451. ABC with C(O,R), C(I,r) and N-Nagel point ==> ON=R-2r.

by Virgil Nicula, Nov 26, 2016, 11:34 AM

P1. Prove that $(\forall )\ ABC$ with the circumcircle $\Omega=\mathbb (O,R),$ the incircle $w=\mathbb C(I,r),$ the centroid $G,$ the orthocenter $H$ and the

Nagel point
$N$ there is the relations: $G\in OH\cap IN$ so that $\frac {GH}{GO}=\frac {GN}{GI}=2$ and $\boxed{\ IN^2=9\cdot IG^2=s^2+5r^2-16Rr\ }$


Proof. Prove easily that $G\in (HO)\ ,$ $GH=2\cdot GO$ and $\overline{HGO}$ is the Euler's line. Denote the midpoint $M$ of $[BC]$ and $\left\{\begin{array}{ccc}
X & \in & AM\cap IN\\\
U & \in & AI\cap BC\\\
V & \in & AN\cap BC\end{array}\right\|$ Prove easily that $\left\{\begin{array}{cccc}
MU=|BM-BU|=\left|\frac a2-\frac {ac}{b+c}\right|=\frac {a|b-c|}{2(b+c)} & \implies & \boxed{MU=\frac {a|b-c|}{2(b+c)}} & (1)\\\\
MV=|CM-CV|=\frac a2-(s-b)=\left|\frac {a-(a+c-b)}2\right| & \implies & \boxed{MV=\frac {|b-c|}2} & (2)\end{array}\right\|$ $\implies \boxed{\frac {MU}{MV}=\frac a{b+c}}\ (5)$ and apply the Van Aubel's relations $:$

$\left\{\begin{array}{cccc}
\frac {IA}{b+c}=\frac {IU}a=\frac {AU}{2s} & \implies & \frac {AI}{AU}=\frac {b+c}{2s} & (3)\\\\
\frac {NA}a=\frac {NV}{s-a}=\frac {AV}s & \implies & \frac {AV}{AN}=\frac sa & (4)\end{array}\right\|\ .$ Apply an well known identity $:\ \frac {XI}{XN}=\frac {MU}{MV}\cdot \frac {AI}{AU}\cdot\frac {AV}{AN}=\frac a{b+c}\cdot \frac {b+c}{2s}\cdot\frac sa$ $\implies $ $\frac {XI}{XN}=\frac 12\iff X\equiv G.$

Is well known that $\left\{\begin{array}{cccc}
IA^2 & = & bc-4Rr & (5)\\\\
IM^2 & = & r^2 +\left(\frac {b-c}2\right)^2 & (6)\end{array}\right\|\ .$ Apply the Stewart's relation to $[IG$ in $\triangle AIM\ :\ IG^2\cdot AM+AM\cdot GA\cdot GM=IA^2\cdot GM+IM^2\cdot GA\iff$

$\left\|IG^2\cdot \cancel{m_a}+\cancel{m_a}\cdot \frac {2m_a}3\cdot \frac {m_a}3=(bc-4Rr)\cdot \frac {\cancel{m_a}}3+\left[r^2 +\left(\frac {b-c}2\right)^2\right]\cdot \frac{2\cancel{m_a}}3\right\|\ \odot 18\iff$ $18\cdot IG^2+2\left(b^2+c^2\right)-a^2=6bc-24Rr+12r^2+3(b-c)^2\iff$

$18\cdot IG^2+\cancel{2\left(b^2+c^2\right)}-a^2=\cancel{6bc}-24Rr+12r^2+\cancel 3\left[\left(b^2+c^2\right)-\cancel{2bc}\right].$ Thus, $18\cdot IG^2=\sum a^2+12r^2-24Rr=(2s)^2-2\left(s^2+r^2+4Rr\right)+12r^2-24Rr\implies$

$18\cdot IG^2=2s^2+10r^2-32Rr\implies$ $\boxed{\ NI^2=9\cdot IG^2=s^2+5r^2-16Rr\ }\ (*)\ .$ From the relation $(*)$ obtain the remarkable inequality $\boxed{s^2+5r^2\ge 16Rr}\ .$

P2. Prove that $(\forall )\ ABC$ with the incircle $\mathbb C(I,r),$ the circumcircle $w=C(O,R)$ and the Nagel point $N$ there is the relation $\boxed{\ ON=R-2r\ }$ .

