241. Areas in a triangle.
by Virgil Nicula, Mar 4, 2011, 5:07 PM
PP1. Let the triangle
and the points
. Prove that
and
.
PP2 (extension of Mircea Lascu's problem). Let
,
,
,
so that
and
,
. Prove that
.
Proof. Denote
. Apply Ceva's theorem to
, i.e.
.
Apply Van Aubel's relation :
, i.e.
. Apply Menelaus' theorem
to mentioned transversals/triangles :
.
Apply Routh's relation :
. Denote
.
.
.
Thus,

. Denote
. Thus,



.
Remark.
.
In the particular case when
- the orthocenter of
obtain
(nice !).
PP3. Let
be a triangle with
. Let
,
be two mobile
points for which
and
. Find
.
Proof. Denote
,
and
. Observe that
and
.
![$[DEP]\cdot [BPC]=[BPD]\cdot [CPE]\Longleftrightarrow z^2=z(x +y)+xy\ ;$](//latex.artofproblemsolving.com/d/8/2/d8251cc4d52348eed0a4dc7ee54c3db241cd7265.png)
Thus, 
and
a.s.o. I denoted
- the area of the triangle
.
PP4. Let an interior
of
and
for which
. Prove that
, where
is area of 
Remark. If the point
has the barycentrical coordinates
, then the relation becomes
.
Particular cases.
- centroid
.
- incenter
.
Proof. Let
si
for which
. Suppose w.l.o.g. that
. Let the area
of
. Observe easily that
and
. Therefore,


, what is truly..
PP5. Let
be a triangle. Consider the points
and the intersections
.
Prove that
and
, where
.
Proof. From the relation
obtain that


. Apply the Menelaus' theorem to the transversals
.
From the relation
obtain that
.
Proposed problem 1. Let
be an equilateral triangle. Let
,
,
so that
.
Prove that the area of the triangle formed by the lines
,
,
is equally to
, where
.
Proof. Denote
,
,
. Observe that
, i.e.
is equilateral.
Suppose w.l.o.g.
and using the generalized Pythagoras' theorem in
obtain easily that
.
Apply the Menelaus's theorem to the transversals :
. In conclusion,
and
,
.
Proposed problem 2. In the triangle
the bisector of the angle
intersects the circumcircle
again at the point
, the perpendicular bisector
of the side
at the point
, and the perpendicular bisector of the side
at the point
. The midpoint of the side
is the point
and the midpoint
of the side
is the point
. Prove that the triangles
and
have the same area, i.e.
.
Proof. Observe that
and prove easily that

the points
and
have the same power w.r.t. the circumcircle
, i.e. 
. Observe that
. Therefore,
because 

Thus,
.
PP6. Let
and its interior
. The lines
,
,
intersect the sidelines
,
,
at
respectively.
Prove that
lies on at least one of the medians of
.
Proof. Denote the area
of the triangle
. I will suppose w.l.o.g. that
and I note:
- the midpoints of the sides
respectively;
![$[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$](//latex.artofproblemsolving.com/d/5/5/d55e8ffec581e0daf4e3f13c200b268f0d92887a.png)
Thus, 
From the Ceva's theorem results the relation
, i.e. 

![$P\in [AM]\cup [BN]\cup [CP]\ .$](//latex.artofproblemsolving.com/6/a/5/6a58a82d97ecc99388e0e3205217148e8e33bf43.png)
PP7. Let an acute
and its orthic
, where
and
. Find the area of
.
Proof 1. Let
and
, where
is the semiperimeter of
. The ares
is given by relation
.
Since the length
of the circumradius of
is
(the Euler's circle) then can apply the well-known relation
, i.e.
. Now I"ll use
the chain
, i.e.
, i.e.
.
Otherwise.
.
Particular case. In the our case
obtain that
and the area 
and
. In conclusion,
.
Remark. I applied the remarkable identities:
and
.
Proof 2. Prove easily that
, i.e. the quadrilaterals
are orthodiagonal. Thus, 
and
, i.e.
a.s.o.


