241. Areas in a triangle.

by Virgil Nicula, Mar 4, 2011, 5:07 PM

PP1. Let the triangle $ABC$ and the points $\left\|\begin{array}{ccccc}
 M\in (BC) & ; & N\in (CA) & ; & P\in (AB)\\\
Q\in BN\cap CP & ; & R\in BN\cap MP & ; & S\in CP\cap MN\end{array}\right\|$ . Prove that

$\left\{\begin{array}{cccc}
 1. & [PQN]\cdot [BQC] & = & [BQP]\cdot [CQN]\\\\
 2. & [PAN]\cdot [BQC] & = & [ABC]\cdot [PQN]\end{array}\right\|$ and $\left\{\begin{array}{cccc}
 3. & [APQN]=[BQC] & \Longleftrightarrow & \frac {PA}{PB}\cdot\frac {NA}{NC}=1\\\\
4. & [MRQS] = [NQP] & \Longleftrightarrow & \frac {MB\cdot MC}{AN\cdot AP} = \frac {a^2}{bc}\end{array}\right\|$ .



PP2 (extension of Mircea Lascu's problem). Let $ \triangle ABC$ , $ M\in (BC)$ , $ N\in (CA)$ , $ P\in (AB)$ so that $ \underline {Q\in AM\cap BN\cap CP}$ and

$ R\in BN\cap MP$ , $ S\in CP\cap MN$ . Prove that $ \boxed {\ [MRQS] = [NQP]\ \Longleftrightarrow\ \frac {MB\cdot MC}{AN\cdot AP} = \frac {a^2}{bc}\ }$ .


Proof. Denote $ \boxed {\begin{array}{c}
\frac {NA}{n}=\frac {NC}{1}=\frac {AC}{n+1}\\\\
\frac {PA}{p}=\frac {PB}{1}=\frac {AB}{p+1}\end{array}}$ . Apply Ceva's theorem to $ Q/ ABC\ : \ \ \frac {MB}{MC}\cdot\frac {NC}{NA}\cdot\frac {PA}{PB}=1$ , i.e. $ \boxed {\frac {MB}{n}=\frac {MC}{p}=\frac {BC}{n+p}}$ .

Apply Van Aubel's relation : $ \frac {QA}{QM}=\frac {PA}{PB}+\frac {NA}{NC}$ , i.e. $ \frac {QA}{QM}=n+p$ $ \implies$ $ \boxed {\frac {QA}{n+p}=\frac {QM}{1}=\frac {AM}{n+p+1}}$ . Apply Menelaus' theorem

to mentioned transversals/triangles : $ \left\|\begin{array}{c}
\overline {BQN}/APC\ : \ \frac {BP}{BA}\cdot\frac {NA}{NC}\cdot\frac {QC}{QP}=1\implies\frac{n}{p+1}\cdot\frac {QC}{QP}=1\\\\
\overline {CQP}/ANB\ : \ \frac {CN}{CA}\cdot\frac {PA}{PB}\cdot\frac {QB}{QN}=1\implies\frac{p}{n+1}\cdot\frac {QB}{QN}=1\end{array}\right\|$ $ \implies$ $ \boxed {\begin{array}{c}
\frac {QC}{p+1}=\frac {QP}{n}=\frac {CP}{n+p+1}\\\\
\frac {QB}{n+1}=\frac {QN}{p}=\frac {BN}{n+p+1}\end{array}}$ .

Apply Routh's relation : $ \left\|\begin{array}{c}
\overline{MRP}\ : \ \frac {RP}{RM}=\frac {BP}{BM}\cdot\frac {NA}{NC}\cdot\frac {BC}{BA}\implies\frac {RP}{RM}=\frac {n+p}{p+1}\\\\
\overline{MSN}\ : \ \frac {SN}{SM}=\frac {CN}{CM}\cdot\frac {PA}{PB}\cdot\frac {CB}{CA}\implies\frac {SN}{SM}=\frac {n+p}{n+1}\end{array}\right\|\implies$ $ \boxed {\begin{array}{c}
\frac {RP}{n+p}=\frac {RM}{p+1}=\frac {PM}{n+2p+1}\\\\
\frac {SN}{n+p}=\frac {SM}{n+1}=\frac {NM}{n+p+1}\end{array}}$ . Denote $ S=[ABC]$ .

