304. Integrals ("brothers") III.

by Virgil Nicula, Jul 27, 2011, 9:43 PM

PP1. Ascertain the integrals $L\equiv\int\frac{1}{t^4-t^2+1}\ \mathrm{dt}\ \ ,\ \ J_k=\int\frac {x^k}{1+x^4}\ \mathrm{dx}$ and $I_k=\int\frac {x^k}{(1+x)(1+x^4)}\ \mathrm{dx}$ , where $k\in\overline{0,4}$ .

Proof. $L=\frac 12\cdot\left(L_1-L_2\right)$ , where $L_1\equiv\int\frac{t^2+1}{t^4-t^2+1}\ \mathrm{dt}=$ $\int\frac{1+\frac {1}{t^2}}{t^2+\frac {1}{t^2}-1}\ \mathrm{dt}=$ $\int\frac{\left(t-\frac 1t\right)'}{\left(t-\frac 1t\right)^2+1}\ \mathrm{dt}\implies$ $\boxed{L_1=\arctan\frac {t^2-1}{t}+\mathbb C}$ and $L_2\equiv\int\frac{t^2-1}{t^4-t^2+1}\ \mathrm{dt}=$

$\int\frac{1-\frac {1}{t^2}}{t^2+\frac {1}{t^2}-1}\ \mathrm{dt}=$ $\int\frac{\left(t+\frac 1t\right)'}{\left(t+\frac 1t\right)^2-3}\ \mathrm{dt}\implies$ $\boxed{L_2=\frac {1}{2\sqrt 3}\cdot\ln\left|\frac  {t^2-t\sqrt 3+1}{t^2+t\sqrt 3+1}\right|+\mathbb C}$ . Observe that $\left\{\begin{array}{ccc}
J_1 & = & \int\frac {x}{1+x^4}\ \mathrm{dx}=\frac 12\cdot\int\frac {\left(x^2\right)'}{1+\left(x^2\right)^2}\ \mathrm{dx}=\frac 12\cdot\arctan x^2+\mathbb C\\\\
J_3 & = & \int\frac {x^3}{1+x^4}\ \mathrm{dx}=\frac 14\cdot\int\frac {\left(1+x^4\right)'}{1+x^4}\ \mathrm{dx}=\frac 14\cdot\ln\left(1+x^4\right)+\mathbb C\end{array}\right\|$ ,

$\left\{\begin{array}{ccc}
J_2+J_0 & = & \int\frac {x^2+1}{x^4+1}\ \mathrm{dx}=\int\frac {1+\frac {1}{x^2}}{x^2+\frac {1}{x^2}}\ \mathrm{dx}=\int\frac {\left(x-\frac 1x\right)'}{\left(x-\frac 1x\right)^2+2}\ \mathrm{dx}=\frac {\sqrt 2}{2}\cdot\arctan\frac {x^2-1}{x\sqrt 2}+\mathbb C\\\\
J_2-J_0 & = & \int\frac {x^2-1}{x^4+1}\ \mathrm{dx}=\int\frac {1-\frac {1}{x^2}}{x^2+\frac {1}{x^2}}\ \mathrm{dx}=\int\frac {\left(x+\frac 1x\right)'}{\left(x+\frac 1x\right)^2-2}\ \mathrm{dx}=\frac {\sqrt 2}{4}\cdot\ln\left|\frac {x^2-x\sqrt 2+1}{x^2+x\sqrt 2+1}\right|+\mathbb C\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
J_0 & = & \frac {\sqrt 2}{4}\cdot\arctan\frac {x^2-1}{x\sqrt 2}-\frac {\sqrt 2}{8}\cdot\ln\left|\frac {x^2-x\sqrt 2+1}{x^2+x\sqrt 2+1}\right|+\mathbb C\\\\
J_2 & = & \frac {\sqrt 2}{4}\cdot\arctan\frac {x^2-1}{x\sqrt 2}+\frac {\sqrt 2}{8}\cdot\ln\left|\frac {x^2-x\sqrt 2+1}{x^2+x\sqrt 2+1}\right|+\mathbb C\end{array}\right\|$ .

