta\end{array}\right\|$ and expand in $(r \cos \theta - 1.5)^2 + (r \sin \theta - 2)^2= 6.25$ $\iff$ $r^2 \cos^2 \theta + r^2 \sin^2 \theta - $

$3r \cos \theta - 4r \sin \theta + 2.25 + 4= 6.25$ $\iff$ $r^2 - (3 \cos \theta + 4 \sin \theta)r + 6.25= 6.25$ $\iff$ $r= 3 \cos \theta + 4 \sin \theta$ $\iff$ $r = AQ= 3\cos \theta + 4 \sin \theta$ .

Now to find the equation for line $BC$, the rectangular equation is $4x + 3y = 12$, and again we have to plug in $\left\{\begin{array}{c}
x = r \cos \theta\\\
y = r \sin \theta\end{array}\right\|\implies$ $\left\{\begin{array}{c}
4(r \cos \theta) + 3(r \sin \theta)= 12\\\\
r(4 \cos \theta + 3 \sin \theta)= 12\\\\
r = AP=\frac{12}{4 \cos \theta + 3 \sin \theta}\end{array}\right\|$ . We subtract

the second from the first : $PQ= AQ - AP=$ $ 3 \cos \theta + 4 \sin \theta -\frac{12}{4 \cos \theta + 3 \sin \theta}=$ $\frac{(3 \cos \theta + 4 \sin \theta)(4 \cos \theta + 3 \sin \theta) - 12}{4 \cos \theta + 3 \sin \theta}=$ $\frac{25 \cos \theta \sin \theta}{4 \cos \theta + 3 \sin \theta}$ . We know that

$\frac{25 \cos \theta \sin \theta}{4 \cos \theta + 3 \sin \theta}=$ $\frac{25}{\frac{4}{\sin\theta}+\frac{3}{\cos\theta}}\leq $ $\frac{25}{2\sqrt{\frac{24}{2\sin\theta\cos\theta}}}=$ $\frac{25}{4\sqrt{\frac{6}{\sin2\theta}}}\leq$ $\frac{25}{4\sqrt{6}}$ . We used inequality twice, once when we assumed $\sin2\theta\leq1$ and once when we assumed

$\frac{4}{\sin\theta}+\frac{3}{\cos\theta}\ge 2\sqrt{\frac{12}{\sin\theta\cos\theta}}$. The first equality happens when $\sin\theta=\frac{\sqrt{2}}{2}$ and the second equality happens only when $\sin\theta=\frac{4}{5}$. Since they can't happen simultaneously,

the $\leq$ is actually a $<$ sign. In the original problem, it was in fact $PQ<\frac{25}{4\sqrt{6}}$ , not $PQ\leq\frac{25}{4\sqrt{6}}$ .


Lemma. $\min\left\{\ \frac ax\ +\ \frac by\ \right|\left|\ x>0\ ,\ y>0\ ,\  x^2\ +\ y^2=1\ \right\}=\left(a^{\frac 23}+b^{\frac 23}\right)^{\frac 32}$ , $a>0$ and $b>0$ .

Proof 1. For $a=b$ is easily ! Indeed, can suppose w.l.o.g. that $a=b=1$ . Denote $x+y=t$ . Prove easily $(^*)$ that $t\in \left[1,\sqrt 2\right]$ . Thus, $\frac 1x+\frac 1y$ is min. $\iff$

$\frac {xy}{x+y}$ is max. $\iff$ $\frac {t^2-1}{2t}$ is max. $\iff$ $f(x)=t-\frac 1t$ is max. The function $f$ is $\nearrow$ (strict increasing) on $\left[0,\sqrt 2\right]$ . In conclusion, this function is max. $\iff$

$t=\sqrt 2$ , i.e. $x=y=\frac {\sqrt 2}{2}$ . What happen if $a\ne b$ ? This is the actual problem. Answer. $\frac ax+\frac by\ge \left(\sqrt[3]{a^2}+\sqrt [3]{b^2}\right)^{\frac 32}$ with equality iff $\frac xy=\sqrt[3]{\frac ab}$ .

$(^*)$ Remark. $1\le 1+2xy=\left(x^2+y^2\right)+2xy=(x+y)^2\le$ $2\left(x^2+y^2\right)=2\implies 1\le x+y\le\sqrt 2$ .

