214. A range of some functions.

by Virgil Nicula, Jan 25, 2011, 11:36 AM

Proposed problem 1. Find the range of the function $f:R\rightarrow R $ , where $f(x)=\frac{\sqrt{x^2 +1}-3x}{\sqrt{x^2+1}+x}$ .

Proof. Observe that $f(x)=\frac {\sqrt {x^2+1}-3x}{\sqrt {x^2+1}+x}=\frac {1-3\cdot\frac {x}{\sqrt {x^2+1}}}{1+\frac {x}{\sqrt {x^2+1}}}=$ $\frac {1-3u(x)}{1+u(x)}=v(u(x))$ , where $y=u(x)=\frac {x}{\sqrt {x^2+1}}$ and $z=v(y)=\frac {1-3y}{1+y}$ .

Thus $u\nearrow$ and $v\searrow\implies$ the function $f$ is decreasing and $\mathbb R\ \stackrel{y=u(x)=\frac {x}{\sqrt {x^2+1}}}{-----\rightarrow}\ (-1,1)\ \stackrel{z=v(y)=\frac {1-3y}{1+y}}{----\rightarrow}(-1,\infty )$ $\implies$ $\mathrm {Im}\ (f)=f(\mathbb{R})=(-1,\infty )$ .



Proposed problem 2. Let $a,b$ be two real numbers such that $a^2+b^2+ab=1$ . Find the range of $f(a,b)=a^2+b^2-ab$ .

Proof. Observe that $f(a,b)= \frac{{{a^2} + {b^2} - ab}}{{{a^2} + {b^2} + ab}}$ . If $ab=0$ , then $f(a,b)=1 $ . If $ab \ne 0$ , then $ P\equiv f(a,b) =\frac{{{t^2} - t + 1}}{{{t^2} + t + 1}}$ , where $t = \frac{a}{b}\in\mathbb R$ . Thus, $P\ne 1$

and $(P - 1){t^2} + (P + 1)t + P - 1 = 0$ . Therefore, $\Delta=  - 3{P^2} + 10P - 3\ge 0\Longleftrightarrow\frac{1}{3} \le P \le 3$ . Hence $\min f(a,b)=\frac{1}{3}$ and $\max f(a,b)=3$ .



Proposed problem 3. Find the range of the function $f:\left(0,\frac {\pi}{2}\right)\rightarrow\mathbb R$ , where $f(x)=2(\sin x+\cos x)+\frac {1}{\sin x}+\frac {1}{\cos x}+\tan x+\cot x$ .

Proof. $u(x)=\sin x+\cos x=t\in\left[1,\sqrt 2\right]$ $\implies$ $f=g\circ u$ , where $g(t)=2\left(t+\frac {1}{t-1}\right)$ $\implies$ $\mathrm {Im}(f)=\mathrm{Im}(g)=\left(4\sqrt 2+2,\infty\right)$ .


Proposed problem 4. Find the minimum value of $9\tan^2x+4\cot^2x+12 \tan x+12 \cot x$ , where $x\in\left(0,\frac {\pi}{2}\right)$ .

Proof. Denote $\tan x=t$ . I""ll find the minimum value of $f(t)=9t^2+\frac {4}{t^2}+12t+\frac {12}{t}$ , where $t\in (0,\infty )$ . Using AM-GM inequality obtain that

$\left\{\begin{array}{ccccc}
9t^2+\frac 6t+\frac 6t\ge 3\cdot\sqrt [3]{9\cdot 6\cdot 6}=9\cdot\sqrt [3]{12} & \mathrm{with\ equality\ iff} & 9t^2=\frac 6t & \iff & t=\sqrt [3]{\frac 23}\\\\
\frac {4}{t^2}+6t+6t\ge 3\cdot\sqrt [3]{4\cdot 6\cdot 6}=6\cdot\sqrt [3]{18} & \mathrm{with\ equality\ iff} & \frac {4}{t^2}=6t & \iff & t=\sqrt [3]{\frac 23}\end{array}\right\|$ .

Hence $9\tan^2x+4\cot^2x+12 \tan x+12 \cot x\ge 9\cdot\sqrt [3]{12}+6\cdot\sqrt [3]{18}=3\sqrt[3]6\cdot\left(3\sqrt [3]2+2\sqrt [3]3\right)$ with equality iff $\tan x=\sqrt [3]{\frac 23}$ .


An easy extension. Find the minimum value of $a\cdot \tan^2x+b\cdot \cot^2x+2c\cdot\tan x+2d\cdot \cot x$ , where $ab=cd$ and $x\in\left(0,\frac {\pi}{2}\right)$ .