$ \frac {[PQN]}{S}=\frac {[PQN]}{BQC]}\cdot\frac {[BQC]}{ABC]}=$ $ \frac {QP}{QC}\cdot\frac {QN}{QB}\cdot\frac {MQ}{MA}=$ $ \frac {n}{p+1}\cdot \frac {p}{n+1}\cdot \frac {1}{n+p+1}\ \implies\ \boxed {[PQN]=\frac {np}{(n+1)(p+1)(n+p+1)}\cdot S}$ .

$ \left\|\begin{array}{c}
\frac {[RQM]}{[ACB]}=\frac {[RQM]}{[PQM]}\cdot\frac {[PQM]}{[PCM]}\cdot\frac {[PCM]}{[PCB]}\cdot\frac {[PCB]}{[ACB]}=\frac {MR}{MP}\cdot\frac {PQ}{PC}\cdot\frac {CM}{CB}\cdot\frac {BP}{BA}=\frac {np}{(n+p)(n+p+1)(n+2p+1)}\\\\
\frac {[SQM]}{[ABC]}=\frac {[SQM]}{[NQM]}\cdot\frac {[NQM]}{[NBM]}\cdot\frac {[NBM]}{[NBC]}\cdot\frac {[NBC]}{[ABC]}=\frac {MS}{MN}\cdot\frac {NQ}{NB}\cdot\frac {BM}{BC}\cdot\frac {CN}{CA}=\frac {np}{(n+p)(n+p+1)(2n+p+1)}\end{array}\right\|$ $ \implies$ $ \boxed {\begin{array}{c}
 \frac {\left[ RQM\right]}{S}=\frac {np}{(n+p)(n+p+1)(n+2p+1)}\\\\ 
 \frac {\left[ SQM \right]}{S}=\frac {np}{(n+p)(n+p+1)(2n+p+1)}\end{array}}$ .

Thus, $ [MRQS]=[RQM]+[SQM]=$ $ \frac {np}{(n+p)(n+p+1)}\cdot\left(\frac {1}{n+2p+1}+\frac {1}{2n+p+1}\right)\cdot S\ \implies$

$ \boxed {[MRQS]=\frac {np[3(n+p)+2]}{(n+p)(n+p+1)(n+2p+1)(2n+p+1)}\cdot S}$ . Denote $ \sigma =n+p\ ,\ \pi=np$ . Thus, $ \boxed {\ [MRQS]=[PQN]\ }$ $ \Longleftrightarrow$

$ \frac {3(n+p)+2}{(n+p)(n+2p+1)(2n+p+1)}=$ $ \frac {1}{(n+1)(p+1)}\ \Longleftrightarrow\ (3\sigma+2)(\sigma +\pi +1)=$ $ \sigma (2\sigma ^2+3\sigma +\pi +1)\ \Longleftrightarrow$

$ \sigma ^3-\sigma\pi-2\sigma -\pi -1=0\ \Longleftrightarrow (\sigma +$ $ 1)(\sigma ^2-\sigma -\pi -1)=0\ \Longleftrightarrow\ \sigma ^2=$ $ \sigma +\pi +1\ \Longleftrightarrow\ (n+p)^2=(n+1)(p+1)\ \Longleftrightarrow$

$ \frac {n}{n+p}\cdot\frac {p}{n+p}=$ $ \frac {n}{n+1}\cdot\frac {p}{p+1}\ \Longleftrightarrow\ \frac {MB}{BC}\cdot\frac {MC}{BC}=\frac {AN}{AC}\cdot\frac {AP}{AB}\ \Longleftrightarrow\ \boxed {\frac {MB\cdot MC}{AN\cdot AP}=\frac {a^2}{bc}}$ .

Remark. $ [MRQS]=[PQN]\ \Longleftrightarrow\ \left(\frac {QA}{QM}\right)^2=\frac {CA}{CN}\cdot\frac {BA}{BP}$ .

In the particular case when $ Q: =H$ - the orthocenter of $ \triangle ABC$ obtain $ [MRQS]=[PQN]\ \Longleftrightarrow\ \boxed {\ MB\cdot MC=HA^2\ }$ (nice !).



PP3. Let $ ABC$ be a triangle with $ [ABC] = 1$ . Let $ D\in (AB)$ , $ E\in (AC)$ be two mobile

points for which $ P\in BE\cap CD$ and $ [BCED] = 2\cdot [PBC]$ . Find $ \max\ [DPE]$ .