Proof 2. Apply the Holder's inequality which works quite nicely in this case, indeed, we need to establish

the following $\left(\frac{a}{x}+\frac{b}{y}\right)\left(\frac{a}{x}+\frac{b}{y}\right)\left(x^2+y^2\right) \ge$ $ \left(\sqrt[3]{a^2}+\sqrt[3]{b^2}\right)^3$ $\implies$ $\frac{a}{x}+\frac{b}{y}\ \ge\ \left(a^{\frac 23}+b^{\frac 23}\right)^{\frac 32}$ .


Extension. Let $A$-right $\triangle ABC$ with circumcircle $w=C(O,R)$ , $b\ne c$ . For $P\in (BC)$ denote

$\{A,Q\}=AP\cap w$ . Prove that $PQ$ is maximum $\iff \frac {PB}{PC}=\sqrt [3]{\left(\frac cb\right)^2}\iff \tan\widehat{PAB}=\sqrt[3]{\frac bc}$ .


Proof. Let $m\left(\widehat{BAP}\right)=x$ . From $BQ=2R\cdot \sin x$ and the Sinus' theorem in $\triangle PBQ\ :\ \frac{PQ}{\cos x}=\frac {BQ}{\sin (B+x)}
\implies$ $\boxed{PQ=2R\cdot\frac {\sin x\cos x}{\sin (B+x)}}$ .

So, $PQ$ is $\max \iff$ $\frac {\sin (B+x)}{\sin x\cos x}$ is $\min \iff$ $\left(\frac {\sin B}{\sin x}+\frac {\cos B}{\cos x}\right)$ is $\min \iff$ $\tan x=\sqrt [3]{\frac bc}\iff\frac {PB}{PC}=\frac cb\cdot\tan x=\sqrt [3]{\left(\frac cb\right)^2}$ . Thus,

$\boxed{PQ\ \le \ \frac {a^2}{\left(b^{\frac 23}+c^{\frac 23}\right)^{\frac 32}}}\ <\ \frac {a^2}{\left(2\sqrt{(bc)^{\frac 23}}\right)^{\frac 32}}$ $=\frac {a^2}{2^{\frac 32}\sqrt {bc}}$ . In the particular case $c=3$ and $b=4$ obtain $PQ\ \le\ \frac {25}{4\sqrt 6}$ .



PP3. Find minimum value of $f(x)=\sqrt{4x^2-12x+13}+\sqrt{4x^2-28x+53}$ .

Proof 1 (algebraic). Using $\sqrt{a^2+1} \ge \frac{|a|+1}{\sqrt{2}}$ with equality when $a=1$ and $|x-p|+|x-q| \ge |q-p|$ with equality when $x =\frac{p+q}{2}$ obtain

that $\sqrt{4\left(x-\frac{3}{2}\right)^2+4}+\sqrt{4\left(x-\frac{7}{2}\right)^2+4}=$ $2\left[\sqrt{\left(x-\frac{3}{2}\right)^2+1}+\sqrt{\left(x-\frac{7}{2}\right)^2+1}\right]\ge$ $\frac{2}{\sqrt{2}}\left(\left| x-\frac{3}{2}\right|+\left|x-\frac{7}{2}\right|+2\right)\ge 4\sqrt{2}$

with equality when $\left|x-\frac{3}{2}\right|=\left|x-\frac{7}{2}\right|=1$ and $x=\frac{1}{2}\cdot\left(\frac{3}{2}+\frac{7}{2}\right)\ \iff\ x _{\mathrm{min}}= \frac{5}{2}$ .

Proof 2 (geometric). Consider $A\left(\frac 32,1\right)$ , $B\left(\frac 72,1\right)$ and a mobile point $X(x,0)\in x'x$-axis. Denote symmetrical $A'$ of $A$ w.r.t. $x'x$-axis and $D\in A'B\cap x'x$ .

Observe that $XA+XB=f(x)$ and $f(x)$ is minimum $\iff$ $XA+XB$ is minimum $\iff X:=D$ . The equation of $A'B$ is $\left|\begin{array}{ccc}
x & y & 1\\\\
\frac 32 & -1 & 1\\\\
\frac 72 & 1 & 1\end{array}\right|=0$ and for

$y:=0$ obtain that $-x+\frac 32+\frac 72-x=0\iff$ $2x=5\iff x=\frac 52$ . In conclusion, $x_{\mathrm{min}}=\frac 52$ and $f\left(x_{\mathrm{min}}\right)=4\sqrt 2$ .