![$\left\{\begin{array}{cccc}
1. & [PQN]\cdot [BQC] & = & [BQP]\cdot [CQN]\\\\
2. & [PAN]\cdot [BQC] & = & [ABC]\cdot [PQN]\end{array}\right\|$](http://latex.artofproblemsolving.com/7/6/1/7617ba93e8ba28adbe9b3879aaa2ac587f23fc7f.png)
![$\left\{\begin{array}{cccc}
3. & [APQN]=[BQC] & \Longleftrightarrow & \frac {PA}{PB}\cdot\frac {NA}{NC}=1\\\\
4. & [MRQS] = [NQP] & \Longleftrightarrow & \frac {MB\cdot MC}{AN\cdot AP} = \frac {a^2}{bc}\end{array}\right\|$](http://latex.artofproblemsolving.com/9/9/f/99fe7e53fe9b7306680851d361bdc81c91b2938a.png)
PP2 (extension of Mircea Lascu's problem). Let







![$ \boxed {\ [MRQS] = [NQP]\ \Longleftrightarrow\ \frac {MB\cdot MC}{AN\cdot AP} = \frac {a^2}{bc}\ }$](http://latex.artofproblemsolving.com/e/1/7/e1762b9eb5c3e8dfca24f1fdcc1c3e79aa723832.png)
Proof. Denote



Apply Van Aubel's relation :




to mentioned transversals/triangles :



Apply Routh's relation :


![$ S=[ABC]$](http://latex.artofproblemsolving.com/a/c/5/ac5489c655a5d312c5c91c4f77c55eadde984421.png)
![$ \frac {[PQN]}{S}=\frac {[PQN]}{BQC]}\cdot\frac {[BQC]}{ABC]}=$](http://latex.artofproblemsolving.com/d/d/4/dd4dadb0890e430fecac1e856ceeafb23ec38df4.png)

![$ \frac {n}{p+1}\cdot \frac {p}{n+1}\cdot \frac {1}{n+p+1}\ \implies\ \boxed {[PQN]=\frac {np}{(n+1)(p+1)(n+p+1)}\cdot S}$](http://latex.artofproblemsolving.com/9/f/e/9fe5b1bce6c5d2eeeec54ec67c0cbd30bcd0b85c.png)
![$ \left\|\begin{array}{c}
\frac {[RQM]}{[ACB]}=\frac {[RQM]}{[PQM]}\cdot\frac {[PQM]}{[PCM]}\cdot\frac {[PCM]}{[PCB]}\cdot\frac {[PCB]}{[ACB]}=\frac {MR}{MP}\cdot\frac {PQ}{PC}\cdot\frac {CM}{CB}\cdot\frac {BP}{BA}=\frac {np}{(n+p)(n+p+1)(n+2p+1)}\\\\
\frac {[SQM]}{[ABC]}=\frac {[SQM]}{[NQM]}\cdot\frac {[NQM]}{[NBM]}\cdot\frac {[NBM]}{[NBC]}\cdot\frac {[NBC]}{[ABC]}=\frac {MS}{MN}\cdot\frac {NQ}{NB}\cdot\frac {BM}{BC}\cdot\frac {CN}{CA}=\frac {np}{(n+p)(n+p+1)(2n+p+1)}\end{array}\right\|$](http://latex.artofproblemsolving.com/5/9/b/59b66bb0c330824ea8cf0255dcb3f38aca64d9e2.png)

![$ \boxed {\begin{array}{c}
\frac {\left[ RQM\right]}{S}=\frac {np}{(n+p)(n+p+1)(n+2p+1)}\\\\
\frac {\left[ SQM \right]}{S}=\frac {np}{(n+p)(n+p+1)(2n+p+1)}\end{array}}$](http://latex.artofproblemsolving.com/f/3/3/f333685242b27d2f3c64dfebe718f5dd2e9548d4.png)
Thus,
![$ [MRQS]=[RQM]+[SQM]=$](http://latex.artofproblemsolving.com/c/2/7/c27833b9fae981b0ed27b17f0965880d414a89c6.png)

![$ \boxed {[MRQS]=\frac {np[3(n+p)+2]}{(n+p)(n+p+1)(n+2p+1)(2n+p+1)}\cdot S}$](http://latex.artofproblemsolving.com/0/4/f/04f80eb74794ea8ccc9025409df8e88076678844.png)

