453. Working page III.

by Virgil Nicula, Mar 4, 2017, 5:51 PM

P0. Sa se determine pozitia punctului mobil $M$ situat pe axa ordonatelor $Oy$ pentru care suma $MA +MB$ este minima, unde $A(6,7)$ si $B(4,2)$.

Metoda 1. Se obseva ca axa ordonatelor nu separa punctele fixe $A$ si $B$. Alegem un punct din perechea $\{A,B\},$ de exemplu $A,$ construim simetricul $C$ al acestuia fata de axa

ordonatelor si $D\in BC\cap Oy.$ Se arata usor ca $(\forall ) M\in OY$ exista lantul de relatii $DA+DB=DC+DB=BC\le MC+MB=MA+MB,$ adica $(\forall ) M\in OY,$

$MA+MB\ge DA+DB,$ ceea ce inseamna ca suma $MA+MB$ este minima $\iff M:=D,$ unde (analitic) $D(0,4)\ ,\ MA+MB\ge DA+DB=5\sqrt 5.$

Metoda 2. Notam proiectiile $C=\mathrm{pr}_{Oy}B$ si $D=\mathrm{pr}_{Oy}A,$ unde $CD=5.$ Se arata usor ca punctul de minim cautat $E\in (CD).$ Asadar putem presupune ca $M\in (CD).$

Denote $\left\{\begin{array}{ccc}
u & = & MD\\\
v & = & MC\end{array}\right\|$ unde $u+v=5.$ Aplicam
Inegalitatea Minkowski (<= click): $\boxed{MA+MB=\sqrt{u^2+6^2}+\sqrt{v^2+4^2}\ge \sqrt{(u+v)^2+(6+4)^2}=5\sqrt 5}\ ,$

adica $MA+MB\ge 5\sqrt 5.$ Avem egalitate $\iff \frac u6=\frac v4=\frac {u+v}{6+4}=\frac 5{10}=\frac 12\implies$ $u=3$ si $v=2$ $\implies$ $OE=OC+CE=2+2=4,$ adica $OE=4.$

Metoda 3. Notam $M(0,m)\ ,\ m\in\mathbb R$ si $f(m)=MA+MB=\sqrt{(m-7)^2+6^2}+\sqrt {(m-2)^2+4^2}\implies$ $\boxed{f(m)=\sqrt{m^2-14m+85}+\sqrt {m^2-4m+20}}\ (*).$

Se arata usor ca $f'(m)=\frac {m-7}{\sqrt {m^2-14m+85}}+\frac {m-2}{\sqrt {m^2-4m+20}}$ si $f'(m)=0\iff$ $(m-7)\cdot\sqrt {m^2-4m+20}+(m-2)\cdot \sqrt {m^2-14m+85}=0\iff$

$(m-7)(m-2)\le 0$ si $(m-7)^2\cdot \left(m^2-4m+20\right)=(m-2)^2\cdot\left(m^2-14m+85\right)\iff$ $m\in [2,7]$ si $20m^2+80m-640=0\iff$ $m\in (2,7)$ si

$m^2+4m-32=0\begin{array}{ccc}
\nearrow & m=-8 & \searrow\\\\
\searrow & m=4 & \nearrow\end{array}\odot\iff$ $m\in (2,7)\cap \{-8,4\}\iff \boxed{\ m\ =\ 4\ }$ si $(\forall )\  m\in \mathbb R\ ,\ f(m)\ge f(4)=5\sqrt 5\implies$ $\boxed{\ (\forall )\ m\in \mathbb R\ ,\ f(m)\ge 5\sqrt 5\ }\ .$


Extindere. Sa se determine pozitiile $\{M,N\}\subset Oy$ astfel incat $MN=k>0$ (constant) si suma $MA +NB$ este minima, unde $A,B$ sunt fixe si $[AB]\cap Oy=\emptyset.$.


Ptolemy's inequality. Let $\triangle ABC$ and a point $M$ which belongs to the plane of $ABC$. Prove that there is the relation $\boxed{MA\cdot BC\le MB\cdot CA+MC\cdot AB}\ (*).$

Proof 1. I"ll use the complex numbers. Thus, denote $X(x)$ - the point $X$ with the affix $x\in\mathbb C$. Hence $A(a)$, $B(b)$, $C(c)$ and $M(m)$. Denote $\left\{\begin{array}{ccc}
z_1=(m-a)(b-c)\\\
z_2=(m-b)(c-a)\\\
z_3=(m-c)(a-b)\end{array}\right\|$

Observe that $z_1+z_2+z_3=0$ $\iff$ $z_1=-\left(z_2+z_3\right)$ $\implies \left|z_1\right|=\left|z_2+z_3\right|\le \left|z_2\right|+\left|z_3\right|$ $\implies \left|z_1\right|\le \left|z_2\right|+\left|z_3\right|$ $\iff$ $MA\cdot BC\le MB\cdot CA+MC\cdot AB$.



P1. Let $I$ be the incenter of the non-isosceles $\triangle ABC$ and let $A',B',C'$ be the tangency points of the incircle with the sides $BC$,

$CA$ and $AB$ respectively. Let $P\in AA'\cap BB'$, $M\in AC\cap A'C'$ and $N\in B'C'\cap BC$. Prove that the lines $IP\perp MN$.

Alternative formulation. The incircle of a non-isosceles triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$ and $AB$ in $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$, respectively. The lines

$AA^{\prime}$ and $BB^{\prime}$ intersect in $P$, the lines $AC$ and $A^{\prime}C^{\prime}$ intersect in $M$, and the lines $BC$ and $B^{\prime}C^{\prime}$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.
[/size]

Proof. I note the points $X\in AA'\cap IN,\ Y\in BB'\cap IM$. From the wellknown relations $IN\perp AA'$, $IM\perp BB'$ results $IX\cdot IN=IY\cdot IM=r^2$,

i.e. the line $MN$ is the image of the circumcircle with the diameter $[IP]$ through the inversion with the pole I and the constant $r^2$. Therefore, $IP\perp MN.$



P2 (Alexandru Lupas). Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and an its interior point $P$ for

which denote $\left\{\begin{array}{ccc}
D\in AP\cap BC & ; & X\in AP\cap w\\\
E\in BP\cap CA & ; & Y\in BP\cap w\\\
F\in CP\cap AB & ; & Z\in CP\cap w\end{array}\right\|\ .$ Prove that $\boxed{\frac {AD}{DX}+\frac {BE}{EY}+\frac {CF}{FZ}\ge 9}\ .$


Proof. $K\equiv \sum\frac {AD}{DX}=\sum\frac {AD^2}{AD\cdot DX}=\sum\frac {AD^2}{DB\cdot DC}.$ Stewart's relation to $AD/\triangle ABC: a\cdot AD^2+a\cdot DB\cdot DC=c^2\cdot DC+b^2\cdot DB\stackrel{:(a\cdot DB\cdot DC)}{\iff}$

$1+\frac {AD^2}{DB\cdot DC}=$ $\frac {c^2}{a\cdot DB}+\frac {b^2}{a\cdot DC}\ \stackrel{\sum}{\implies}$ $3+K=$ $\sum\frac 1a\cdot \left(\frac {c^2}{DB}+\frac {b^2}{DC}\right)\stackrel{C.B.S.}{\ge}\sum\frac 1a\cdot \frac {(b+c)^2}{DB+DC}=$ $\sum\left(\frac {b+c}a\right)^2\stackrel{AM-GM}{\ge}4\cdot \sum \frac {bc}{a^2}\stackrel{AM-GM}{\ge}$

$4\cdot 3\cdot \sqrt[3]{\prod\frac {bc}{a^2}}=12\implies$ $3+K\ge 12\implies K\ge 9.$ Observe that $K=9\iff P\equiv O$ and $a=b=c.$



P3. Find the minimum of the expression $E\equiv E(x,y)$ (without utilization of derivatives!), where $E\equiv\frac {1-xy}{(1-x)(1-y)},\ \{x,y\}\subset (0,1)$ and $x+y+xy=1\ .$ Success!