Proof 3. Apply to $f(x)=\sqrt{(2x-3)^2+2^2}+\sqrt{(7-2x)^2 + 2^2}$ the Minkowski's inequality $\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge \sqrt{(a+c)^2+(b+d)^2}$ .

Obtain that $f(x) \geq \sqrt{(2x-3+7-2x)^2+(2+2)^2}=\sqrt{4^2+4^2}=4\sqrt{2}$ with equality $\iff\frac{2x-3}{7-2x}=\frac{2}{2} \iff$ $8x=20\iff$ $x_{\mathrm{min}}=\frac{5}{2}$ .



PP4. Let $ABCDE$ be a convex pentagon inscribed in the circle $C(O,R)$ and for which $ AC\perp BD$ . Ascertain its maximum area $ [ABCDE]$ .

Proof. Suppose w.l.o.g. $ DE = AE$ . Let $ \left\|\ \begin{array}{ccc} AB = u & ; & CD = v \\
 \\
BC = x & ; & AD = y\end{array}\ \right\|$ and the distance $ \delta_d(X)$ of $ X$ to $ d$ . Since $ AC\perp BD$ obtain $ x^2 + y^2 = u^2 + v^2 = 4R^2\ (*)$

and $ \delta_{AD}(O) = \frac x2$ . Apply Ptolemy's in $ ABCD$ : $AC\cdot BD = xy + uv$ . So, $ [ABCDE] = [ABCD] + [AED] =$ $ \frac 12\cdot AC\cdot BD + \frac 12\cdot AD\cdot \delta_{AD}(E) =$

$ \frac {xy + uv}{2} + \frac y2\cdot\left(R - \frac x2\right)$ . So, the area $ [ABCDE]$ is $\max \Longleftrightarrow$ $ \left[2uv + y(2R + x)\right]$ is $\max$ with $ (*)$ .

$ \blacktriangleright\ \ \ uv\mathrm {\ - \ max.}$ $ \Longleftrightarrow$ $ \left\|\begin{array}{c} u^2\cdot v^2\mathrm {\ - \ max.} \\
 \\
u^2 + v^2 = 4R^2\mathrm{\ - \ constant}\end{array}\right\|$ $ \Longleftrightarrow$ $ u^2 = v^2 = 2R^2$ $ \Longleftrightarrow$ $ u = v = R\sqrt 2$ .

$ \blacktriangleright\ \ \ y(2R + x)\mathrm {\ - \ max.}$ $ \Longleftrightarrow$ $ y^2\cdot (2R + x)^2\mathrm {\ - \ max.}$ $ \Longleftrightarrow$ $ \left(4R^2 - x^2\right)\left(2R + x\right)^2\mathrm {\ - \ max.}\ \Longleftrightarrow$ $ \left\|\begin{array}{c} (2R - x)\cdot\left(\frac {2R + x}{3}\right)^3\ \mathrm {\ - \ max.} \\
 \\
(2R - x) + 3\cdot\frac {2R + x}{3} = 4R\mathrm{\ - \ constant}\end{array}\right\|$

$ \Longleftrightarrow$ $ 2R - x = \frac {2R + x}{3} = R$ $ \Longleftrightarrow$ $ x = R$ si $ y = R\sqrt 3$ . In conclusion, $ AB = CD = R\sqrt 2$ , $ BC = R$ and $ AD = R\sqrt 3$ $ \Longrightarrow$ $ \boxed {\ \begin{array}{c} AB = CD = R\sqrt 2 \\
 \\
BC = DE = EA = R\end{array}\ }$ .



PP5. Prove that $\{a,b,c\}\subset\mathbb R^*_+\ \implies\ \sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}} > 2$ .

Proof. Observe that $\frac {x+y}{2}\ge\sqrt {xy}\iff$ $\frac {1}{\sqrt{xy}}\ge\frac {2}{x+y}\iff$ $\sqrt{\frac xy}\ge \frac {2x}{x+y}$ . Thus, $\left\{\begin{array}{c}
 \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+(b+c)}\\\\
\sqrt{\frac{b}{c+a}}\geq \frac{2b}{b+(c+a)}\\\\
\sqrt{\frac{c}{a+b}}\geq \frac{2c}{c+(a+b)}\end{array}\right\|\ \bigoplus\ \implies$

$\sum\sqrt{\frac {a}{b+c}}\ge\frac{(a+b+c)}{a+b+c}= 2$ . We have equality $\iff\left\{\begin{array}{c}
a=b+c\\\
b=c+a\\\
c=a+b\end{array}\right\|\iff \emptyset$ (never). In conclusion, $\sum \sqrt{\frac{a}{b+c}}\ >\ 2$ .