Proof. Denote $ [BPD] = x$ , $ [CPE] = y$ and $ [BPC] = z$ . Observe that $ [DPE] = z - (x + y)$ and $ [ADE] = 1 - 2z$ .

$[DEP]\cdot [BPC]=[BPD]\cdot [CPE]\Longleftrightarrow z^2=z(x +y)+xy\ ;$

$[ACD]\cdot [ABE]=[ADE]\cdot [ABC]\Longleftrightarrow (1-z-x)(1-z-y)=1-2z\ .$ Thus, $z= \frac 12 - \frac {xy}{x + y}\ \Longleftrightarrow$

$ [DPE] = \frac 12 - (x + y) - \frac {xy}{x + y}$ and $ (x + y - 2xy)^2 = 2(x + y)^3$ a.s.o. I denoted $ [XYZ]$ - the area of the triangle $ XYZ$ .



PP4. Let an interior $P$ of $\triangle ABC$ and $d$ for which $\left\{\begin{array}{c}
M\in AB\cap d\\\
N\in AC\cap d\\\
R\in AP\cap BC\end{array}\right\|$ . Prove that $\boxed{[AMN]\cdot\frac {PR}{PA}=[BMN]\cdot\frac {RC}{BC}+[CMN]\cdot\frac {RB}{BC}}\ (*)$ , where $[XYZ]$ is area of $\triangle XYZ$

Remark. If the point $P$ has the barycentrical coordinates $(\alpha , \beta , \gamma )$ , then the relation becomes $\boxed{\alpha\cdot [AMN]=\beta\cdot[BMN]+\gamma\cdot [CMN]}$ .

Particular cases.

$\mathrm{P:=G(1,1,1)}$ - centroid $\Longrightarrow\ [AMN]=[BMN]+[CMN]$ .

$\mathrm{P:=I(a,b,c)}$ - incenter $\Longrightarrow\ a\cdot [AMN]=b\cdot [BMN]+c\cdot [CMN]$ .

Proof. Let $X\in BC\cap d$ si $Y\in d$ for which $AY\parallel BC$ . Suppose w.l.o.g. that $B\in (XC)$ . Let the area $S$ of $\triangle ABC$ . Observe easily that $[AMN]=S\cdot \frac {AM\cdot AN}{AB\cdot AC}$ and

$\left\{\begin{array}{ccc}
\frac {[BMN]}{[ABC]}=\frac {[BMN]}{[BAN]}\cdot\frac {[BAN]}{[ABC]}=\frac {BM}{BA}\cdot\frac {AN}{AC} & \implies & [BMN]=S\cdot \frac {BM\cdot AN}{AB\cdot AC}\\\\
\frac {[CMN]}{[ABC]}=\frac {[CMN]}{[CMA]}\cdot\frac {[CMA]}{[ABC]}=\frac {CN}{CA}\cdot\frac {AM}{AB} & \implies & [CMN]=S\cdot \frac {CN\cdot AM}{AB\cdot AC}\end{array}\right\|$ . Therefore, $[AMN]\cdot\frac {PR}{PA}=[BMN]\cdot\frac {RC}{BC}+[CMN]\cdot\frac {RB}{BC}$ $\Longleftrightarrow$

$\frac {AM\cdot AN}{AB\cdot AC}\cdot\frac {PR}{PA}=\frac {BM\cdot AN}{AB\cdot AC}\cdot\frac {RC}{BC}+\frac {CN\cdot AM}{AB\cdot AC}\cdot\frac {RB}{BC}$ $\Longleftrightarrow$ $\boxed{\ \frac {PR}{PA}\cdot BC=\frac {MB}{MA}\cdot RC+\frac {NC}{NA}\cdot RB\ }$ $\Longleftrightarrow$ $\frac {XR}{AY}\cdot BC=\frac {XB}{AY}\cdot RC+\frac {XC}{AY}\cdot RB$ $\Longleftrightarrow$

$XR\cdot BC=XB\cdot RC+XC\cdot RB$ $\Longleftrightarrow$ $(XB+BR)(BR+RC)=XB\cdot RC+(XB+BR+RC)\cdot RB$ , what is truly..