Metoda 1. Using $\boxed{y=\frac {1-x}{1+x}}$ the expression $E$ becomes $E=\frac {1-x\cdot\frac {1-x}{1+x} }{(1-x)\left(1-\frac {1-x}{1+x}\right)}=\frac {1+x^2}{2x(1-x)} ,$ i.e. $E=\frac {1+x^2}{2x(1-x)} , x\in (0,1) .$ I"ll use the substitution $x=\tan\phi ,$ where $\phi \in \left(0,\frac {\pi}4\right) .$

Thus, $E=\frac {1+\tan^2\phi}{2\tan\phi(1-\tan\phi)}=$ $\frac 1{\sin 2\phi -2\sin^2\phi}=$ $\frac 1{\left(\sin 2\phi +\cos 2\phi\right) -1}\ .$ Since $:\ (\forall )\ \phi\in \left(0,\frac {\pi}4\right)\ ,\ 1<\sin 2\phi +\cos 2\phi \le\sqrt 2$ obtain that $E\ge\frac 1{\sqrt 2-1}=1+\sqrt 2 .$ Therefore,

$\boxed{\min_{\begin{array}{c}
\{x,y\}\subset (0,1)\\\
x+y+xy=1\end{array}}\frac {1-xy}{(1-x)(1-y)}=1+\sqrt 2}\ .$ I"ll prove the bilateral inequality $1\le \sin x+\cos x\le \sqrt 2$ for any $x\in \left[0,\frac {\pi}2\right] .$ Indeed, it is equivalent with $1\le (\sin x+\cos x)^2\le 2\iff$

$1\le \sin^2x+\cos^2x+2\sin x\cos x\le 2\iff$ $1\le 1+\sin 2x\le 2\iff$ $0\le \sin 2x\le 1 ,$ what is truly for any $x\in \left[0,\frac {\pi}2\right] ,$ i.e. $2x\in [0,\pi ] .$

Metoda 2. Obtain easily $E=\frac {1+x^2}{2x(1-x)} .$ Therefore, $E$ is $\min\iff$ $2E=\frac {1+x^2}{x(1-x)}$ is $\min\iff$ $\frac 1{2E}=\frac {x(1-x)}{1+x^2}$ is $\max\iff$ $1+\frac 1{2E}=1+ \frac {x(1-x)}{1+x^2}=\frac {1+x}{1+x^2}$ is $\max\iff$ $\frac {1}{1+\frac {1}{2E}}=$ $\frac {1+x^2}{1+x}=x+1+\frac 2{x+1}-2$ is $\min .$ From $(x+1)+\frac 2{x+1}\ge 2\sqrt 2$ obtain that $\frac 1{1+\frac 1{2E}}\ge 2(\sqrt 2-1)\iff$ $1+\frac {1}{2E}\le $ $\frac 1{2\left(\sqrt 2-1\right)}=$ $\frac {1+\sqrt 2}2\iff$ $\frac {1}{2E}\le \frac {\sqrt2-1}2\iff E\ge 1+\sqrt 2\ .$



P4. Prove the proposed problem from here.

Proof. Prove easily that $\frac r{S_x}=\frac {r_a}{S_1}=\frac {r_b}{S_2}=\frac {r_c}{S_3}=\frac {2R}{S}\ ,$ i.e. $\left(r,r_a,r_b,r_c\right)$ are direct proportionally with $\left(S_x,S_1,S_2,S_3\right)\ .$ Hence $\frac 1{S_x}=$ $\frac 1{S_1}+\frac 1{S_2}+\frac 1{S_3}$ $\iff$ $\frac 1r=\frac 1{r_a}+\frac 1{r_b}+\frac 1{r_c}\ ,$ what is true.


P5. Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R),$ the diameter $[A'A]$ and the midpoint $M$ of the side $[BC].$ Prove that there are the following inequalities :

$\boxed{4\cdot MA\cdot MA'\ge a^2}\ (*)$ with equality iff $b=c\ ;$ the Tereshin's inequality $\boxed{\ 4Rm_a\ge b^2+c^2\ }\ (**)$ with equality iff $b=c\ \vee A=90^{\circ}$ (standard notations).


Proof 1. Let diameter $[B'B]$ of $w,$ i.e. $2\cdot OM=B'C=2\sqrt {4R^2-a^2}.$ Thus, $4Rm_a\ge b^2+c^2\iff$ $4\left(m_a-R\right)^2\le 4R^2-a^2\iff$ $2\left|m_a-R\right|\le B'C\iff$ $\left|AM-AO\right|\le OM$ what is true.

Proof 2. Denote $\{A,S\}=AM\cap w.$ Observe that $SA'\perp SM$ $\implies MS\le$ $ MA'$ $\implies$ $\frac {a^2}4=$ $MB\cdot MC=MA\cdot MS$ $\le MA\cdot MA'$ $\implies$ $4\cdot MA\cdot MA'\ge a^2\ .$ Apply the theorem

of median to $A'M$ in $\triangle BA'C\ :\ 4\cdot A'M^2=2\left(A'B^2+A'C^2\right)-BC^2\iff$ $4\cdot A'M^2=$ $2\left[\left(4R^2-c^2\right)+\left(4R^2-b^2\right)\right]-a^2$ $\implies$ $\boxed{4\cdot A'M^2=2\cdot \left[8R^2-\left(b^2+c^2\right)-a^2\right]}\ (1)\ .$

Therefore, $4MA^2\cdot 4A'M^2\ge a^4\iff$ $\left[2 \left(b^2+c^2\right)-a^2\right]\cdot\left[2\left(8R^2-b^2-c^2\right)-a^2\right]\ge a^4\iff$ $4\left(b^2+c^2\right)\left[8R^2-\left(b^2+c^2\right)\right]\ge 2a^2\left[\left(\cancel{b^2+c^2}\right)+8R^2-\left(\cancel{b^2+c^2}\right)\right]\iff$

$4R^2\left[2\left(b^2+c^2\right)-a^2\right]\ge \left(b^2+c^2\right)^2\iff$ $16R^2m_a^2\ge \left(b^2+c^2\right)^2\iff$ $4Rm_a\ge b^2+c^2\ .$

Remark (Adil Abdullayev). $h_a\le s_a=\frac {2bc}{b^2+c^2}\cdot m_a=$ $\frac {4Rh_a}{b^2+c^2}\cdot m_a\implies$ $h_a\le\frac {4Rh_a}{b^2+c^2}\cdot m_a\implies$ $b^2+c^2\le 4Rm_a\ .$


Application. Prove that in any acute triangle $\triangle ABC$ there is the inequality $\boxed{\ \sum \frac {m_a\cos A}{h_a}\ge \frac 32\ }\ .$