PP6. A right circular cylindrical container with a closed top is to be constructed with a fixed surface area. Find the ratio of the height to the radius which will maximize the volume.

Proof. Let $r$ , $h$ be the radius and the height respectively. Then the surface area is $S(r,h)=2\pi r(h+r)$ (constant) and the volume is $V(r,h)=\frac {\pi r^2h}{3}$ .

Our problem is "maximize the product $r^2h$ , where the sum $rh+r^2=k$ (constant)". So, $r^2h$ is $\max \iff$ $\frac {rh}{2}\cdot\frac {rh}{2}\cdot r^2$ is $\max$ , where $\frac {rh}{2}+\frac {rh}{2}+r^2=$

$rh+r^2=k$ (constant). If the sum is constant, then the product is $\max \iff\frac {rh}{2}=r^2=\frac k3\iff \boxed{h=2r}$ . (the axial section is a square).



PP7. Find the maximum value of $x^{3}-9x^{2}+24x+5$ , where $x\in [1,6]$ .

Proof. Denote $f(x)=x^{3}-9x^{2}+24x+5\ ,\ x\in [1,6]$ . Therefore, $f'(x)=3\left(x^2-6x+8\right)$ and $f'(x)=0\begin{array}{ccc}
\nearrow & x_1^{\prime}=2 & \searrow\\\\
\searrow & x_2^{\prime}=4 & \nearrow\end{array}\odot\ .$ Therefore,

$\left\|\begin{array}{c}
x\\\\
f'(x)\\\\
f(x)\end{array}\right|$ $\left|\begin{array}{ccccccc}
1 & \cdots & \dot{2} & \cdots &  \dot{4} & \cdots  & 6\\\\
\downarrow  & + &  0 & - & 0 & + & \downarrow \\\\
21 & \nearrow & 25 & \searrow & 21 & \nearrow & 41\end{array}\right\|$ . The range of $f:I\rightarrow\mathbb R$ , where $I=[1,6]$ is $\boxed{\mathrm{Im}(f)=f(I)=[21,41]}$ .

Verify $:\ \left\{\begin{array}{ccccc}
f(x)\ge 21 & \iff  & x^3-9x^2+24x-16\ge 0 & \iff & (x-1)(x-4)^2\ge 0\ ,\ (\forall )\ x\in I\ .\\\\
f(x)\le 41 & \iff & x^3-9x^2+24x-36\ge 0 & \iff & (x-6)(x^2-3x+6)\le 0\ ,\ (\forall )\ x\in I\ .\end{array}\right\|$



PP8. Let $\{m,n\}$ be two given positive numbers for which $m^2+n^2=4$ . Find the minimum value of $f(x)=\sqrt{{{x}^{2}}-mx+1}+\sqrt{{{x}^{2}}-nx+1}\ ,\ x\in\mathbb R^*_+$ .

Proof. There is $\phi\in\left(0,\frac {\pi}{2}\right)$ so that $m=2\cos \phi$ and $n=2\sin\phi$ . Consider the right and isosceles $\triangle ABC$ so that $AB=AC=1$ and $AB\perp AC$ , the fixed $D\in (BC)$

so that $m\left(\widehat {BAD}\right)=\phi$ and a mobile $X\in (AD$ so that $AX=x$ . Apply the generalized Pythagoras' theorem to the sides $BX$ , $CX$ in the trangles $BAX$ , $CAX$ respectively :

$\left\{\begin{array}{ccc}
BX^2=x^2+1-2x\cdot\cos \widehat{BAX} & \implies & BX=x^2-mx+1\\\\
CX^2=x^2+1-2x\cdot\cos \widehat{CAX} & \implies & CX=x^2+1-nx+1\end{array}\right\|$ $\implies$ $f(x)=BX+CX\ge BC=\sqrt 2$ with equality iff $X:=D$ , i.e. $\frac {DB}{DC}=\frac nm$

and $\boxed{x:=AD=\frac {\sqrt {m^2+n^2}}{m+n}}$ .