Proof. Let $\left\{\begin{array}{cc}
D\in AN\cap BC\\\\
E\in BN\cap CA\\\\
F\in CN\cap AB\end{array}\right\|$ . Is well-known that $\left\{\begin{array}{c}
BF=CE=s-a\\\\
CD=AF=s-b\\\\
AE=BD=s-c\end{array}\right\|$ , $\boxed{\frac {NA}a=\frac {ND}{s-a}=\frac {AD}{s}}$ and identity $\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}\ (*)$ .

I denoted $\{A,L\}=\{A,N\}\cap w$ . Apply the Stewart's relation to the cevian $AD$ in $\triangle ABC\ :\ \boxed{a\cdot AD^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)}\ (1)$ .

Since $\boxed{R^2-ON^2=NA\cdot NL}\ (2)$ and $DB\cdot DC=DA\cdot DL$ obtain that $NA\cdot NL=\frac as\cdot AD\cdot(ND+DL)=$ $\frac as\cdot AD\cdot \frac {s-a}{s}\cdot AD+\frac as\cdot DB\cdot DC=$

$\frac {s-a}{s^2}\cdot a\cdot AD^2+\frac {a(s-b)(s-c)}{s}$ . Therefore, $NA\cdot NL\stackrel{(1)}{=}$ $\frac {s-a}{s^2}\cdot \left[c^2(s-b)+b^2(s-c)-a(s-b)(s-c)\right]+$ $\frac {a(s-b)(s-c)}{s}=$ $\frac {1}{s^2}\cdot\sum a^2(s-b)(s-c)\stackrel{(*)}{=}$

$4r(R-r)$ . In conclusion, $NA\cdot NL=4r(R-r)$ and from the relation $(2)$ obtain that $ON^2=R^2-NA\cdot NL=$ $R^2-4r(R-r)=(R-2r)^2\implies$ $ON=R-2r$ .
$====================================================================================$
$(*)$ Remark. $\sum a^2(s-b)(s-c)=\sum a^2\left[bc-s(s-a)\right]=$ $abc\sum a-s\cdot\sum a^2(s-a)=$ $8Rs^2r-s^2\cdot \sum a^2+$ $s\cdot\sum a^3=$ $8Rs^2r-s^2\cdot 2\left(s^2-r^2-4Rr\right)+$

$s\left[8s^3-6s\left(s^2+r^2+4Rr\right)+12Rsr\right]=$ $4Rs^2r-4s^2r^2\implies$ $\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}$ . Otherwise. $\sum a^2(s-b)(s-c)=$ $\sum a^2bc\sin^2\frac A2=$

$abc\sum a\sin^2\frac A2=$ $abc\sum 2R\sin A\cdot \sin^2\frac A2=$ $Rabc\sum \sin A(1-\cos A)=$ $4R^2sr\left(\sum\sin A-\frac 12\sum\sin 2A\right)=$ $4R^2sr\left(\frac sR-2\prod\sin A\right)=$ $4R^2sr\left(\frac sR-\frac S{R^2}\right)=$

$4R^2sr\left(\frac sR-\frac {sr}{R^2}\right)=$ $4R^2sr\cdot\frac sR\cdot \left(1-\frac {r}{R}\right)=$ $4Rs^2r\cdot\left(1-\frac {r}{R}\right)=$ $4Rs^2r\cdot\frac {R-r}R=$ $4s^2r(R-r)$ $\implies$ $\sum a^2(s-b)(s-c)=4s^2r(R-r)\ .$


P3. Prove that $(\forall )\ ABC$ with the orthocenter $H,$ the incircle $\mathbb C(I,r)$ and the circumcircle $w=C(O,R)$ there is the relation $\boxed{\ IH^2=4R^2+4Rr+3r^2-s^2\ }$ .