Proof. Let $\left\{\begin{array}{ccc}
x: & = & a^2\\\
y: & = & b^2\\\
z: & = & c^2\end{array}\right\|$ . Therefore, $\sum\frac {m_a\cos A}{h_a}\ \stackrel{(**)}{\ge}\ \sum\frac {\left(b^2+c^2\right)\cos A}{4Rh_a}=$ $\sum\frac {\left(b^2+c^2\right)\cos A}{2bc}=$ $\sum\frac {\left(b^2+c^2\right)\left(b^2+c^2-a^2\right)}{4b^2c^2}=$ $\sum\frac {a^2\left(b^2+c^2\right)\left(b^2+c^2-a^2\right)}{4a^2b^2c^2}=\frac 32$

because $\sum\frac {x(y+z)(y+z-x)}{4xyz}=\frac 32\iff$ $\sum [x(y+z)(y+z-x)]=6xyz\iff$ $\sum x\left(y^2+z^2\right)+\cancel{\sum (2xyz)}-\sum x^2(y+z)=\cancel{6xyz}\iff$ $\sum x\left(y^2+z^2\right)=$

$\sum x^2(y+z)\iff$ $\sum x\left[\left(x^2+y^2+z^2\right)-\cancel{x^2}\right]=\sum x^2[(x+y+z)-x]\iff$ $\sum x^2\cdot\sum x=\sum x\cdot \sum x^2$ what is true. In conclusion, $\sum\frac {m_a\cos A}{h_a}\ge\frac 32\ .$


P6. Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R),$ the diameter $[A'A]$ and the midpoint $M$ of the side $[BC].$ Prove that there are the following inequalities $:$ $\boxed{m_a^2\le R^2+h_a^2}\ (*)$

with equality iff $|B-C|=90^{\circ}\ ;\ \boxed{4S+\left|b^2-c^2\right|\le 2am_a\sqrt 2}\ (**)$ with equality iff $m\left(\widehat{BMA}\right)=\frac {\pi}4\ ;\ \boxed{\frac {a^2+b^2+c^2}{m_a+m_b+m_c}\le 2R}\ (***)$ with equality iff $a=b=c\ .$



Lemma. Let an acute $\triangle ABC$ with the incircle $ \omega = C(I,r)$ and the circumcircle $\Omega = C(O,R).$ The circles $ c_{1}= \mathbb C\left(P,r_1\right)$ and $ c_{2}= \mathbb C\left(Q,r_{2}\right)$ are tangent internally to $ \Omega$ in the same point $ A;$ the circle $ w$ is tangent externally to the circle $ c_1$ and is tangent internally to the circle $ c_2.$ Prove that $PQ =\frac{a^{2}(p-a)}{4S}$, where $2p=a+b+c$ and $ S=[ABC]$ is the area of $ \triangle ABC.$

Remark. Prove easily that $\left \{\begin{array}{ccc}
IP = r+r_{1} & ; & IQ = r_{2}-r\\\\
PO = R-r_{1} & ; & PA = r_{1}\\\\
QO = R-r_{2} & ; & QA = r_{2}\\\\
OA = R & ; & PQ = r_{2}-r_{1}\end{array}\right\|$. The relations $\left \{\begin{array}{ccc}
IO^{2}= R(R-2r) & ; & IA^{2}=\frac{bc(p-a)}{p}=\frac{4Rr(p-a)}{a}\\\\
IA^{2}-r^{2}= (p-a)^{2} & ; & IA^{2}+4Rr = bc\\\\
p(p-a)+(p-b)(p-c) = bc.& ; & p(p-a)(p-b)(p-c) = S^2\end{array}\right\|$ are well-known.

Proof I. Denote $\left\{\begin{array}{ccc}
IO & = & m\\\
 IA & = & n\end{array}\right\|$. Apply the Stewart's theorem in $ \triangle OIA$ for the cevian-rays $ [IP$ and $ [IQ\ :\ \left\{\begin{array}{ccc}
m^{2}r_{1}^{2}+n^{2}(R-r_{1}) & = & R(r+r_{1})^{2}+Rr_{1}(R-r_{1})\\\\
m^{2}r_{2}+n^{2}(R-r_{2}) & = &  R(r_{2}-r)^{2}+Rr_{2}(R-r_{2})\end{array}\right\|$ $ \implies$

$ r_{1}(R^{2}+2Rr+n^{2}-m^{2}) = R(n^{2}-r^{2}) = r_{2}(R^{2}-2Rr+n^{2}-m^{2})$ $ \implies$ $ r_{1}(R^{2}+2Rr+bc-4Rr-R^{2}+2Rr) =$ $ R(p-a)^{2}=$ $ r_{2}(R^{2}-2Rr+bc-4Rr-R^{2}+2Rr)$ $ \implies$

$ r_{1}bc = R(p-a)^{2}= r_{2}(bc-4Rr)$ $ \implies$ $ PQ = r_{2}-r_{1}=$ $ \frac{4R^{2}r(p-a)^{2}}{bc(bc-4Rr)}=$ $ \frac{4R^{2}pr(p-a)^{2}}{b^{2}c^{2}(p-a)}=$ $ \frac{4R^{2}pra^{2}(p-a)^{2}}{16R^{2}p^{2}r^{2}(p-a)}$ $ \implies$ $ \boxed{\ PQ =\frac{a^{2}(p-a)}{4S}\ }$.

Proof II. Apply the Pythagoras' theorem in the triangles :
$ \triangle\ IOP\blacktriangleright$ $ (r+r_{1})^{2}= (R-r_{1})^{2}+(R^{2}-2Rr)-2(R-r_{1})\cdot$ $ OI\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{1}=\frac{R(p-a)^{2}}{bc}}\ .$

$ \triangle\ IOQ\blacktriangleright$ $ (r_{2}-r)^{2}= (R-r_{2})^{2}+(R^{2}-2Rr)-2(R-r_{2})\cdot$ $ IO\cdot\frac{(R^{2}-2Rr)+R^{2}-\frac{4Rr(p-a)}{a}}{2R\cdot IO}\implies$ $ \boxed{r_{2}=\frac{Rp(p-a)}{bc}}\ .$ Therefore,

$ \frac{r_{1}}{p-a}=\frac{r_{2}}{p}=\frac{R(p-a)}{bc}=\frac{PQ}{a}$, i.e. $ \boxed{PQ =\frac{aR(p-a)}{bc}}=\frac{a^{2}(p-a)}{4S}$. Observe that $ \frac{r_{1}}{r}=\frac{r_{2}}{r_{a}}$, where $ r_{a}$ is the $ A$- exinradius of $ \triangle ABC$.

Remark. Prove easily that two more interesting relations : $ \boxed{\sum PQ = R+r\ }$ and $ r_{1}= R-\frac{a(4R+r)}{4p}$ , $ \boxed{r_{2}=\frac{ r_{b}+r_{c}}{4}}$.


P7 (N.T.Tuan). Let an acute $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the circumcircle $\Omega =\mathbb C(O,R).$ Denote $:\ \omega_a$ - the circle which is tangent internally to $\Omega$

at $A$ and tangent externally to $\omega\ ;$ circle $\Omega_a$ is tangent internally to $\Omega$ at $A$ and tangent internally to $\omega .$ Denote the centers $P_{a}$ and $Q_{a}$ of $\omega_{a}$ and $\Omega_{a}$ respectively.

Define points $P_{b}, Q_{b}, P_{c}, Q_{c}$ analogously. Prove that $8P_{a}Q_{a}\cdot P_{b}Q_{b}\cdot P_{c}Q_{c}\le R^{3}$ with equality if and only if triangle $ABC$ is equilateral (
figure).

Proof. $8\cdot\prod P_aQ_a\ \stackrel{lemma}{=}\ 8\cdot\prod\frac{aR(p-a)}{bc}=$ $\frac {8\cancel{abc}R^3(p-a)(p-b)(p-c)}{a\cancel{^2}b\cancel{^2}c\cancel{^2}}=$ $\frac {8R^3sr^2}{4Rsr}=$ $2R^2r\le R^3$ because $R\ge 2r.$


P8. Prove that in any $\triangle ABC$ there is the chain of inequalities $27r^2\le 3r(4R+r)\le s^2\le \frac 13\cdot (4R+r)^2\le \frac {27}4\cdot R^2$ (standard notations).