An easy extension. Let $\{\phi ,\psi\}$ be positive numbers so that $\phi +\psi <\pi$ . Find the minimum of $f(x)=\sqrt{{{x}^{2}}-2x\cos\phi +1}+\sqrt{{{x}^{2}}-2x\cos\psi+1}\ ,\ x\in\mathbb R^*_+$ .

Answer : $f(x)\ge 2\sin\frac {\phi +\psi}{2}$ , $(\forall ) x>0$ .



PP9. Let $\{a,b\}\subset \mathrm R^*_+$ be constants and real numbers $x\ge a\ ,\ y\ge b$ so $\frac ax+\frac by=1$ . Prove that $\sqrt[3]{x^2+y^2}\ge \sqrt [3]{a^2}+\sqrt [3]{b^2}$ with equality iff $\frac {x}{\sqrt[3]a}=\frac {y}{\sqrt [3]b}=\sqrt[3]{a^2}+\sqrt[3]{b^2}$ .

A geometrical interpretation. Let an acute $\triangle ABC$ . For a mobile $M\in [AB]$ let $\left\{\begin{array}{c}
N\in BC\ ;\ MN\perp BC\\\\
P\in AC\ ;\ MP\parallel BC\\\\
L\in NP\ ;\ ML\perp NP\end{array}\right|$ . Find position of $M$ so distance $ML$ is maximum.


Proof 1. $x^2+y^2=\left(\frac ax+\frac by\right)\cdot \left(\frac ax+\frac by\right)\cdot\left(x^2+y^2\right)\ge$ $ \left(\sqrt[3]{\frac ax\cdot\frac ax\cdot x^2}+\sqrt[3]{\frac by\cdot\frac by\cdot y^2}\right)^3=$ $\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}\right)^3$ .

Proof 2. $y=\frac {bx}{x-a}\implies$ $f(x)=x^2+\left(\frac {bx}{x-a}\right)^2\implies$ $f'(x)\ .s.s.\ \left[(x-a)^3-ab^2\right]\ .s.s.\ \left(x-a-\sqrt[3]{ab^2}\right)$ .

Thus, $\left\{\begin{array}{ccccc}
x_{\mathrm{min}} & = & a+\sqrt[3]{ab^2} & = & \sqrt[3]a\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}\right)\\\\
y_{\mathrm{min}} & = & b+\sqrt[3]{a^2b} & = & \sqrt[3]b\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}\right)\end{array}\right|$ and $\min_{\frac ax+\frac by=1} \left(x^2+y^2\right)=$ $x_{\mathrm{min}}^2+y_{\mathrm{min}}^2=\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}\right)^3$ .



PP10. Let $ a > 1$ and $b>1$ so that $a+b\le ab\le a+b+3$ . Find the minimum value of $ f(t)=\frac{(a+t)(b+t)}{1+t} $ , where $0\le t\le 1$ .

Proof (without derivatives). $\min_{0\le t\le 1}\frac{(a+t)(b+t)}{1+t}=\left(\sqrt {a-1}+\sqrt {b-1}\right)^2$ . Indeed, $\frac{(a+t)(b+t)}{1+t}=$ $(a+b-2)+(1+t)+\frac {(a-1)(b-1)}{1+t}\ge$

$ (a-1)+(b-1)+$ $2\sqrt {(a-1)(b-1)}=$ $\left(\sqrt {a-1}+\sqrt {b-1}\right)^2$ . Have equality iff $t+1=\frac {(a-1)(b-1)}{t+1}$ , i.e. $t=t_0$ , where $t_0=\sqrt {(a-1)(b-1)}-1\in [0,1]$ .



PP11. Let $ABCD$ be a square with $AB=1$ and $w=C\left(O,\frac 12\right)$ is a circle with $[BC]$ as its diameter. The segment $[PQ]$ with $P\in (AB)$ , $Q\in (CD)$ and $PQ\parallel BC$

intersects $w$ . Let $\alpha$ be the area in the square below $PQ$ and outside $O$ and let $\beta$ be the area above $PQ$ and inside $O$ . How far should $PQ$ be from $BC$ to minimize $\alpha+\beta$ ?


