73. A nice problems with a square and a perpendicularity.

by Virgil Nicula, Aug 2, 2010, 12:16 AM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=359124

PP1. Let $ABCD$ be a square. For an arbitrary $M\in [BC]$ consider $E\in AM\cap CD$ , $F\in DM\cap BE$ . Prove that $CF\perp AE$ .

Proof 1. Let $N\in AE\cap BD$ , $P\in CN\cap AB$ , $Q\in AB\cap CF$ . Apply Blanchet's theorem in $\triangle BDE$ , where $BC\perp DE$ , $M\in BC$ and obtain $\widehat{BCP}\equiv\widehat{BCQ}$ ,

i.e. $BP=BQ$ . From symmetry w.r.t. $BD$ obtain and $BP=BM$ . Hence $BQ=BM$ . A rotation around $B$ realizes $CQ\rightarrow AM$ . In conclusion $CQ\perp AM$ , i.e. $CF\perp AE$ .

Remark. I can prove $\widehat{BCP}\equiv\widehat{BCQ}$ without Blanchet's theorem and rotation. Let $G\in CF\cap AE$ and $H\in BG\cap DC$ . Thus, division $(D,C,H,E)$ - harmonically $\implies$

$(N,M,G,E)=B(D,C,H,E)\cap AE$ - harm. $\implies$ $(N,M,G,E)$ - harm. Since $CM\perp CE$ obtain $\widehat{MCG}\equiv\widehat{MCN}$ $\implies$ $\widehat{BCP}\equiv\widehat{BCQ}$ . Thus $\triangle CPQ$ is isosceles $\implies$

$BP=BQ=BM$ (last equality from symmetry w.r.t. $BD$). Therefore, $\triangle BAM\equiv\triangle BCQ$ $\implies$ $\widehat{ BAM}\equiv\widehat{BCQ}$ $\implies$ $\widehat{ BAG}\equiv\widehat{BCG}$ $\implies$ $ABGC$ is cyclic $\implies$ $CF\perp AE$ .


Proof 2 (metric). Suppose w.l.o.g. $AB=1$ and let $BM=m\in [0,1]$ . Denote $L\in DM\cap AB$ and $G\in AE\cap CF$ . Prove easily that $DE=\frac 1m$ , $CE=\frac {1-m}{m}$ , $BL=\frac {m}{1-m}$ .

Denote $m\left(\widehat{BAG}\right)=x$ and $m\left(\widehat{BCG}\right)=y$ . Thus, $\underline{\tan x=m}$ and $\frac {m^2}{1-m}=$ $\frac {\frac {m}{1-m}}{\frac 1m}=$ $\frac {BL}{CE}=$ $\frac {FB}{FE}=$ $\frac {CB}{CE}\cdot\frac {\sin y}{\cos y}=$ $\frac {1}{\frac {1-m}{m}}\cdot\tan y=$ $\frac {m}{1-m}\cdot\tan y$ , i.e. $\tan y=m$ . Hence

$\underline{\tan y=\tan x}$ $\Longleftrightarrow$ $x=y$ $\Longleftrightarrow$ $\widehat {BAG}\equiv \widehat{BCG}$ , i.e. the quadrilateral $ABGC$ is cyclic, i.e. $CF\perp AE$ .


Remark. If $R$ is the center of given square and $S\in RM\cap BE$ , then $CS\perp BE$ .

Proof. Let $T\in RM\cap AB$ , Apply Menelaus's theorem to $:\ \left\{\begin{array}{cccc}
\overline{TRM}/ABC\ : & \frac {TA}{TB}\cdot\frac {MB}{MC}\cdot\frac {RC}{RA}=1 & \implies & \frac {TA}{TB}=\frac {1-m}{m}\ .\\\
\overline{TMS}/ABE\ : & \frac {TA}{TB}\cdot\frac {MB}{MC}\cdot\frac {RC}{RA}=1 & \implies & \frac {SB}{SE}=\left(\frac {m}{1-m}\right)^2\ .\end{array}\right\|$ Denote $m\left(\widehat{CBE}\right)=x$ , $m\left(\widehat {SCE}\right)=z$ .

Observe that $\tan x=\frac {1-m}{m}$ and $\left(\frac {m}{1-m}\right)^2=\frac {SB}{SE}=\frac {CB}{CE}\cdot \frac {\sin\widehat{SCB}}{\sin\widehat{SCE}}=$ $\frac {m}{1-m}\cdot\cot z$ $\implies$ $\tan z=\frac {1-m}{m}$ $\implies$ $\tan z=\tan x$ $\implies$ $x=z$ $\implies$ $CS\perp AE$ .