Proof (with derivatives).

$\blacktriangleright\ \left\{\begin{array}{cccc}
a+b+c & = & 2s\\\\
ab+bc+ca & = & s^2+4Rr+r^2\\\\
abc & = & 4RS=4Rsr\end{array}\right\|\implies f(x)\equiv x^3-2sx^2+\left(s^2+r^2+4Rr\right)x-4Rsr=0\ \odot\begin{array}{ccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \rightarrow\\\\
\searrow & c & \nearrow\end{array}\odot$ $\implies f'(x)=3x^2-4sx+\left(s^2+r^2+4Rr\right)\ .$ Since

$\{a,b,c\}\subset\mathbb R\ ,$ from the Rolle's theorem obtain that the equation $f'(x)=0$ has real roots, i.e. $\Delta^{\prime}=4s^2-3\left(s^2+r^2+4Rr\right)\ge 0\ ,$ i.e. $s^2-3r(4R+r)\ge 0\implies \boxed{s^2\ge 3r(4R+r)}\ (1)\ .$

Otherwise (without derivatives). Apply the well-known inequality $(a+b+c)^2\ge 3(ab+bc+ca)\iff 4s^2\ge 3\left(s^2+r^2+4Rr\right)\iff s^2\ge 3r(4R+r)\ .$

$\blacktriangleright\ \left\{\begin{array}{cccc}
r_a+r_b+r_c & = & 4R+r\\\\
r_ar_b+r_br_c+r_cr_a & = & s^2\\\\
r_ar_br_c & = & \frac{S^2}r=rs^2\end{array}\right\|\implies g(x)\equiv x^3-(4R+r)x^2+s^2x-rs^2=0\ \odot\begin{array}{ccc}
\nearrow & r_a & \searrow\\\\
\rightarrow & r_b & \rightarrow\\\\
\searrow & r_c & \nearrow\end{array}\odot $ $\implies g'(x)=3x^2-2(4R+r)x+s^2\ .$ Since

$\{a,b,c\}\subset\mathbb R\ ,$ from the Rolle's theorem obtain that the equation $g'(x)=0$ has real roots, i.e. $\Delta^{\prime}=(4R+r)^2-3s^2\ge 0\ ,$ i.e. $(4R+r)\ge s\sqrt 3\implies \boxed{s\sqrt 3\le 4R+r}\ (2)\ .$

Otherwise (without derivatives). Apply the well-known inequality $\left(r_a+r_b+r_c\right)^2\ge 3\left(r_ar_b+r_br_c+r_cr_a\right)\iff (4R+r)^2\ge 3s^2\iff s\sqrt 3\le (4R+r)\ .$

Remark. $\odot$ $\begin{array}{ccccccc}
\nearrow & 27r^2\le 3r(4R+r) & \iff & 9r\le 4R+r & \iff & 8r\le 4R & \searrow\\\\
\searrow & \frac 13\cdot (4R+r)^2\le \frac {27}4\cdot R^2 & \iff & 4(4R+r)^2\le 81R^2 & \iff & 2(4R+r)\le 9R &
 \nearrow\end{array}$ $\odot\implies 2r\le R\ ,$ what is true.



P9 (Ruben Dario). Let an $A$-right $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ which touches it at $D\in BC,$ $E\in CA$ and $F\in AB.$ Let $\left\{\begin{array}{ccc}
m\left(\widehat{BED}\right) & = & x\\\
m\left(\widehat{CFD}\right) & = & y\end{array}\right\|\ .$ Prove that $\cot x+\cot y=\frac {3a}{a+r}\ .$

Proof. Is wellknown that $:\ a+r=s\ ;\ (s-a)(s-b)(s-c)=sr^2\ ;\ \left\{\begin{array}{ccccc}
AE & = & AF & = & s-a\\\\
BD & = & BF & = & s-b\\\\
CD & = & CE & = & s-c\end{array}\right\|\ ;\ \left\{\begin{array}{ccccc}
\cot \frac B2 & = & \frac {s-b}r & = & \frac {s-b}{s-a}\\\\
\cot\frac C2 & = & \frac {s-c}r & = & \frac {s-c}{s-a}\end{array}\right\|\ .$

$\blacktriangleright\ m\left(\widehat{CED}\right)=90^{\circ}-\frac C2$ and $\frac {BC}{BD}=\frac {EC}{ED}\cdot\frac {\sin\widehat{BEC}}{\sin\widehat{BED}}\iff$ $\frac {2a}{s-b}=\frac {\cos\left(\frac C2-x\right)}{\sin\frac C2\sin x}=\cot \frac C2\cot x+1\iff$ $\frac {2a}{s-b}=\frac {s-c}{s-a}\cdot\cot x+1\iff$ $\boxed{\cot x=\frac {(s-a)(2a+b-s)}{(s-b)(s-c)}}\ (1)\ .$

$\blacktriangleright\ m\left(\widehat{CFD}\right)=90^{\circ}-\frac B2$ and $\frac {CB}{CD}=\frac {FB}{FD}\cdot\frac {\sin\widehat{CFB}}{\sin\widehat{CFD}}\iff$ $\frac {2a}{s-c}=\frac {\cos \left(\frac B2-x\right)}{\sin\frac B2\sin y}=\cot\frac B2\cot y+1\iff$ $\frac {2a}{s-c}=\frac {s-b}{s-a}\cdot\cot y+1\iff$ $\boxed{\cot y=\frac {(s-a)(2a+c-s)}{(s-c)(s-b)}}\ (2)\ .$

From the sum of $(1)$ and $(2)$ get $\cot x+\cot y=$ $\frac {(s-a)(4a+b+c-2s)}{(s-b)(s-c)}=$ $\frac {3a(s-a)}{(s-b)(s-c)}=\frac {3a}s=\frac {3a}{a+r}\implies$ $\boxed{\cot x+\cot y=\frac {3a}{a+r}}\ .$ See
here an easy extension P12.


P10 (Kadir Altintas). Let $ABC$ be a triangle so that $a<b<c.$ Denote : its incircle $w=\mathbb C(I,r)\ ;\ D\in BC,$ $E\in CA,$ $F\in AB$ so that $\{D,E,F\}\subset w\ ;$

the midpoints $M,$ $N$ of the sides $[AB],$ $[BC]$ respectively $;$ the circumcircle $W=\mathbb C\left(O_1,R_1\right)$ of $\triangle MBN.$ Prove that $I\in \mathbb W\iff$ $O_1\in IE\iff$ $a+c=2b.$


Proof. $\left\{\begin{array}{ccccc}
F\in (MB) & \implies & MF=AF-AM=(s-a)-\frac c2=\frac {(b+c-a)-c}2=\frac {b-a}2 & \implies & MF=\frac {b-a}2\\\\
D\in (CN) & \implies & ND=CN-CD=\frac a2-(s-c)=\frac {a-(a+b-c)}2=\frac {c-b}2 & \implies & ND=\frac {c-b}2\end{array}\right\|\ (1)\ .$ Therefore,$I\in \mathbb W\iff$ $MINB$ is cyclic $\iff$ $\widehat{IMF}\equiv\widehat{IND}\iff$

$\triangle IMF\equiv\triangle IND\iff$ $MF=ND\ \stackrel{(1)}{\iff}\ \frac {b-a}2=\frac {c-b}2\iff$ $a+c=2b\ .$ Hence $\boxed{I\in \mathbb W\iff\ a+c=2b}\ .$ From the power of the points $\{A,C\}$ w.r.t. the circle $W$ obtain that