![$ \boxed {\ [MRQS]=[PQN]\ }$](http://latex.artofproblemsolving.com/0/5/c/05c730674e42bff10ff94211e12a31a1d067150b.png)









Remark.
![$ [MRQS]=[PQN]\ \Longleftrightarrow\ \left(\frac {QA}{QM}\right)^2=\frac {CA}{CN}\cdot\frac {BA}{BP}$](http://latex.artofproblemsolving.com/9/0/4/9044e2c3be365c5a14ce7bb5cba755eeb24a6fc4.png)
In the particular case when


![$ [MRQS]=[PQN]\ \Longleftrightarrow\ \boxed {\ MB\cdot MC=HA^2\ }$](http://latex.artofproblemsolving.com/4/1/b/41bb8e396dae9adbbdbcc7863bcfab178499a5c7.png)
PP3. Let

![$ [ABC] = 1$](http://latex.artofproblemsolving.com/7/5/2/7524121af3ce50be581450b51d418f9d64e12416.png)


points for which

![$ [BCED] = 2\cdot [PBC]$](http://latex.artofproblemsolving.com/8/2/a/82a9acbef036b727f46ce33d518ff4de9ec98a61.png)
![$ \max\ [DPE]$](http://latex.artofproblemsolving.com/2/9/1/291a4495c257ed8d0ce0c2e05ec855210e829228.png)
Proof. Denote
![$ [BPD] = x$](http://latex.artofproblemsolving.com/d/c/d/dcdc917c30d2d455810a6fb2fbc48ae7a5eb9116.png)
![$ [CPE] = y$](http://latex.artofproblemsolving.com/1/e/d/1edc8b37921c12dddd8e6b5c096f6a28d464584a.png)
![$ [BPC] = z$](http://latex.artofproblemsolving.com/1/9/c/19ccbf8adff97f26ed8efc561c9615159457a24b.png)
![$ [DPE] = z - (x + y)$](http://latex.artofproblemsolving.com/f/4/0/f400bd2a8042052eaf57e268c6f252b733b835ac.png)
![$ [ADE] = 1 - 2z$](http://latex.artofproblemsolving.com/0/b/7/0b755e44b17b23257b70232b9e7c5c7e90e4384a.png)
![$[DEP]\cdot [BPC]=[BPD]\cdot [CPE]\Longleftrightarrow z^2=z(x +y)+xy\ ;$](http://latex.artofproblemsolving.com/d/8/2/d8251cc4d52348eed0a4dc7ee54c3db241cd7265.png)
![$[ACD]\cdot [ABE]=[ADE]\cdot [ABC]\Longleftrightarrow (1-z-x)(1-z-y)=1-2z\ .$](http://latex.artofproblemsolving.com/4/2/c/42c0aca1d23f45e0bc153b9a69de601512d6dbe3.png)

![$ [DPE] = \frac 12 - (x + y) - \frac {xy}{x + y}$](http://latex.artofproblemsolving.com/d/7/a/d7a7979379de0d97ba07bdb8b6637660cb04404f.png)

![$ [XYZ]$](http://latex.artofproblemsolving.com/c/3/b/c3b44bb2fd143d5ebf6d0fb5c41c47499cf06d2a.png)

PP4. Let an interior




![$\boxed{[AMN]\cdot\frac {PR}{PA}=[BMN]\cdot\frac {RC}{BC}+[CMN]\cdot\frac {RB}{BC}}\ (*)$](http://latex.artofproblemsolving.com/a/2/e/a2e66c3baebf56411a291937a802bc1f66591743.png)
![$[XYZ]$](http://latex.artofproblemsolving.com/c/7/6/c7608a3e97e44fc5bcf0cd62a1f7dfc0a0a2e7d4.png)

Remark. If the point


![$\boxed{\alpha\cdot [AMN]=\beta\cdot[BMN]+\gamma\cdot [CMN]}$](http://latex.artofproblemsolving.com/5/2/6/526013cbe7e91b0bd87b5fd7ee7320a96f07baf8.png)
Particular cases.