Proof. Denote $GO=x$ and apply the Stewart's relation to the cevian $[IG$ in $\triangle HIO\ :\ IH^2\cdot GO+IO^2\cdot GH=IG^2\cdot OH+OH\cdot GO\cdot GH\iff$

$IH^2\cdot \cancel x+IO^2\cdot 2\cancel x=IG^2\cdot 3\cancel x+3x\cdot 2x\cdot \cancel x\iff$ $IH^2+2\cdot IO^2=3\cdot IG^2+6\cdot GO^2\iff$ $3\cdot IH^2+6\left(R^2-2Rr\right)=NI^2+2\cdot HO^2\iff$

$3\cdot IH^2+6R^2-12Rr=s^2+5r^2-16Rr+18R^2-4\left(s^2-r^2-4Rr\right)\iff$ $3\cdot IH^2=12R^2+12Rr+9r^2-s^2\iff$ $IH^2=4R^2+4Rr+3r^2-s^2\ .$

Remark. Apply the Euler's relation to the trapezoid $OIHN.$ Since $2\cdot OI=HN$ obtain that $\boxed{\ OH^2+IN^2=IH^2+ON^2+HN^2\ }\ (*)\ .$



P4 (Leonard Giugiuc & Abdikadir Altintas). Let an $A-$right-angle $\triangle ABC$ with the centroid $G$ and the Lemoine's point $K\ .$ Prove that $S^2+\left(b^2-c^2\right)^2=9a^2\cdot GK^2$ (standard notations).

Proof. Denote $D\in AK\cap BC$ and the midpoint $M$ of the side $[BC]\ .$ Is well-known or prove easily that in an $A$-right-angle $\triangle ABC$ the $A$-symmedian is the $A$-altitude. From the Aubel's relation obtain

that $\frac {KA}{KD}=\frac {b^2}{a^2}+\frac {c^2}{a^2}=\frac {b^2+c^2}{a^2}=1,$ i.e. $K$ is the midpoint of the altitude $AD\ .$ Denote $X\in (AD)$ so that $GX\perp AD\ .$ Thus, $DM=|BM-BD|=\left|\frac a2-\frac {c^2}a\right|=\left|\frac {a^2-2c^2}{2a}\right|=\frac {\left|b^2-c^2\right|}{2a},$ i.e.

$\boxed{DM=\frac {\left|b^2-c^2\right|}{2a}}\ (*)\ .$ Therefore, $XG\parallel DM\implies \frac {AX}{AD}=\frac {XG}{DM}=\frac {AG}{AM}=\frac 23 \implies$ $XK=KD-DX=\frac h2-\frac h3=\frac h6=\frac {bc}{6a}, $ where $h=AD\ .$ Hence $\boxed{XK=\frac {bc}{6a}}\ (1)\ .$ Similarly obtain

$\frac {XG}{DM}=\frac {AG}{AM}=\frac 23\implies XG=\frac 23\cdot DM\ \stackrel{(*)}{=}\ \frac {\left|b^2-c^2\right|}{3a}\implies$ $\boxed{XG=\frac {\left|b^2-c^2\right|}{3a}}\ (2)\ .$ Therefore, $KG^2=XK^2+XG^2=$ $\left(\frac {bc}{6a}\right)^2+\left(\frac {b^2-c^2}{3a}\right)^2\implies$ $\boxed{KG^2=\frac {b^2c^2+4\left(b^2-c^2\right)^2}{36a^2}}\ (3)\ .$

In conclusion, $S^2+\left(b^2-c^2\right)^2=9a^2\cdot GK^2\iff$ $\frac {b^2c^2}4+\left(b^2-c^2\right)^2=\frac {b^2c^2+4\left(b^2-c^2\right)^2}{4},$ what is true.
This post has been edited 85 times. Last edited by Virgil Nicula, Mar 14, 2019, 2:57 PM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nice one!!

by Googlu15, Dec 14, 2016, 7:04 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a