Proof 1. Let $x=BP=CQ$ , where $x\in\left[0,\frac 12\right]$ and area $\gamma$ of common surface between square and $w$ . Prove easily $\left\{\begin{array}{ccc}
\alpha & = & (1-x)-\gamma\\\\
\beta & = & \frac {\pi}{4}-\gamma\end{array}\right\|$ . Thus, $\alpha +\beta=1+\frac {\pi}{4}-(x+2\gamma )$

is minimum $\iff$ $\boxed{\left(x+2\gamma\right)\ \mathrm{is\ \underline{maximum}}}$ . For $\{M,N\}=w\cap PQ$ and $m\left(\widehat{MON}\right)=2\phi\implies$ $\cos\phi =2x\ ,\ [MON]=$ $\frac {OM^2\cdot\sin 2\phi}{2} \implies$ $\boxed{[MON]=\frac {x\sqrt{1-4x^2}}{2}}$ .

The length of $\mathrm{small}\ \overarc{MN}$ is equally to $l(2\phi )=\frac 12\cdot (2\phi )=\phi =\arccos 2x$ and area of the sector $MON$ is equally to $\frac 12\cdot l(2\phi )\cdot R=\frac {\phi}{4}=\frac 14\arccos 2x$ . Thus, $\left(x+2\gamma\right)$ is maximum

$\iff$ $\boxed{f(x)=x+\frac 12\cdot \arccos 2x-x\sqrt {1-4x^2}}$ is maximum. So $f'(x)=1-\frac {1}{\sqrt {1-4x^2}}-\sqrt{1-4x^2}+$ $\frac {4x^2}{\sqrt{1-4x^2}}$ and $f'(x)\ .s.s.\ \sqrt{1-4x^2}-2\left(1-4x^2\right)$ $\implies$

$f'(x)\ .s.s.\ 1-2$ $\sqrt{1-4x^2}\ .s.s.\ 1-$ $4\left(1-4x^2\right)\ .s.s. \ 16x^2-$ $3\ .s.s.\ 4x-\sqrt 3$ $\implies$ $f'(x)\ .s.s.\ \left(x-\frac {\sqrt 3}{4}\right)$ . Hence $(\alpha +\beta )$ is minimum $\iff$ $\boxed{x_{\mathrm{min}}=\frac {\sqrt 3}{4}\in\left[0,\frac 12\right]}$ , i.e. $\boxed{BP=\frac {\sqrt 3}{4}}$ and in this case $\boxed{\alpha +\beta =1+\frac {\pi}{6}-\frac {3\sqrt 3}{8}}$ .

Proof 2. Denote the area $\gamma$ of the common surface between square $ABCD$ and circle $w$ , the intersection $\{M,N\}=PQ\cap w$ and $m\left(\widehat{MON}\right)=2\phi$ , where $\phi\in\left[0,\frac {\pi}{2}\right]$ .

Prove easily that $MN=\sin\phi$ , $BP=\frac 12\cdot\cos \phi$ , $[MON]=\frac 18\cdot\sin 2\phi$ , the length of the little arc $MN$ is equally to $\phi$ and the area of the sector $ MON$ is equally to $\frac {\phi}{4}$ . So

$\boxed{\gamma =\frac {\phi}{4}-\frac 18\cdot\sin 2\phi}$ and $\left\{\begin{array}{ccc}
\alpha & = & \left(1-\frac 12\cdot \cos\phi\right)-\gamma\\\\
\beta & = & \frac {\pi}{4}-\gamma\end{array}\right\|$ . Thus, $\alpha +\beta=1+\frac {\pi}{4}-\left(\frac 12\cdot\cos\phi+2\gamma\right)$ is minimum $\iff$ $\frac 12\cdot\cos\phi  +2\gamma\ \mathrm{is\ \underline{maximum}}\iff$

$\frac 12\cdot\cos\phi +$ $\frac {\phi}{2}-\frac 14\cdot\sin 2\phi\ \mathrm{is\ \underline{maximum}}\iff$ $g(\phi )=\cos\phi +\phi -\frac 12\cdot\sin 2\phi$ $\mathrm{is\ \underline{maximum}}$ . Thus, $g'(x)=1-\sin\phi -\cos $ $2\phi =$ $\sin\phi (2\sin\phi -1)\ .s.s.\ \sin\phi -\frac 12$ .

In conclusion, $(\alpha +\beta )$ is minimum $\iff$ $\boxed{\phi_{\mathrm{min}}=\frac {\pi}{6}\in\left[0,\frac {\pi}{2}\right]}$ , i.e. $\boxed{BP=\frac {\sqrt 3}{4}}$ .