![$\Longrightarrow\ [AMN]=[BMN]+[CMN]$](http://latex.artofproblemsolving.com/0/5/8/05865fd73e55131d9ddc98fa5bddd4b96838e77e.png)

![$\Longrightarrow\ a\cdot [AMN]=b\cdot [BMN]+c\cdot [CMN]$](http://latex.artofproblemsolving.com/b/b/c/bbc9faa80d5adeb5867e0ce014e9912e428e46c3.png)
Proof. Let






![$[AMN]=S\cdot \frac {AM\cdot AN}{AB\cdot AC}$](http://latex.artofproblemsolving.com/0/3/1/031555bc7864a2ee427e68de7782023fd374d6a4.png)
![$\left\{\begin{array}{ccc}
\frac {[BMN]}{[ABC]}=\frac {[BMN]}{[BAN]}\cdot\frac {[BAN]}{[ABC]}=\frac {BM}{BA}\cdot\frac {AN}{AC} & \implies & [BMN]=S\cdot \frac {BM\cdot AN}{AB\cdot AC}\\\\
\frac {[CMN]}{[ABC]}=\frac {[CMN]}{[CMA]}\cdot\frac {[CMA]}{[ABC]}=\frac {CN}{CA}\cdot\frac {AM}{AB} & \implies & [CMN]=S\cdot \frac {CN\cdot AM}{AB\cdot AC}\end{array}\right\|$](http://latex.artofproblemsolving.com/d/b/1/db111af94c0191c031c29e6fdc0fa1f27b6a36a9.png)
![$[AMN]\cdot\frac {PR}{PA}=[BMN]\cdot\frac {RC}{BC}+[CMN]\cdot\frac {RB}{BC}$](http://latex.artofproblemsolving.com/a/2/e/a2e2df94a7e5e6ea088ce78290eb5672862a1651.png)










PP5. Let



Prove that
![$\boxed{\ [MNP]=\frac {1+xyz}{(1+x)(1+y)(1+z)}\cdot S\ }$](http://latex.artofproblemsolving.com/d/2/3/d232eddeac12eadd67459200bc2477ca3d5ee746.png)
![$\boxed{\ [XYZ]=\frac {(1-xyz)^2}{(1+x+xy)(1+y+yz)(1+z+zx)}\cdot S\ }$](http://latex.artofproblemsolving.com/8/b/6/8b6ee9c3db54b0c090586dcdb7a57b74aa2a8888.png)
![$S=[ABC]$](http://latex.artofproblemsolving.com/b/3/a/b3ae3d445111e4dd28be75922309d3270079368c.png)
Proof. From the relation
![$[MNP]=[ABC]-[NAP]-[PBM]-[MCN]$](http://latex.artofproblemsolving.com/a/7/8/a7851ba1e71c8b11bbb8b0ec5064c6dbb3bb436b.png)
![$\frac {[MNP]}{[ABC]}=1-\frac {[NAP]}{[CAB]}-\frac {[PBM]}{[ABC]}-\frac {[MCN]}{[BCA]}=$](http://latex.artofproblemsolving.com/8/0/f/80fcd2349d1a0a7007c141bd881ea63a60e0564c.png)






From the relation
![$[XYZ]=[ABC]-[ABM]-[BCN]-[CAP]+[CXN]+[AYP]+[BZN]$](http://latex.artofproblemsolving.com/c/6/9/c699f078c7a2c31b653b4bba6c6813a9b8c16d60.png)
![$\frac {[XYZ]}{[ABC]}=1-\frac {BM}{BC}-\frac {CN}{CA}-\frac {AP}{AB}+\frac {MB}{BC}\cdot\frac {ZM}{AM}+\frac {NC}{CA}\cdot\frac {XN}{BN}+\frac {PA}{AB}\cdot\frac {YP}{CP}=\ \ldots\ =$](http://latex.artofproblemsolving.com/6/9/a/69a9f36f0d64171f1b0d68ec6dd75514c36682a6.png)

Proposed problem 1. Let





Prove that the area of the triangle formed by the lines




![$S=[ABC]$](http://latex.artofproblemsolving.com/b/3/a/b3ae3d445111e4dd28be75922309d3270079368c.png)
Proof. Denote





Suppose w.l.o.g.