Another proof. Denote $L\in AB\cap DM$ and $S'\in BE\cap CL$ . Apply Pappus' theorem to $AB$ , $DC$ and to $\{A,B,L\}\subset AB$ , $\{D,C,E\}\subset DC$ . Since $R\in BD\cap AC$ ,

$M\in LD\cap AE$ , $S'\in LC\cap BE$ obtain $S'\in RM$ . Thus, $S'\in RM\cap BE$ , i.e. $S'\equiv S$ . From $\frac {CE}{AB}=\frac {MC}{MB}$ and $\frac {LB}{CD}=\frac {MB}{MC}$ obtain $CE\cdot BL=BC^2$ . Prove easily that in any

right trapezoid $XYZT$ $(XT\parallel YZ$ , $XY\perp XT)$ exists $XT\cdot YZ=XY^2$ $\Longleftrightarrow$ $XZ\perp YT$ . Apply it to the right trapezoid $BCEL$ and get $CL\perp BE$ , i.e. $CS\perp BE$ .


Proof 3. Suppose w.l.o.g. $AB=1$ and denote $BM=m\in [0,1]$ . Define $G\in AE\cap CF$ , $H\in DC\cap BG$ . From $MC\parallel AD$ in $\triangle AED$ obtain easily $\frac {EC}{1-m}=\boxed{ED=\frac 1m}$ .

Since division $(D,C,H,E)$ is harmonic, i.e. $\frac {HC}{HE}=\frac {DC}{DE}$ (is an well-known property or prove easily) obtain $\frac {HC}{HE}=m$ , i.e. $\frac {HC}{m}=$ $\frac {HE}{1}=$ $\frac {CE}{1+m}=$ $\frac {1-m}{m(1+m)}$ $\implies$

$\boxed{HC=\frac {1-m}{1+m}}$ . Denote $x=m\left(\widehat{CBH}\right)$ , $y=m(\angle AED)$ . Thus $\tan x=\frac {HC}{BC}=\frac {1-m}{1+m}$ and $\tan y=\frac {AD}{DE}=m$ . Therefore, $\tan x=\frac {1-\tan y}{1+\tan y}=\tan\left(45^{\circ}-y\right)$ $\implies$

$\boxed{x+y=45^{\circ}}$ . Thus, $m\left(\widehat{GAC}\right)=m\left(\widehat{EAC}\right)=45^{\circ}-y=x=m\left(\widehat{GBC}\right)$ . In conclusion, $G$ belongs to circumcircle of $\triangle ABC$ $\implies$ $CG\perp GA$ $\implies$ $CF\perp AE$ .

Proof 4. Suppose w.l.o.g. $AB=1$ and denote $BM=m\in [0,1]$ . Define $G\in AE\cap CF$ , $H\in DC\cap BG$ . From $MC\parallel AD$ in $\triangle AED$ obtain easily $\frac {EC}{1-m}=\boxed{ED=\frac 1m}$ .

Since division $(D,C,H,E)$ is harmonic, i.e. $\frac {HC}{HE}=\frac {DC}{DE}$ ( prove easily) obtain $\frac {HC}{HE}=m$ . Apply Menelaos' to $\overline{BGH}/CEM\ :\ \frac {BM}{BC}\cdot\frac {HC}{HE}\cdot\frac {GE}{GM}=1$ $\Longleftrightarrow$

$m\cdot m\cdot \frac {GE}{GM}=1$ $\Longleftrightarrow$ $\frac {GM}{GE}=m^2$ $\Longleftrightarrow$ $\frac {GM}{GE}=\left(\frac{CM}{CE}\right)^2$ $\implies$ $G$ is the foot of $C$-symmedian in $C$-right triangle $CEM$ $\implies$ $CG\perp EM$ $\implies$ $CF\perp AE$ .

Otherwise, denote $N\in AE\cap BD$ and $(D,C,H,E)$ is harmonically $\implies$ $(N,M,G,E)$ is harmonically $\implies$ $\frac {GM}{GE}=$ $\frac {NM}{NE}=$ $\frac {NM}{NA}\cdot\frac {NA}{NE}=$ $\frac {BM}{AD}\cdot\frac {AB}{DE}=$

$m\cdot\frac {1}{\frac 1m}=$ $m^2=$ $\left(\frac {CM}{CE}\right)^2$ $\implies$ $\frac {GM}{GE}=\left(\frac{CM}{CE}\right)^2$ $\implies$ $G$ is the foot of $C$-symmedian in $C$-right triangle $CEM$ $\implies$ $CG\perp EM$ $\implies$ $CF\perp AE$ .

Otherwise, observe that $(D,C,H,E)$ is harmonically $\implies$ $(N,M,G,E)$ is harmonically. Observe that $NM\cdot NE=$

$\frac {NM}{NA}\cdot\frac {NE}{NA}\cdot NA^2=$ $\frac {BM}{AD}\cdot\frac {DE}{AB}\cdot NA^2=$ $m\cdot\frac 1m\cdot NA^2=NA^2$ $\implies$ $NA=NG$ $\implies$ $CF\perp AE$ .