PP5. Let $ABC$ be a triangle. Consider the points $\left\{\begin{array}{ccc}
M\in (BC) & ; & \frac {MB}{x}=\frac {MC}{1}=\frac {a}{x+1}\\\\
N\in (CA) & ; & \frac {NC}{y}=\frac {NA}{1}=\frac {b}{y+1}\\\\
P\in (AB) & ; & \frac {PA}{z}=\frac{PB}{1}=\frac {c}{z+1}\end{array}\right\|$ and the intersections $\left\{\begin{array}{c}
X\in BN\cap CP\\\\
Y\in CP\cap AM\\\\
Z\in AM\cap BN\end{array}\right\|$ .

Prove that $\boxed{\ [MNP]=\frac {1+xyz}{(1+x)(1+y)(1+z)}\cdot S\ }$ and $\boxed{\ [XYZ]=\frac {(1-xyz)^2}{(1+x+xy)(1+y+yz)(1+z+zx)}\cdot S\ }$ , where $S=[ABC]$ .


Proof. From the relation $[MNP]=[ABC]-[NAP]-[PBM]-[MCN]$ obtain that $\frac {[MNP]}{[ABC]}=1-\frac {[NAP]}{[CAB]}-\frac {[PBM]}{[ABC]}-\frac {[MCN]}{[BCA]}=$ $1-\frac {AN}{AC}\cdot\frac {AP}{AB}-$

$\frac {BP}{BA}\cdot\frac {BM}{BC}-\frac {CM}{CB}\cdot\frac {CN}{CA}=$ $1-\frac {1}{y+1}\cdot \frac {z}{z+1}-\frac {1}{z+1}\cdot\frac {x}{x+1}-\frac {1}{x+1}\cdot\frac {y}{y+1}=$ $\frac {(x+1)(y+1)(z+1)-z(x+1)-x(y+1)-y(z+1)}{(x+1)(y+1)(z+1)}=$

$\frac {1+xyz}{(1+x)(1+y)(1+z)}$ . Apply the Menelaus' theorem to the transversals $\left\{\begin{array}{ccc}
\overline{BZN}/\triangle ACM\ : & \implies & \frac {ZA}{x+1}=\frac {ZM}{xy}=\frac {AM}{1+x+xy}\\\\
\overline {CXP}/\triangle BAN\ : & \implies & \frac {XB}{y+1}=\frac {XN}{yz}=\frac {BN}{1+y+yz}\\\\
\overline{AYM}/\triangle CBP\ : & \implies & \frac {YC}{z+1}=\frac {YP}{zx}=\frac {CP}{1+z+zx}\end{array}\right\|$ .

From the relation $[XYZ]=[ABC]-[ABM]-[BCN]-[CAP]+[CXN]+[AYP]+[BZN]$ obtain that

$\frac {[XYZ]}{[ABC]}=1-\frac {BM}{BC}-\frac {CN}{CA}-\frac {AP}{AB}+\frac {MB}{BC}\cdot\frac {ZM}{AM}+\frac {NC}{CA}\cdot\frac {XN}{BN}+\frac {PA}{AB}\cdot\frac {YP}{CP}=\ \ldots\ =$ $\frac {(1-xyz)^2}{(1+x+xy)(1+y+yz)(1+z+zx)}$ .



Proposed problem 1. Let $ABC$ be an equilateral triangle. Let $M\in (BC)$ , $N\in (CA)$ , $P\in (AB)$ so that $\frac {MB}{MC}=\frac {NC}{NA}=\frac {PA}{PB}=x$ .

Prove that the area of the triangle formed by the lines $AM$ , $BN$ , $CP$ is equally to $\frac {(x-1)^2}{x^2+x+1}\cdot S$ , where $S=[ABC]$ .


Proof. Denote $X\in BN\cap CP$ , $Y\in CP\cap AM$ , $Z\in AM\cap BN$ . Observe that $XY=YZ=ZX$ , i.e. $\triangle XYZ$ is equilateral.

Suppose w.l.o.g. $AB=1$ and using the generalized Pythagoras' theorem in $\triangle ABM$ obtain easily that $AM=\frac {\sqrt {x^2+x+1}}{x+1}\ (*)$ .