PP12. Let $\triangle ABC$ and $P\in (AB)$ , $Q\in (AC)$ so that $PQ\parallel BC$ . Know $m\left(\widehat{QBC}\right)=60^{\circ}$ and $m\left(\widehat{PCB}\right)=50^{\circ}$ . Find the range of $\widehat{APQ}$ .

Proof. Suppose w.l.o.g. $BC=1$ and denote $I\in BQ\cap CP$ . Consider the parallelogram $BCMN$ , where $P\in (CN)$ , $Q\in (BM)$ and $m\left(\widehat{NBC}\right)=\phi$ . Thus,

$m\left(\widehat{APQ}\right)\in\left(60^{\circ},\phi\right)$ . Observe that $\frac {IC}{BC}=\frac {\sin \widehat{IBC}}{\sin \widehat{BIC}}=$ $\frac {\sin 60^{\circ} }{\sin 110^{\circ}}=\frac {\cos 30^{\circ}}{\cos 20^{\circ}}\implies$ $NC=2\cdot IC=\frac {2\cos 30^{\circ}}{\cos 20^{\circ}}$ and $m\left(\widehat{BNC}\right)=130^{\circ} -\phi$ . Apply the

theorem of Sines in $\triangle BNC\ :\ \frac {NC}{\sin\widehat{NBC}}=\frac {BC}{\sin\widehat {BNC}}\iff$ $\frac {2\cos 30^{\circ}}{\cos 20^{\circ}\sin\phi}=\frac {1}{\sin \left(50^{\circ}+\phi\right)}\iff$ $2\cos 30^{\circ}\sin\left(50^{\circ}+\phi\right)=\cos 20^{\circ}\sin\phi\iff$

$2\cos 30^{\circ}\left(\cos 40^{\circ}+\sin 40^{\circ}\tan\phi\right)=\cos 20^{\circ}\tan\phi\iff$ $\tan\phi=\frac {2\cos30^{\circ}\cos 40^{\circ}}{\cos 20^{\circ}-2\cos 30^{\circ}\sin 40^{\circ}}=$ $\frac {\cos 70^{\circ}+\cos 10^{\circ}}{\cos 20^{\circ}-\left(\sin 70^{\circ}+\sin 10^{\circ}\right)}=$ $-\frac {\sin 20^{\circ}+\cos 10^{\circ}}{\sin 10^{\circ}}=$

$-\frac {2\sin 10^{\circ}\cos 10^{\circ}+\cos 10^{\circ}}{\sin 10^{\circ}}=$ $-\frac{2\cos 10^{\circ}\left(\sin 10^{\circ}+\sin 30^{\circ}\right)}{\sin 10^{\circ}}=$ $-\frac {4\cos^2 10^{\circ}\sin 20^{\circ}}{\sin 10^{\circ}}=$ $-8\cos^3 10^{\circ}\implies$ $\tan\phi =\left(-2\cos 10^{\circ}\right)^3$ .

In conclusion, $m\left(\widehat{APQ}\right)=m\left(\widehat{ABC}\right)\in\left(60^{\circ},\phi\right)$ , where $\tan\phi =\left(-2\cos 10^{\circ}\right)^3$ .



PP13. Let $\{x,y,z\}\subset\mathbb R$ which satisfy $\left\{\begin{array}{c}
x+y+z= 3\\\\
xy+yz+zx= a\end{array}\right\|$ , where $a\in\mathbb R$ . Find $a$ for which the difference between maximum minimum possible values of $x$ equals $8$ .

Proof. Let $\left\{\begin{array}{ccc}
y+z & = & S\\\\
yz & = & P\end{array}\right\|$ . Thus, $\boxed{S=3-x}\ (1)$ and $P=a-x(y+z)=a-x(3-x)\implies$ $\boxed{P=x^2-3x+a}\ (2)$ . So, $\{y,z\}\subset\mathbb R\implies S\ge 4P\implies$ $(3-x)^2\ge 4\left(x^2-3x+a\right)\implies$ $3x^2-6x+4a-9\le 0$ whose discriminant is $\Delta^{\prime} = 12(3-a)\ge 0\implies a\le 3$ . Then $\max (x)=\frac {3+2\sqrt{9-3a}}3$

and $\min (x)=\frac {3-2\sqrt{9-3a}}3$ . So we are looking for $\frac {4\sqrt{9-3a}}3=8$ and so $\boxed{a=-9}$ .
This post has been edited 169 times. Last edited by Virgil Nicula, Jan 5, 2016, 8:45 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a