$\left\{\begin{array}{ccccc}
AM\cdot AB & = & AO_1^2-R_1^2 & \implies & AO_1^2=\frac {c^2}2 +R_1^2\\\\
CN\cdot CB & = & CO_1^2-R_1^2 & \implies & CO_1^2=\frac {a^2}2+R_1^2\end{array}\right\|\implies$ $\boxed{O_1A^2-O_1C^2=\frac {c^2-a^2}2}\ (2)\ .$ Therefore, $O_1\in IE\iff$ $O_1I\perp AC\iff$ $O_1A^2-O_1C^2=IA^2-IC^2\ \stackrel{(2)}{\iff}$

$\frac {c^2-a^2}2=(s-a)^2-(s-c)^2\iff$ $c^2-a^2=2b(c-a)\iff$ $a+c=2b.$ Hence $\boxed{O_1\in IE\iff\ a+c=2b}\ .$ In conclusion, $\boxed{I\in \mathbb W\ \iff\ O_1\in IE\ \iff\ a+c=2b}\ .$



P11 (Cristian Tello). Let $\triangle ABC$ with $K\in (AC)$ and $L\in (BC)$ so that $ABLK$ is cyclic. Denote $G\in (KL),$ $M\in AG\cap BC$ and $N\in CG\cap AB\ .$ Prove that $\frac {GK}{GL}=\frac {NA}{NB}\cdot \left(\frac {CB}{CA}\right)^2\ .$

Proof. Apply the Menelaus' theorem to the transversals $\overline{1,3}\ :\ \left\{\begin{array}{cccc}
 & \mathrm{ABLK\ is\ cyclic} & \iff & \cancel{\frac {CL}{CK}}\cdot \frac {CB}{CA}=1\\\\
(1) & \overline{LGK}/\triangle AMC & \iff & \frac {LM}{\cancel{LC}}\cdot\frac {\cancel{KC}}{KA}\cdot\cancel{\frac {GA}{GM}}=1\\\\
(2) & \overline{AGM}/\triangle CLK & \iff & \frac {AK}{AC}\cdot\frac {\cancel{MC}}{ML}\cdot\frac {GL}{GK}=1\\\\
(3) & \overline{CGN}/\triangle ABM & \iff & \frac {CB}{\cancel{CM}}\cdot\cancel{\frac {GM}{GA}}\cdot\frac {NA}{NB}=1\end{array}\right\|\bigodot\implies \left(\frac {CB}{CA}\right)^2\cdot \frac {GL}{GK}\cdot\frac {NA}{NB}=1\implies\frac {GK}{GL}=\frac {NA}{NB}\cdot \left(\frac {BC}{AC}\right)^2\ .$

Remark. If $G$ is the centroid of the $A$-right $\triangle ABC$ and $KL\perp BC,$ then $N$ is the midpoint of $[AB],$ $ABLK$ is cyclic, i.e. $\frac {CK}{CL}=\frac {CB}{CA}\ .$ Hence $\frac {GK}{GL}=\frac {CK}{CL}\cdot\frac {CB}{CA}=\left(\frac {CB}{CA}\right)^2\ .$


An easy extension. Let $\triangle ABC$ with $K\in (AC),\ L\in (BC),\ G\in (KL),\ M\in AG\cap BC$ and $N\in CG\cap AB\ .$ Prove that $\frac {GK}{GL}=\frac {NA}{NB}\cdot \frac {CK}{CL}\cdot\frac {CB}{CA}\ .$

Proof. Apply the Menelaus' theorem to the transversals $\overline{1,3}\ :\ \left\{\begin{array}{cc}
(1) & \overline{LGK}/\triangle AMC\iff\frac {\cancel{LM}}{LC}\cdot\frac {KC}{\cancel{KA}}\cdot\cancel{\frac {GA}{GM}}=1\\\\
(2) & \overline{AGM}/\triangle CLK\iff \frac {\cancel{AK}}{AC}\cdot\frac {\cancel{MC}}{\cancel{ML}}\cdot\frac {GL}{GK}=1\\\\
(3) & \overline{CGN}/\triangle ABM\iff\frac {CB}{\cancel{CM}}\cdot\cancel{\frac {GM}{GA}}\cdot\frac {NA}{NB}=1\end{array}\right\|\bigodot\implies\frac {CK}{CL}\cdot \frac {CB}{CA}\cdot \frac {GL}{GK}\cdot \frac {NA}{NB}=1\implies\frac {GK}{GL}=\frac {NA}{NB}\cdot \frac {CK}{CL}\cdot\frac {CB}{CA}\ .$

Remark. If $ABLK$ is cyclic, then there is the relation $CK\cdot CA=CL\cdot CB,$ i.e. $\boxed{\frac {CK}{CL}=\frac {CB}{CA}}\ (*)$ and $\frac {GK}{GL}=\frac {NA}{NB}\cdot \frac {CK}{CL}\cdot\frac {CB}{CA}\ \stackrel{(*)}{\implies}\ \frac {GK}{GL}=\frac{NA}{NB}\cdot \left(\frac {CB}{CA}\right)^2\ .$


P12 (Kadir Altintas, Turkey). Let $\triangle ABC$ with the interior point $D$ so that $\left\{\begin{array}{ccccccc}
AC=b & ; & BC=d & ; & m\left(\widehat{DAB}\right)=40^{\circ} & ; & m\left(\widehat{DAC}\right)=20^{\circ}\\\\
DA=c & ; & DB=a & ; & m\left(\widehat{DBA}\right)=10^{\circ} & ; & m\left(\widehat{DBC}\right)=10^{\circ}\end{array}\right\|\ .$ Profe that $a^2+b^2=c^2+d^2\ .$.

Proof. Denote $m\left(\widehat{ACD}\right)=x.$ Hence $m\left(\widehat{BCD}\right)=100-x.$ Apply the trigonometrical form of the Ceva's theorem $:\ \sin\widehat{DAB}\cdot\sin\widehat{DBC}\cdot\sin\widehat{DCA}=\sin\widehat{DAC}\cdot\sin\widehat{DCB}\cdot\sin\widehat{DBA}\iff$

$\underline{\sin 40}^{\circ}\cancel{\sin 10^{\circ}}\sin x=\underline{\sin 20}^{\circ}\sin \left(100^{\circ}-x\right)\cancel{\sin 10^{\circ}}\iff$ $2\cos 20\sin x=\sin \left(80^{\circ}+x\right)\iff$ $\sin \left(x+20^{\circ}\right)+\sin \left(x-20^{\circ}\right)=$ $\sin \left(80^{\circ}+x\right)\iff$ $\sin \left(80^{\circ}+x\right)-\sin \left(x+20^{\circ}\right)=$

$\sin \left(x-20^{\circ}\right)\iff$ $\cancel{2\sin 30^{\circ}}\cos \left(50^{\circ}+x\right)=\cos\left(110^{\circ}-x\right)\iff$ $\cos \left(50^{\circ}+x\right)=\cos\left(110^{\circ}-x\right)\iff$ $50^{\circ}+x=110^{\circ}-x\iff  x=30^{\circ},$ i.e. $m\left(\widehat{DCA}\right)=30^{\circ}\ ,\ m\left(\widehat{DCB}\right)=70^{\circ}\ .$

Thus $m\left(\widehat{BAC}\right)+ m\left(\widehat{ACD}\right)=60^{\circ}+30^{\circ}=90^{\circ},$ i.e. $CD\perp AB\ .$ Hence $:\ CD\perp AB\iff$ $CA^2-CB^2=DA^2-DB^2\iff$ $b^2-d^2=c^2-a^2\iff$ $\boxed{a^2+b^2=c^2+d^2}\ .$



P13. In $\triangle ABC$ , the $A$-exincircle $w_a$ is tangent to $AB$ and $AC$ in $P$ and $Q$ respectively. The $B$-exincircle $w_b$ is tangent to $BA$ and $BC$

in $M$ and $N$ respectively. Denote the projection $K$ of $C$ on $MN$ and the projection $L$ of $C$ on $PQ$ . Prove that $MKLP$ is cyclically.