Denote $K=\int\frac {1}{1+x}\ \mathrm{dx}=\ln\left|1+x\right|+\mathbb C$ . Thus, the system $(*)\left\{\begin{array}{cc}
(1) & I_0+I_1=J_0\\\\
(2) & I_0+I_4=K\\\\
(3) & I_1+I_2=J_1\\\\
(4) & I_2+I_3=J_2\\\\
(5) & I_3+I_4=J_3\end{array}\right\|$ has extended matrix $\overline A=(A|B)$ , where $\overline A=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0\\\\
1 & 0 & 0 & 0 & 1\\\\
0 & 1 & 1 & 0 & 0\\\\
0 & 0 & 1 & 1 & 0\\\\
0 & 0 & 0 & 1 & 1\end{array}\right|\left|\begin{array}{c}
J_0\\\\
K\\\\
J_1\\\\
J_2\\\\
J_3\end{array}\right)$

and its determinant $\Delta=\det A$ is $\Delta =\left|\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0\\\\
1 & 0 & 0 & 0 & 1\\\\
0 & 1 & 1 & 0 & 0\\\\
0 & 0 & 1 & 1 & 0\\\\
0 & 0 & 0 & 1 & 1\end{array}\right|\stackrel{(C_2:=C_2-C_1)}{\ \ =\ \ }$ $ \left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0\\\\
1 & -1 & 0 & 0 & 1\\\\
0 & 1 & 1 & 0 & 0\\\\
0 & 0 & 1 & 1 & 0\\\\
0 & 0 & 0 & 1 & 1\end{array}\right|=$ $\left|\begin{array}{cccc}
-1 & 0 & 0 & 1\\\\
1 & 1 & 0 & 0\\\\
0 & 1 & 1 & 0\\\\
0 & 0 & 1 & 1\end{array}\right|\stackrel{(C_4:=C_4+C_1)}{\ \ =\ \ }$ $\left|\begin{array}{cccc}
-1 & 0 & 0 & 0\\\\
1 & 1 & 0 & 1\\\\
0 & 1 & 1 & 0\\\\
0 & 0 & 1 & 1\end{array}\right|=$

$-\left|\begin{array}{ccc}
1 & 0 & 1\\\\
1 & 1 & 0\\\\
0 & 1 & 1\end{array}\right|\implies$ $\boxed{\ \Delta=-2\ne 0\ }$ . Thus, the equation $A\cdot X=B$ has the solution $X=A^{-1}\cdot B$ , i.e. $\left(\begin{array}{c}
I_0\\\\
I_1\\\\
I_2\\\\
I_3\\\\
I_4\end{array}\right)=\frac 12\cdot \left(\begin{array}{ccccc}
1 & 1 & -1 & 1 & -1\\\\
1 & -1 & 1 & -1 & 1\\\\
-1 & 1 & 1 & 1 & -1\\\\
 1 & -1 & -1 & 1 & 1\\\\
-1 & 1 & 1 & -1 & 1\end{array}\right)\cdot \left(\begin{array}{c}
J_0\\\\
K\\\\
J_1\\\\
J_2\\\\
J_3\end{array}\right)$ .


Example, $I_2=\int\frac {x^2}{(1+x)(1+x^4)}\ \mathrm{dx}=$ $\frac 12\cdot \left(-J_0+K+J_1+J_2-J_3\right)=$ $\frac 12\cdot \left[K+J_1+\left(J_2-J_0\right)-J_3\right]$ $\implies$

$2\cdot I_2=2\cdot \int\frac {x^2}{(1+x)(1+x^4)}\ \mathrm{dx}=$ $\frac {\sqrt 2}{4}\cdot\ln\left|\frac {x^2-x\sqrt 2+1}{x^2+x\sqrt 2+1}\right|+\frac 14\ln\frac {(1+x)^4}{1+x^4}+\frac 12\cdot\arctan x^2+\mathbb C$ . Indeed,

$2x^2=\left(-1+x+x^2-x^3\right)(1+x)+\left(1+x^4\right)$ $\iff$ $\frac {2x^2}{(1+x)(1+x^4)}=\frac {-1+x+x^2-x^3}{1+x^4}+\frac {1}{1+x}$ .