Apply the Menelaus's theorem to the transversals : $\left\{\begin{array}{ccc}
\overline{BZN}/\triangle AMC\ : & \implies & \frac {ZA}{x+1}=\frac {ZM}{x^2}=\frac {AM}{x^2+x+1}\\\\
\overline{CYP}/\triangle ABM\ : & \implies & \frac {YA}{x^2+x}=\frac {YM}{1}=\frac {AM}{x^2+x+1}\end{array}\right\|$ . In conclusion,

$\frac {YZ}{x^2-1}=\frac {ZA}{x+1}=\frac {YM}{1}=\frac {AM}{x^2+x+1}$ and $YZ\stackrel{(*)}{=}\frac {x-1}{\sqrt{x^2+x+1}}$ , $\frac {[XYZ]}{[ABC]}=YZ^2\implies$ $[XYZ]=\frac {(x-1)^2}{x^2+x+1}\cdot S$ .



Proposed problem 2. In the triangle $ ABC$ the bisector of the angle $ \widehat{BCA}$ intersects the circumcircle $ w=\mathcal C(O,R)$ again at the point $ R$, the perpendicular bisector

of the side $ [BC]$ at the point $ P$, and the perpendicular bisector of the side $ [AC]$ at the point $ Q$. The midpoint of the side $ [BC]$ is the point $ K$ and the midpoint

of the side $ [AC]$ is the point $ L$. Prove that the triangles $ RPK$ and $ RQL$ have the same area, i.e. $ [RPK]=[RQL]$ .


Proof. Observe that $ O\in PK\cap QL$ and prove easily that $ m(\widehat{OQP})=m(\widehat{OPQ})=90^{\circ}-\frac{C}{2}$ $ \implies$ $ \widehat{OQP}\equiv\widehat{OPQ}$ $ \implies$

$ OP=OQ=d$ $ \implies$ the points $ P$ and $ Q$ have the same power w.r.t. the circumcircle $ w$, i.e. $ p_{w}(P)=p_{w}(Q)=R^{2}-d^{2}\implies$

$ \boxed{PR\cdot PC=QR\cdot QC}$. Observe that $ \frac{PK}{PC}=\frac{QL}{QC}=\sin\frac{C}{2}$. Therefore, $ [RPK]=[RQL]$ because $ (\ \Longleftarrow\ )$

$[RPK]=\frac{1}{2}\cdot PR\cdot PK\cdot $ $\sin\widehat{RPK}=\frac{1}{2}\cdot PR\cdot$ $ PC\sin \frac{C}{2}\cdot \sin\left(90^{\circ}+\frac{C}{2}\right)=$ $\frac{1}{4}\cdot PR\cdot PC\cdot \sin C\ .$

$[RQL]=\frac{1}{2}\cdot QR\cdot $ $QL\cdot \sin\widehat{RQL}=\frac{1}{2}\cdot QR\cdot $ $QC\sin \frac{C}{2}\cdot\sin\left(90^{\circ}+\frac{C}{2}\right)=$ $\frac{1}{4}\cdot QR\cdot QC\cdot \sin C\ .$ Thus, $[RPK]=[RQL]$ .



PP6. Let $\triangle ABC$ and its interior $P$ . The lines $PA$, $PB$, $PC$ intersect the sidelines $BC$, $CA$, $AB$ at $(D,E,F)$ respectively.

Prove that $[PAF]+[PBD]+[PCE]=\frac S2\iff the point P$ lies on at least one of the medians of $\triangle ABC$ .


Proof. Denote the area $[XYZ]$ of the triangle $\triangle XYZ$ . I will suppose w.l.o.g. that $[ABC]=2$ and I note:

$\bullet\ M,N,P$ - the midpoints of the sides $[BC],[CA],[AB]$ respectively;

$\bullet\ x_1=[PAF]\ ,\ x_2=[PAE]\ ;\ y_1=[PBD]\ ,\ y_2=$ $[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$

$\bullet\ x=y_2-z_1\ ,\ y=z_2-x_1\ ,\ z=x_2-y_1\ .$ Thus, $\boxed{x_1+y_1+z_1=x_2+y_2+z_2=1\ ;\ x+y+z=0}\ .$

From the Ceva's theorem results the relation $\frac{DB}{DC}\cdot \frac{EC}{EA}\cdot \frac{FA}{FB}=1$ , i.e. $\frac{(x_1+y_1)+y_2}{(x_2+z_2)+z_1}\cdot \frac{(y_1+z_1)+z_2}{(x_2+y_2)+x_1}\cdot \frac{(z_1+x_1)+x_2}{(y_2+z_2)+y_1}=1\Longleftrightarrow$