Proof. Denote $S\in KM\cap LP$ . Observe that $AM=BP=s-c$ , $MP=a+b$ and $\left\{\begin{array}{c}
m\left(\widehat{PMS}\right)=90^{\circ}-\frac B2\\\\
m\left(\widehat{MPS}\right)=90^{\circ}-\frac A2\\\\
m\left(\widehat{MSP}\right)=90^{\circ}-\frac C2\end{array}\right\|$ . Apply the theorem of Sines in $\triangle MPS\ :\ \frac {a+b}{\cos\frac C2}=$ $\frac {SM}{\cos \frac A2}=\frac {SP}{\cos \frac B2}\implies$

$SM^2-SP^2=\frac {(a+b)^2}{\cos^2\frac C2}\cdot\left(\cos ^2\frac A2-\cos^2\frac B2\right)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot(\cos A-\cos B)=$ $\frac {ab(a+b)^2}{2s(s-c)}\cdot\frac {2(b-a)s(s-c)}{abc}\implies$ $\boxed{SM^2-SP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . Apply the theorem of Cosines in

the triangles $CAM$ and $CBM\ :\ \left\{\begin{array}{c}
CM^2=(s-c)^2+b^2+2b(s-c)\cos A\\\\
CP^2=(s-c)^2+a^2+2a(s-c)\cos B\end{array}\right\|\implies$ $CM^2-CP^2=b^2-a^2+2(s-c)(b\cos A-a\cos B)$ . Observe that $b\cos A-a\cos B=$ $\frac {b^2-a^2}{c}$ and

$CM^2-CP^2=$ $b^2-a^2+2(s-c)\cdot \frac {b^2-a^2}{c}=\left(b^2-a^2\right)\cdot\left(1+\frac {a+b-c}{c}\right)\implies$ $\boxed{CM^2-CP^2=\frac {(a+b)(b^2-a^2)}{c}}$ . Thus, $SM^2-SP^2=CM^2-CP^2=\frac {(b-a)(a+b)^2}{c}\implies$

$SC\perp AB$ . Denote $R\in SC\cap AB$ . Since $RMKC$ and $RPLC$ are cyclically obtain that $\left\{\begin{array}{c}
SC\cdot SR=SK\cdot SM\\\\
SC\cdot SR=SL\cdot SP\end{array}\right\|\implies$ $SK\cdot SM=SL\cdot SP\implies$ $MKLP$ is cyclically.



P14. Let $ABC$ be an acute triangle with the incircle $\omega =C(I,r)$ and the circumcircle $\rho =C(O,R)$.The circles $C_{1}=C(P,r_{1})$ and $C_{2}=(Q,r_{2})$ are tangent internally to the circle $\rho$ in the same

point $A\ .$ The circle $w$ is tangent externally to the circle $C_{1}$ and is tangent internally to the circle $C_{2}\ .$ Prove that $\boxed{PQ=\frac{a^{2}(p-a)}{4S}}$, where $2p=a+b+c$ and $S\equiv [ABC]$- the area of $\triangle ABC\ .$


Proof. Prove easily that $\left\{\begin{array}{ccccc}IP=r+r_{1}& ; & IQ=r_{2}-r\\\\ PO=R-r_{1}& ; & PA=r_{1}\\\\ QO=R-r_{2}& ; & QA=r_{2}\\\\ OA=R & ; & \boxed{PQ=r_{2}-r_{1}}\end{array}\right\|$. The relations $p(p-a)+(p-b)(p-c)=bc$ and $\left\{\begin{array}{ccc}IO^{2}=R(R-2r) & ; & IA^{2}=\frac{bc(p-a)}{p}\\\\ IA^{2}-r^{2}=(p-a)^{2}& ; & IA^{2}+4Rr=bc\end{array}\right\|$ are well-known. Denote

$IO=m\ ,$ $IA=n$ and apply Stewart's theorem in $\triangle OIA$ for $IP$ and $IQ\ :\ \left\{\begin{array}{c}m^{2}r_{1}^{2}+n^{2}(R-r_{1})=R(r+r_{1})^{2}+Rr_{1}(R-r_{1})\\\\ m^{2}r_{2}+n^{2}(R-r_{2})=R(r_{2}-r)^{2}+Rr_{2}(R-r_{2})\end{array}\right\|$ $\implies$ $r_{1}(R^{2}+2Rr+n^{2}-m^{2})=R(n^{2}-r^{2})=$

$r_{2}(R^{2}-2Rr+n^{2}-m^{2})$ $\implies$ $r_{1}(R^{2}+2Rr+bc-4Rr-R^{2}+2Rr)=$ $R(p-a)^{2}=$ $r_{2}(R^{2}-2Rr+bc-4Rr-R^{2}+2Rr)$ $\implies$ $r_{1}bc=R(p-a)^{2}=r_{2}(bc-4Rr)$ $\implies$

$PQ=r_{2}-r_{1}=$ $\frac{4R^{2}r(p-a)^{2}}{bc(bc-4Rr)}=$ $\frac{4R^{2}pr(p-a)^{2}}{b^{2}c^{2}(p-a)}=$ $\frac{4R^{2}pra^{2}(p-a)^{2}}{16R^{2}p^{2}r^{2}(p-a)}$ $\implies$ $\boxed{\ PQ=\frac{a^{2}(p-a)}{4S}\ }\ .$

Remark. $8\cdot \prod PQ=\frac{8(abc)^{2}(p-a)(p-b)(p-c)}{(4S)^{3}}=\frac{8(4RS)^{2}Sr}{(4S)^{3}}=$ $R^{2}\cdot 2r\le R^3$ $\implies$ $\boxed{8\cdot \prod PQ\le R^3}\implies$ $\left\{\begin{array}{c}\boxed{\ r\le \sqrt [3]{\prod PQ}\le \frac{R}{2}\ }\\\\ \boxed{\ r\le\frac{1}{3}\cdot \sum PQ\le \frac{R^{2}}{4r}\ }\end{array}\right\| .$



P15. Let an equilateral $\triangle ABC$ and an interior $P$ so that $:\ \left\{\begin{array}{ccccc}
PA=x & : & D\in BC & ; & PD\perp BC\\\
PB=y & : & E\in CA & ; & PE\perp CA\\\
PC=z & : & F\in AB & ; & PF\perp AB\end{array}\right\|\ .$ Prove that $[DEF]=\frac 34\cdot \sqrt{p(p-x)(p-y)(p-z)}\ ,$ where $2p=x+y+z\ .$

Proof. $PEAF\ ,$ $PFBD\ ,$ $PDCE$ are cyclic with the diameters $PA\ ,$ $PB\ ,$ $PC$ respectively. So $EF=x\cdot\sin A\ ,$ $FD=y\cdot\sin B\ ,$ $DE=z\cdot\sin C\iff$ $\frac {EF}x=\frac {FD}y=\frac {DE}z=\frac {\sqrt 3}2\iff$

$\triangle DEF\sim\triangle XYZ\ ,$ where $XY=z\
 ,$ $YZ=x\ ,$ $ZX=y$ and $[XYZ]=\sqrt {p(p-x)(p-y)(p-z)}\ .$ Thus, $\frac {[DEF]}{[XYZ]}=\left(\frac {\sqrt 3}2\right)^2=\frac 34\implies$ $[DEF]=\frac 34\cdot \sqrt{p(p-x)(p-y)(p-z)}\ .$



P16 (PAN African 2017). Let $\triangle ABC$ with orthocenter $H\ .$ The circle with diameter $[AC]$ cuts again the

circumcircle of $\triangle ABH$ at $K$. Prove that the point $M\in CK\cap BH$ is the midpoint of the segment $[BH]\ .$


Proof.