Apply the Menelaus's theorem to the transversals :



![$\frac {[XYZ]}{[ABC]}=YZ^2\implies$](http://latex.artofproblemsolving.com/e/6/7/e67cf453c42ee1e5e73faaa164b38c63d27ca28f.png)
![$[XYZ]=\frac {(x-1)^2}{x^2+x+1}\cdot S$](http://latex.artofproblemsolving.com/1/2/4/124405fd589e82626e6a58fddbb1c90545a344d8.png)
Proposed problem 2. In the triangle




of the side
![$ [BC]$](http://latex.artofproblemsolving.com/3/5/5/3550468aa97af843ef34b8868728963dec043efe.png)

![$ [AC]$](http://latex.artofproblemsolving.com/5/b/0/5b08b2b92472414250205866b93405af4772e86c.png)

![$ [BC]$](http://latex.artofproblemsolving.com/3/5/5/3550468aa97af843ef34b8868728963dec043efe.png)

of the side
![$ [AC]$](http://latex.artofproblemsolving.com/5/b/0/5b08b2b92472414250205866b93405af4772e86c.png)



![$ [RPK]=[RQL]$](http://latex.artofproblemsolving.com/8/b/6/8b614687177239f8d1f6d651b7d128d15e39e447.png)
Proof. Observe that













![$ [RPK]=[RQL]$](http://latex.artofproblemsolving.com/8/b/6/8b614687177239f8d1f6d651b7d128d15e39e447.png)

![$[RPK]=\frac{1}{2}\cdot PR\cdot PK\cdot $](http://latex.artofproblemsolving.com/8/0/7/80788586b39831268302a1b583514528d42b2b51.png)



![$[RQL]=\frac{1}{2}\cdot QR\cdot $](http://latex.artofproblemsolving.com/5/5/5/555e653ccfa66e9b1d9f7110edf3fcae64007939.png)



![$[RPK]=[RQL]$](http://latex.artofproblemsolving.com/8/8/d/88d842284e7ad7f7451375f2b4503387db6adbd4.png)
PP6. Let









Prove that
![$[PAF]+[PBD]+[PCE]=\frac S2\iff the point P$](http://latex.artofproblemsolving.com/1/d/1/1d12dac5f9f8160089a1991f176fbc205dd06ed4.png)

Proof. Denote the area
![$[XYZ]$](http://latex.artofproblemsolving.com/c/7/6/c7608a3e97e44fc5bcf0cd62a1f7dfc0a0a2e7d4.png)

![$[ABC]=2$](http://latex.artofproblemsolving.com/c/1/4/c14299dcf775aef4150e578061733fd76e2d8772.png)

![$[BC],[CA],[AB]$](http://latex.artofproblemsolving.com/9/0/7/907e51f409d3d7ab73812cf20b2d5bfd529245bb.png)
![$\bullet\ x_1=[PAF]\ ,\ x_2=[PAE]\ ;\ y_1=[PBD]\ ,\ y_2=$](http://latex.artofproblemsolving.com/a/6/9/a690bbdaa1f3aa23e67cf4f08b204ea6e0d28342.png)
![$[PBF]\ ;\ z_1=[PCE]\ ,\ z_2=[PCD]\ ;$](http://latex.artofproblemsolving.com/d/5/5/d55e8ffec581e0daf4e3f13c200b268f0d92887a.png)


From the Ceva's theorem results the relation







![$P\in [AM]\cup [BN]\cup [CP]\ .$](http://latex.artofproblemsolving.com/6/a/5/6a58a82d97ecc99388e0e3205217148e8e33bf43.png)
PP7. Let an acute





Proof 1. Let




![$S'=[DEF]$](http://latex.artofproblemsolving.com/e/3/4/e342136c442dfb0d55ec2c798f3f34f2d436757b.png)

Since the length





the chain







Otherwise.




Particular case. In the our case








Remark. I applied the remarkable identities:


Proof 2. Prove easily that



and
![$S=[ABC]=[AEOF]+[BDOF]+[CDOE]=$](http://latex.artofproblemsolving.com/4/0/b/40b6f98470233a3e23d5e51d6de2a7e33c26431d.png)



This post has been edited 70 times. Last edited by Virgil Nicula, Nov 22, 2015, 1:10 PM