99. Some simple and nice geometry problems.

by Virgil Nicula, Sep 6, 2010, 2:58 AM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=365571

$1\blacktriangleright$ Let $ABC$ , $MNP$ be two isosceles triangles so that $AB=AC$ , $MN=MP$ and $N\in (AC)$ , $B\in (MP)$ .
Denote $R\in AB\cap MN$ , $S\in BC\cap NP$. Prove that $BP=CN\ \Longleftrightarrow$ $[RS$ is one from the bisectors of $\widehat {BRN}$ .

Proof. Denote $X\in BC\cap MN$ , $Y\in AB\cap NP$ , $Z\in NB\cap RS$ . Apply Menelaus' theorem to transversals $\overline {XBC}$ , $\overline {YNP}$ in triangles $ANR$ , $BMR$

respectively : $\left|\begin{array}{ccc}
\frac {XR}{XN}\cdot\frac {CN}{CA}\cdot\frac {BA}{BR}=1 & \Longrightarrow & \frac {XN}{XR}=\frac {CN}{BR}\\\\
\frac {YR}{YB}\cdot\frac {PB}{PM}\cdot\frac {NM}{NR}=1 & \Longrightarrow & \frac {YR}{YB}=\frac {NR}{PB}\end{array}\right|$ . Apply Ceva's theorem to the point $S$ and $\triangle BRN\ : \ \ \frac {TB}{TN}\cdot\frac {XN}{XR}\cdot\frac {YR}{YB}=1 $ $\Longrightarrow \frac {TN}{TB}=$

$\frac {XN}{XR}\cdot\frac {YR}{YB}\ \Longrightarrow\  \frac {TN}{TB}=$ $\frac {NC}{PB}\cdot\frac {RN}{RB}$ . In conclusion, $NC=PB\ \Longleftrightarrow\ \frac {TN}{TB}=$ $\frac {RN}{RB} \Longleftrightarrow$ ray $[RS$ is one from the bisectors of $\widehat {BRN}$ .


$2\blacktriangleright$ Consider in $\triangle ABC\ (b\ne c)$ the $A$-median $AM$ , the $A$-bisector $AD$ , where $\{M,D\}\subset (BC)$ and the point $K\in (AM)$ for which $DK\parallel AC$ . Prove that $KC\perp AD$ .
Proof 1 (metric). Suppose w.l.o.g. $b<c$ . Prove easily that $DC=\frac {ab}{b+c}$ and $DM=\frac {a(c-b)}{2(b+c)}$ . Thus $KD\parallel AC$ $\implies$ $\frac {KA}{KM}=\frac {DC}{DM}=\frac {2b}{c-b}$ . Denote $L\in CK\cap AB$ . Apply Menelaus' theorem to transversal $\overline {CKL}$ in $\triangle ABM\ :\ \frac {CM}{CB}\cdot\frac {LB}{LA}\cdot\frac {KA}{KM}=1$ $\iff$ $\frac {LA}{LB}=\frac {b}{c-b}$ , i.e. $LA=b$ .In conclusion, the triangle $ALC$ is $A$-isosceles $\implies$ $KC\perp AD$ .

Proof 2 (synthetic). Denote $P\in KC\cap AD$ and the midpoints $X$ , $Y$ of $[KD]$ , $[AC]$ respectively. Therefore, the points $M$ , $X$ , $P$ , $Y$
are colinearly , $MY\parallel AC$ and the triangle $APY$ is $Y$-isosceles because $PY\parallel AB$ . Since $Y$ is midpoint of $[AC]$ obtain $PA\perp PC$ .


$3\blacktriangleright$ Let $ ABC$ be a $ A$ - right triangle . Denote $ \left|\begin{array}{c} H\in BC\ ,\ AH\perp BC \\
 \\
N\in [AB]\ ,\ NA = NB \\
 \\
M\in [AC]\ ,\ MA = MC\end{array}\right|$ and $ \left|\begin{array}{c} E\in CN\cap AH \\
 \\
D\in BM\cap AH\end{array}\right|$ . Prove that $ \widehat{ACD}\equiv\widehat{ABE}$ .