$\blacktriangleright\ \left\{\begin{array}{ccccc}
BAHK\ \mathrm{is\ cyclic} & \iff & \widehat{BAK}\equiv \widehat{BHK}\equiv\underline{\widehat{MHK}}\\\\
ACKE\ \mathrm{is\ cyclic} & \iff & \widehat{KAE}\equiv\widehat {KCE}\equiv\underline{\widehat {KCH}}\end{array}\right\|\implies$ $\widehat{MHK}\equiv\widehat {KCH}\implies \boxed{MH^2=MK\cdot MC}\ (1)\ .$

$\blacktriangleright\ \left\{\begin{array}{ccccc}
BAHK\ \mathrm{is\ cyclic} & \iff & \widehat{KAH}\equiv \widehat{KBH}\equiv\underline{\widehat{KBM}}\\\\
ACFK\ \mathrm{is\ cyclic} & \iff & \widehat{KAF}\equiv\widehat {KCF}\equiv\underline{\widehat {KCB}}\end{array}\right\|\implies$ $\widehat{KBM}\equiv\widehat {KCB}\implies \boxed{MB^2=MK\cdot MC}\ (2)\ .$

In conclusions, from the relations $(1)$ and $(2)$ obtain that $MB=MH\ ,$ i.e. the point $M$ is the midpoint of the segment $[BH]\ .$



P17 (Adil Abdullayev). Prove that $(\forall )\ \triangle\ ABC$ there is the bilateral inequality $18r\le\sum \frac {a^2}{r_a-r}\le 9R\ .$

Proof. $S=rs=r_a(s-a)\iff$ $s\left(r_a-r\right)=ar_a\iff$ $\boxed{\frac a{r_a-r}=\frac s{r_a}=\frac {s-a}r}\ (*)\ .$ Therefore, $\sum \frac {a^2}{r_a-r}\ \stackrel{(*)}{=}\ \sum \left(a\cdot\frac {s-a}r\right)=\frac 1r\cdot\sum \left(as-a^2\right)=\frac 1r\cdot \left[\cancel{2s^2}-2\left(\cancel{s^2}-r^2-4Rr\right)\right]=$

$\frac {2r(4R+r)}r=2(4R+r)\implies$ $\boxed{\sum \frac {a^2}{r_a-r}=2(4R+r)}\ (1)\ .$ Hence $18r\le\sum \frac {a^2}{r_a-r}\le 9R\ \stackrel{(1)}{\iff}\ \odot \begin{array}{ccc}
\nearrow & 18r\le 2(4R+r) \iff 18r-2r\le 8R & \searrow\\\\
\searrow & 2(4R+r)\le 9R \iff 2r\le 9R-8R & \nearrow\end{array}\odot\iff 2r\le R$ what is true.



P18 (Kadir ALTINTAS). Let $\triangle ABC$ with $a\ne c\ ,$ the incircle $w=\mathbb C(I,r)\ ,$ $T\in AC\cap w$ and the Lemoine's point $K\ .$ Prove that $\boxed{K\in BT\iff b(a+c)=a^2+c^2\iff  IK\parallel AC}\ .$

Proof. Denote $\{T,L,S,H\}\subset AC$ so that $:\ T\in w\ ;\ L\in BK\ ;\ KS\perp AC\ ;\ BH\perp AC\ .$ Is well-known that $:\ IT=r\ ;\ \frac {LA}{LC}=\frac {c^2}{a^2}$ and $\boxed{\frac {KB}{a^2+c^2}=\frac{KL}{b^2}=\frac {BL}{a^2+b^2+c^2}}\ (1)\ \ ;$

$SK\parallel HB\iff\frac{SK}{HB}=\frac{LK}{LB}\ \stackrel{(1)}{\iff}\ \frac {SK}{h_b}=$ $\frac {b^2}{a^2+b^2+c^2}\iff$ $SK=\frac {b\cdot \left(bh_b\right)}{a^2+b^2+c^2}=\frac {b\cdot (2sr)}{a^2+b^2+c^2}\iff$ $\boxed{SK=\frac {rb(a+b+c)}{a^2+b^2+c^2}}\ (2)\ .$

$\blacktriangleright\boxed{K\in BT}\iff$ $L\equiv T\iff$ $\frac {LA}{LC}=\frac {TA}{TC}\iff$ $\frac {c^2}{a^2}=\frac {s-a}{s-c}\iff$ $c^2(s-c)=a^2(s-a)\iff$ $a^3-c^3=s\left(a^2-c^2\right)\iff$ $\cancel{(a-c)}\left(a^2+ac+c^2\right)=s\cancel{(a-c)}(a+c)\iff$

$2\left[\left(a^2+c^2\right)+ac\right]=(a+c)^2+b(a+c)\iff$ $a^2+c^2+\cancel{(a+c)^2}=\cancel{(a+c)^2}+b(a+c)\iff$ $\boxed{b(a+c)=a^2+c^2}\ .$


$\blacktriangleright\ \boxed{IK\parallel AC}\iff$ $\delta_{AC}(I)=\delta_{AC}(K)\iff$ $IT=KS\iff\ \stackrel{(2)}{\iff}\ \cancel r=\frac {\cancel rb(a+b+c)}{a^2+b^2+c^2}\iff$ $b(a+\cancel b+c)=a^2+\cancel{b^2}+c^2\iff$ $\boxed{b(a+c)=b^2+c^2}\ .$



P19 (Kadir ALTINTAS). Let $\triangle ABC$ with $\overline{\overline{\{a,b,c\}}}=3\ ,$ the circumcircle $w=\mathbb C(O,R)\ ,$ the midpoint $M$ of $[BC]\ ,$ $\{A,D\}=AM\cap w\ .$ Prove that $\boxed{a(b+c)=b^2+c^2\iff DA=DB+DC}\ .$

Proof. Apply the lemma (<= click) to the $M$ in the cyclic quadrilateral $ABDC\ :\ \frac {MB}{AB\cdot DB}=\frac {MC}{AC\cdot DC}\iff$ $c\cdot DB=b\cdot DC\iff$ $\frac {DB}b=\frac {DC}c=$

$\boxed{\frac {DB+DC}{b+c}}=$ $\frac {b\cdot DB}{b^2}=\frac {c\cdot DC}{c^2}=\boxed{\frac {a\cdot DA}{b^2+c^2}}\iff$ $\boxed{\frac {DB+DC}{a(b+c)}=\frac {DA}{b^2+c^2}}\ (*)\ .$ In conclusion, $a(b+c)=b^2+c^2\ \stackrel{(*)}{\iff}\ DB+DC=DA\ .$


P20 (extension). Let $\triangle ABC$ with $\overline{\overline{\{a,b,c\}}}=3\ ,$ the circumcircle $w\ ,$ the point $M\in (BC)$ and $\{A,D\}=AM\cap w\ .$ Prove that $\boxed{\frac {MB}{MC}=\frac {c(c-a)}{b(a-b)}\iff DA=DB+DC}\ .$ Superbly !