$\frac{1+(y_2-z_1)}{1-(y_2-z_1)}\cdot \frac{1+(z_2-x_1)}{1-(z_2-x_1)}\cdot \frac{1+(x_2-y_1)}{1-(x_2-y_1)}=1\Longleftrightarrow$ $(1+x)(1+y)(1+z)=(1-x)(1-y)(1-z)\Longleftrightarrow $ $xyz=0\Longleftrightarrow$

$y_2=z_1\ \vee\ z_2=x_1\ \vee\ x_2=y_1\Longleftrightarrow $ $EF\parallel BC\ \vee\ FD\parallel CA\ \vee\ DE\parallel AB\Longleftrightarrow$ $P\in [AM]\cup [BN]\cup [CP]\ .$



PP7. Let an acute $\triangle ABC$ and its orthic $\triangle DEF$ , where $D\in BC\ ,\ E\in CA\ ,\ F\in AB$ and $DE=15\ ,\ EF=14\ ,\ FD=13$ . Find the area of $\triangle ABC$ .

Proof 1. Let $\left\{\begin{array}{c}
EF=x\\\\
DF=y\\\\
DE=z\end{array}\right\|$ and $2s'=x+y+z$ , where $s'$ is the semiperimeter of $\triangle DEF$ . The ares $S'=[DEF]$ is given by relation $\boxed{\ S'=\sqrt {s'(s'-x)(s'-y)(s'-z)}\ }$ .

Since the length $R'$ of the circumradius of $\triangle DEF$ is $R'=\frac R2$ (the Euler's circle) then can apply the well-known relation $xyz=4R'S'=2RS'$ , i.e. $\boxed{R=\frac {xyz}{2S'}\ }$ . Now I"ll use

the chain $\frac {EF}{\sin 2A}=\frac {DF}{\sin 2B}=\frac {DE}{\sin 2C}=R$ , i.e. $\frac {2s'}{\sum\sin 2A}=R\iff$ $\frac {2s'}{4\prod\sin A}=R\iff$ $2\prod\sin A=\frac {s'}R\iff$ $\frac S{R^2}=\frac {s'}R\iff$ $\boxed{\ S=Rs'\ }$ , i.e. $\boxed{\ S=\frac {xyzs'}{2S'}\ }$ .

Otherwise. $2s'=EF+FD+DE=$ $\sum HA\sin A=\sum 2R\cos A\sin A=R\sum\sin 2A=$ $4R\prod\sin A=\frac {2S}R\implies$ $S=Rs'$ .

Particular case. In the our case $\left\{\begin{array}{c}
x=14\\\\
y=13\\\\
z=15\end{array}\right\|$ obtain that $\left\{\begin{array}{ccc}
s'=21 & ; & s'-x=7\\\\
s'-y=8 & ; & s'-z=6\end{array}\right\|$ and the area $S'=\sqrt{21\cdot 6\cdot 7\cdot 8}=3\cdot 4\cdot 7\implies $

$\boxed{\ S'=84\ }$ and $R=\frac {xyz}{S'}=\frac {13\cdot 14\cdot 15}{84}\implies$ $\boxed{\ R=\frac {65}{4}\ }$ . In conclusion, $S=Rs'=\frac {65}{4}\cdot 21\implies$ $\boxed{\ S=\frac {1365}{4}=341+\frac 14\ }$ .

Remark. I applied the remarkable identities: $AH=2R\cos A$ and $EF=AH\sin A\ ;\ abc=4RS\ ;\ \sum\sin 2A=4\sin A\sin B\sin C=\frac {2S}{R^2}$ .

Proof 2. Prove easily that $\left\{\begin{array}{c}
OA\perp EF\\\\
OB\perp DF\\\\
OC\perp DE\end{array}\right\|$ , i.e. the quadrilaterals $AEOF\ ,\ BDOF\ ,\ CDOE$ are orthodiagonal. Thus, $OA=OB=OC=R$

and $S=[ABC]=[AEOF]+[BDOF]+[CDOE]=$ $\frac R2\cdot (DE+EF+FD)=$ $Rs'\implies \boxed{\ S=Rs'\ }$ , i.e. $\boxed{\ S=\frac {xyzs'}{2S'}}$ a.s.o.
This post has been edited 70 times. Last edited by Virgil Nicula, Nov 22, 2015, 1:10 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a