Remarks. If denote $L\in DF\cap AB$ and $ABCD$ is a rectangle, then $BL\cdot CE=AB^2$ and $\tan \gamma\cdot\sin 2\beta=\tan 2\phi$ ,

where $\gamma=m\left(\widehat{AGC}\right)$ , $\phi=m\left(\widehat {BAC}\right)$ . In the particular case when $\phi =45^{\circ}$ obtain $\gamma=90^{\circ}$, i.e. the proposed problem.


Final. Let $ABCD$ be a square. For an arbitrary $M\in [BC]$ consider the points $\left\{\begin{array}{c}
E\in AM\cap CD\\\
L\in DM\cap AB\\\
S\in BE\cap CL\\\
F_1\in DM\cap BE\\\
F_2\in AM\cap CL\\\
R\in AC\cap BD\end{array}\right\|$ . Prove that $\boxed{\begin{array}{c}
S\in RM\\\
F_1F_2\parallel BC\\\
BE\perp CL\\\
CF_1\perp AM\\\
BF_2\perp DM\end{array}}$ .

Remark. If $G_1\in CF_1\cap ME$ , $G_2\in BF_2\cap ML$ , then polygons $RBSC$ (quadrilateral, in circle with diameter $[BC]$), $SF_1G_2G_1F_2$ (pentagon, in circle with diameter $[F_1F_2]$) and

$ABG_2G_1CD$ (hexagon, in circle with diameter $[AC]$) are cyclically. From here can obtain another interesting properties of this figure. For example, the circumcircles of $RBSC$ and

$SF_1G_2G_1F_2$ are tangent in $S$ . Indeed, since $F_1F_2\parallel BC$ obtain that the circumcircles of $\triangle SF_1F_2$ , $SBC$ are tangent in $S$ . Thank very much to Mateescu Constantin for his nice draw.



PP2. Let $ABC$ be an $A$-isosceles and right triangle. Let $\{M,N\}\subset (BC)$ be two points such that $N\in (MC)$ and $MB^2 + NC^2 = MN^2$. Ascertain the measure of the angle $\widehat{MAN}$ .

Proof 1 (metric). Suppose w.l.o.g. $AB=AC=1$ , i.e. $BC=\sqrt 2$ . Denote $\left\{\begin{array}{c}
m\left(\widehat{MAB}\right)=u\\\\
m\left(\widehat{NAC}\right)=v\end{array}\right\|$ and

$\left\{\begin{array}{ccccccc}
X\in (AB) &  , & MX\perp AB & ; & BX=MX=x & ; & MB=x\sqrt 2\\\\
Y\in (AC) &  , & NY\perp AC & ; & CY=NY=y & ; & NC=y\sqrt 2\end{array}\right\|\implies$

$\left\{\begin{array}{ccc}
AX=1-x & ; & \tan u=\frac {x}{1-x}\\\\
AY=1-y & ; & \tan v=\frac {y}{1-y}\end{array}\right\|$ , $MN=(1-x-y)\sqrt 2$ , where $\left\{\begin{array}{c}
\{x,y\}\subset (0,1)\\\
x+y<1\end{array}\right\|$ . Remark that $\boxed{1+2xy=2(x+y)\ \iff\ (1-x)(1-y)=\frac 12}\ (*)$ .

$\blacktriangleright\ MB^2+NC^2=MN^2\iff$ $x^2+y^2=(1-x-y)^2\iff$ $0=1+2xy-2(x+y)\iff\ \boxed{1+2xy=2(x+y)}$ .

$\blacktriangleright\ m\left(\widehat{MAN}\right)=45^{\circ}\iff$ $u+v=45^{\circ}\iff$ $\tan (u+v)=1\iff$ $\tan u+\tan v=1-\tan u\tan v\iff$

$\frac {x}{1-x}+\frac {y}{1-y}=1-\frac {xy}{(1-x)(1-y)}\iff$ $x(1-y)+y(1-x)+xy=(1-x)(1-y)\iff$ $\boxed{1+2xy=2(x+y)}$ .

Remark. The area $[XAY]=\frac 12\cdot [ABC]$ (constant) $\iff$ $2\cdot AX\cdot AY=AB^2\iff$ $\frac {(1-x)(1-y)}{2}=\frac 14\iff$

$(1-x)(1-y)=\frac 12$ $\stackrel{(*)}{\iff}$ $1+2xy=2(x+y)\iff$ $MB^2+NC^2=MN^2\iff $ $m\left(\widehat{MAN}\right)=45^{\circ}$ .

Proof 2 (synthetic). Rotate around about the point $A$ for $90^\circ$ to get $\triangle ACC'\implies$ $CM'=BM$ , $NM'=\sqrt{NC^2+CM'^2}=$

$\sqrt{NC^2+BM^2}=MN\implies$ $\triangle AMN\cong\triangle AM'N\implies$ $m\left(\angle MAM'\right)=90^\circ\iff$ $m\left(\widehat{MAN}\right)=45^\circ$ .
This post has been edited 64 times. Last edited by Virgil Nicula, Dec 2, 2015, 11:12 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a