PP5. Ascertain the range of the function $f(x)=\sqrt{1+2x\sqrt {1-x^2}}+\sqrt {1-2x\sqrt{1-x^2}}\ ,\ |x|\le 1$ .

Proof. $f$ is positive and even, $f=h\circ g$ , where $g(x)=|x|\le 1$ and $h(t)=\sqrt{1+2t\sqrt {1-t^2}}+\sqrt {1-2t\sqrt{1-x^2}}\ ,\ t\in [0,1]$ .

Thus, $f^2(x)=2\cdot\left(1+\left|2x^2-1\right|\right)=\left\{\begin{array}{ccc}
4\left(1-x^2\right) & \mathrm{if} & 0\le |x|<\frac {\sqrt 2}{2}\\\\
4x^2 & \mathrm{if} & \frac {\sqrt 2}{2}\ge |x|\le 1\end{array}\right\|$ , i.e. the function $f(x)= \left\{\begin{array}{ccc}
2\sqrt{1-x^2} & \mathrm{if} & 0\le |x|<\frac {\sqrt 2}{2}\\\\
2|x| & \mathrm{if} & \frac {\sqrt 2}{2}\le |x|\le 1\end{array}\right\|$

and the function $h(t)= \left\{\begin{array}{ccc}
2\sqrt{1-t^2} & \mathrm{if} & 0\le t<\frac {\sqrt 2}{2}\\\\
2t & \mathrm{if} & \frac {\sqrt 2}{2}\le t\le 1\end{array}\right\|$ . In conclusion, $\mathrm{Im}(f)=f\left(\left[-1,1\right]\right)=\mathrm{Im}(h)=h\left(\left[0,1\right]\right)=\left[\sqrt 2,2\right]$

and for any $\lambda\in \mathbb R$ the equation $f(x)=\lambda$ has the solution $S_{\lambda}(f)$ , where $\mathrm{card}\ S_{\lambda}(f)=\left\{\begin{array}{ccc}
0 & \mathrm {if} & \lambda\not\in \left[\sqrt 2,2\right]\\\
2  & \mathrm {if} & \lambda =\sqrt 2\\\
3 & \mathrm{if} & \lambda =2\\\
4 & \mathrm{if} & \lambda\in \left(\sqrt 2,2\right)\end{array}\right\|$ .

The graph $\mathrm G_f$ of the function $f$ show so :
http://www.artofproblemsolving.com/Forum/download/file.php?mode=view&id=38351&


PP6. Find the range of the function $f(x)=\frac{x^2-x+1}{x^2+x+1}\ ,\ x\in\mathbb R$ .

Proof. Observe that $f(0)=1$ and $(\forall )\ x\ne 0\ ,\ \left\{\begin{array}{c}
f(-x)=\frac {1}{f(x)}\\\\
f\left(\frac 1x\right)=f(x)\end{array}\right\|$ . Consider $f:(0,1]\rightarrow \mathbb R$ , where $f(x)=\frac {x^2-x+1}{x^2+x+1}=$ $\frac {\left(x+\frac 1x\right)-1}{\left(x+\frac 1x\right)+1}$ . Observe that $f=h\circ\phi$ , where $t=\phi (x)=x+\frac 1x\ ,\ \phi : (0,1]\rightarrow [2,\infty )$ is bijective decreasing ($\searrow$ ) and $y=h(t)=\frac {t-1}{t+1}\ ,\ h:[2,\infty )\rightarrow \left[\frac 13,1\right)$ is bijective increasing ($\nearrow$ ). In conclusion, $f(I)=\left[\frac 13,1\right)$ , where $I=(0,1]$ .

Therefore, $\left\{\begin{array}{ccc}
f\left(\frac 1x\right)=f(x)\ ,\ (\forall )\ x\in (0,1] & \implies & f\left(\mathbb R^*_+\right)=f(I)=\left[\frac 13,1\right)\\\\
f(-x)=\frac {1}{f(x)}\ ,\ (\forall )\ x>0 & \implies & f\left(\mathbb R^*_-\right)=(1,3]\end{array}\right\|$ . In conclusion, $f(\mathbb R) =\{f(0)\}\cup f\left(\mathbb R^*_+\right)\cup f\left(\mathbb R^*_-\right)=$ $\{1\}\cup\left[\frac 13,1\right)\cup (1,3]\implies$ $\boxed{f(\mathbb R)=\left[\frac 13,3\right]}$ .
This post has been edited 45 times. Last edited by Virgil Nicula, Nov 22, 2015, 4:00 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a