Proof. Let $\frac {MB}{MC}=m$ and apply the lemma (<= click) to the $M$ in the cyclic quadrilateral $ABDC\ :\ \frac {MB}{AB\cdot DB}=\frac {MC}{AC\cdot DC}\iff$ $\frac m{c\cdot DB}=\frac 1{b\cdot DC}\iff$ $\frac {DB}{mb}=\frac {DC}c=\boxed{\frac {DB+DC}{mb+c}}=$

$\frac {b\cdot DB}{mb^2}=\frac {c\cdot DC}{c^2}=$ $\frac {b\cdot DB+c\cdot DC}{mb^2+c^2}\ \stackrel{\mathrm{Ptolemy}}{=}\ \boxed{\frac {a\cdot AD}{mb^2+c^2}}\ .$ Thus, $\boxed{\frac {DB+DC}{mb+c}=\frac {a\cdot AD}{mb^2+c^2}}\ (1)\ .$ Hence $m=\frac {c(c-a)}{b(a-b)}\iff a(mb+c)=mb^2+c^2\ \stackrel{(1)}{\iff}\ DB+DC=DA\ .$

Particular cases.

$\mathrm{PC1.}\ \blacktriangleright\ m=\frac {MB}{MC}=1\ ,$ i.e. $AM$ is the $A$-median of $\triangle ABC\ :\ \boxed{DB+DC=DA\iff a(b+c)=b^2+c^2}\ .$

Indeed $:\ 1=\frac {c(c-a)}{b(a-b)}\iff$ $b(a-b)=c(c-a)\iff$ $ba-b^2=c^2-ac\iff$ $a(b+c)=b^2+c^2\ .$

$\mathrm{PC2.}\ \blacktriangleright\ m=\frac {MB}{MC}=\frac {c^2}{b^2}\ ,$ i.e. $AM$ is the $A$-symmedian of $\triangle ABC\ :\ \boxed{DB+DC=DA\iff \frac 1b+\frac 1c=\frac 2a}\ .$

Indeed $:\ \frac {c^2}{b^2}=\frac {c(c-a)}{b(a-b)}\iff$ $\frac cb=\frac {c-a}{a-b}\iff$ $ac-bc=bc-ab\iff$ $a(b+c)=2bc\iff$ $\frac 1b+\frac 1c=\frac 2a\ .$

$\mathrm{PC3.}\ \blacktriangleright\ m=\frac {MB}{MC}=\frac {s-c}{s-b}\ ,$ i.e. $AM$ is the $A$-Nagel cevian of $\triangle ABC\ :\ \boxed{DB+DC=DA\iff \frac rR+\frac a{b+c}=1}\ .$

Indeed $:\ \frac {s-c}{s-b}=\frac {c(c-a)}{b(a-b)}\iff$ $b(a-b)(a+b-c)=c(c-a)(a+c-b)\iff$ $(b+c)\left(a^2+bc\right)=2abc+\left(b^3+c^3\right)\iff$ $\left(a^2+bc\right)(b+c)=2abc+(b+c)\left(b^2+c^2-bc\right)\iff$

$(b+c)\left[a^2-(b-c)^2\right]=2abc\iff$ $4(b+c)(s-b)(s-c)=2abc\iff$ $4(b+c)sr^2=8Rsr(s-a)\iff$ $r(b+c)=R(b+c-a)\iff\frac rR=\frac {b+c-a}{b+c}\iff$ $\frac rR+\frac a{b+c}=1\ .$

$\mathrm{PC4.}\ \blacktriangleright\ m=\frac {MB}{MC}=\frac {c\cdot\cos C}{b\cdot \cos B}\ ,$ i.e. $[AD]$ is the diameter of the circumcircle $w\ :\ \boxed{DB+DC=DA\iff \cos B+\cos C=1\iff \frac rR+\frac a{b+c}=1}\ .$

Indeed $:\ \frac {\cancel c\cdot \cos C}{\cancel b\cdot\cos B}=\frac {\cancel c(c-a)}{\cancel b(a-b)}\iff$ $a(\cos C+\cos B)=c\cdot\cos B+b\cdot\cos C=a\iff$ $\boxed{\cos B+\cos C=1}\iff$ $b\left(a^2+c^2-b^2\right)+c\left(a^2+b^2-c^2\right)=2abc\iff$

$a^2(b+c)+bc(b+c)-(b+c)\left(b^2+c^2-2bc\right)=2abc\iff$ $(b+c)\left(a^2+2bc-b^2-c^2\right)=2abc\iff$ $(b+c)\left[a^2-(b-c)^2\right]=2abc\iff$ $4(b+c)(s-b)(s-c)=2abc\iff$

$\cancel 4(b+c)\cancel sr^{\cancel 2}=2\cdot \cancel 4R\cancel{rs}(s-a)\iff$ $r(b+c)=2R(s-a)\iff$ $r(b+c)=R(b+c-a)\iff$ $\frac rR=\frac {b+c-a}{b+c}\iff$ $\boxed{\frac rR+\frac a{b+c}=1}\ .$

Remark. $\cos B+\cos C=1\iff$ $\sum\cos A=1+\cos A\iff$ $\cancel 1+\frac rR=\cancel 1+\cos A\iff$ $R\cos A=r\iff$ a.s.o.



P21 (Adil Abdullayev). Prove that $(\forall )\ \triangle\ ABC$ there is the bilateral inequality $\frac {4(2R-r)}{3Rr\sqrt 3}\le\sum \frac a{r_a^2}\le \frac {2(2R-r)}{3r^2\sqrt 3}\ .$

Proof. Observe that $\boxed{\sum\frac a{r_a^2}=\frac 1{S^2}\cdot \sum a(s-a)^2}\
 (1)\ ,$ where $S=sr$ and it is the area of $\triangle ABC\ .$ I"ll use only well-known identity $\boxed{s(s-a)+(s-b)(s-c)=bc}\ (2)\ .$ Hence $\sum a(s-a)^2=$

$\frac 1s\cdot\sum \left[a(s-a)\cdot s(s-a)\right]\ \stackrel{(2)}{=}\ \frac 1s\cdot \sum a(s-a)[bc-(s-b)(s-c)]=$ $\frac {abc}s\cdot\sum (s-a)-\frac 1s\cdot \sum a(s-a)(s-b)(s-c)=$ $abc-\frac 1s\cdot sr^2\cdot \sum a=$ $4RS-r^2\cdot 2s=$

$4RS-2rS=2S(2R-r)\implies$ $\boxed{\sum a(s-a)^2=2S(2R-r)}\ (2)\ .$ Hence $\sum\frac a{r_a^2}\ \stackrel{(1)}{=}\ \frac 1{S^2}\cdot \sum a(s-a)^2\ \stackrel {(2)}{=}\ \frac 1{S^2}\cdot 2S(2R-r)=\frac {2(2R-r)}S\implies$ $\boxed{\sum \frac a{r_a^2}=\frac {2(2R-r)}S}\ (3)\ .$

In conclusion, the required inequality becomes $\frac {4\cancel{(2R-r)}}{3R\cancel r\sqrt 3}\le\frac {2\cancel{(2R-r)}}{s\cancel r}\le \frac {2\cancel{(2R-r)}}{3r\cancel{^2}\sqrt 3}\iff$ $\frac 2{3R\sqrt 3}\le \frac 1s\le \frac 1{3r\sqrt 3}\iff$ $\boxed{3r\sqrt 3\le s\le\frac {3R\sqrt 3}2}\ ,$ what is true.
This post has been edited 501 times. Last edited by Virgil Nicula, Mar 30, 2018, 7:36 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a