Proof 1 (synthetic). Let $ \left|\begin{array}{ccc} P\in AB\cap CD \\
 \\
R\in AC\cap BE\end{array}\right|$ and $ \left|\begin{array}{c} AH = h \\
 \\
\phi = m(\widehat {ACD}) \\
 \\
\psi = m(\widehat {ABE})\end{array}\right|$ . Since $ D$ , $ E$ belong to the medians $ BM$ , $ CN$ respectively obtain :

$ \boxed {\ \left|\begin{array}{c} HP\parallel AC \implies\ HP\perp AB\implies PHA\sim ABC\implies\frac {AP}{CA} = \frac {AH}{CB}\implies\tan\phi = \frac {h}{a} \\
 \\
HR\parallel AB \implies HR\perp AC\implies RHA\sim ACB\implies\frac {AR}{BA} = \frac {AH}{BC}\implies\tan\psi = \frac {h}{a}\end{array}\right|\implies\widehat{ACD}\equiv\widehat {ABE}\ }$ .

Proof 2 (metric). Denote $F\in BE\cap AC$ , $G\in CD\cap AB$ . Apply the Ceva's theorem to the points$E$, $D$ in $\triangle ABC\ :$

$\left|\begin{array}{ccccc}
\frac {FA}{FC}\cdot\frac {HC}{HB}\cdot\frac {NB}{NA}=1 & \implies & \frac {FA}{c^2}=\frac{FC}{b^2}=\frac {b}{a^2} & \implies & \tan\widehat {ABF}=\frac {AF}{AB}=\frac {bc}{a^2}\\\\
\frac {GA}{GB}\cdot\frac {HB}{HC}\cdot\frac {MC}{MA}=1 & \implies & \frac {GA}{b^2}=\frac{GB}{c^2}=\frac {c}{a^2} & \implies & \tan\widehat {ACG}=\frac {AG}{AC}=\frac {bc}{a^2}\end{array}\right|$ $\implies$ $\tan\widehat {ABF}=\tan\widehat {ACG}$ $\implies$ $\widehat {ABE}\equiv\widehat {ACD}$ .

Proof 3 (metric). Apply the Menelaus' theorem to the transversal $ \overline {BDM}$ and the triangle $ ACH\ :\  \frac {BH}{BC}\cdot\frac {MC}{MA}\cdot\frac {DA}{DH} = 1$ $\implies$ $ \boxed {\ \frac {DA}{DH} = \frac {a^2}{c^2}\ }$ . Apply an well-known relation to the cevian $ [CD$ in the triangle $ ACH\ :\ \frac {DA}{DH} = \frac {CA}{CH}\cdot\frac {\sin\widehat {DCA}}{\sin\widehat {DCH}} =$ $ \frac {a\sin\phi}{b\sin (C - \phi)}$ $ \implies$ $ \boxed {\ \frac {DA}{DH} = \frac {a^2\tan\phi}{b(c - b\tan\phi )}\ }$ . Thus, $ \frac {1}{c^2} = \frac {\tan\phi}{b(c - b\tan\phi )}$ $ \implies$ $ \tan\phi = \frac {bc}{b^2 + c^2}=\frac {bc}{a^2}$ . Analogously obtain $ \tan\psi = \frac {bc}{a^2}$ . In conclusion, $ \widehat{ACD}\equiv\widehat{ABE}$ . Shortly, $ \tan\phi = \tan \psi = \frac {bc}{a^2} = \frac {h_a}{a}$ .


Remark. Construct, outside of $ \triangle ABC$ , the rectangle $ BCST$ , where $ BT = CS = h$ . Denote the circumcircle $ \Gamma$ of this rectangle. Prove easily that $ S\in PD$ , $ T\in RD$ , $ \widehat {CBS}\equiv\widehat {ACD}\equiv\widehat {ABE}$ , i.e. the points $ P$ , $ R$ belong to the circle $ \Gamma$ . If $ \{X,Y\} = AH\cap \Gamma$ , then $ XY = h\sqrt 3$ and $ AX = \frac {\sqrt 7 - \sqrt 3}{2}\cdot h$ .
This post has been edited 88 times. Last edited by Virgil Nicula, Nov 23, 2015, 8:32 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a