Remark. Can solve system $(*)$ . $I_2\stackrel{(3)}{=}J_1-I_1\stackrel{(1)}{=}J_1-\left(J_0-I_0\right)\stackrel{(2)}{=}$ $J_1-J_0+\left(K-I_4\right)\stackrel{(5)}{=}$ $J_1-J_0+K-\left(J_3-I_3\right)\stackrel{(4)}{=}$ .0

$J_1-J_0+K-J_3+\left(J_2-I_2\right)\implies$ $\boxed{I_2=\frac 12\cdot \left[K+J_1+\left(J_2-J_0\right)-J_3\right]}$ .



PP2. Ascertain the integrals $\int\frac {x^4}{\left(x^4+ax^2+1\right)\left(x^4+bx^2+1\right)}\ \mathrm{dx}$ , where $a\ne b$ and $\{a,b\}\subset (2,\infty )$ .

Proof. Denote $A=\int\frac {x^4}{\left(x^4+ax^2+1\right)\left(x^4+bx^2+1\right)}\ \mathrm{dx}$ and $B=\int\frac {x^2}{\left(x^4+ax^2+1\right)\left(x^4+bx^2+1\right)}\ \mathrm{dx}$ . Observe that :

$\blacktriangleright\ A+B=\int\frac {\left(x-\frac 1x\right)'}{\left[\left(x-\frac 1x\right)^2+a+2\right]\left[\left(x-\frac 1x\right)^2+b+2\right]}\ \mathrm{dx}=$ $E\left(x-\frac 1x\right)$ , where $E\stackrel{(y=x-\frac 1x)}{\ =\ }\int\frac {1}{\left[y^2+(a+2)\right]\left[y^2+(b+2)\right]}\ \mathrm{dy}=$

$\frac {1}{a-b}\cdot\int \left[\frac {1}{y^2+(b+2)}-\frac {1}{y^2+(a+2)}\right]\ \mathrm {dy}=$ $\frac {1}{a-b}\cdot \left(\frac {1}{\sqrt {b+2}}\cdot\arctan\frac {y}{\sqrt {b+2}}-\frac {1}{\sqrt {a+2}}\cdot\arctan\frac {y}{\sqrt {a+2}}\right)+\mathbb C$ .

Therefore, $A+B=\frac {1}{a-b}\cdot $ $\left(\frac {1}{\sqrt {b+2}}\cdot\arctan\frac {x^2-1}{x\sqrt {b+2}}-\frac {1}{\sqrt {a+2}}\cdot\arctan\frac {x^2-1}{x\sqrt {a+2}}\right)$ $+\mathbb C$ .

$\blacktriangleright\ A-B=\int\frac {\left(x+\frac 1x\right)'}{\left[\left(x+\frac 1x\right)^2+a-2\right]\left[\left(x+\frac 1x\right)^2+b-2\right]}\ \mathrm{dx}=$ $F\left(x+\frac 1x\right)$ , where $F\stackrel{(y=x+\frac 1x)}{\ =\ }\int\frac {1}{\left[y^2+(a-2)\right]\left[y^2+(b-2)\right]}\ \mathrm{dy}=$

$\frac {1}{a-b}\cdot\int \left[\frac {1}{y^2+(b-2)}-\frac {1}{y^2+(a-2)}\right]\ \mathrm {dy}=$ $\frac {1}{a-b}\cdot \left(\frac {1}{\sqrt {b-2}}\cdot\arctan\frac {y}{\sqrt {b-2}}-\frac {1}{\sqrt {a-2}}\cdot\arctan\frac {y}{\sqrt {a-2}}\right)+\mathbb C$ .

Therefore, $A-B=\frac {1}{a-b}\cdot $ $\left(\frac {1}{\sqrt {b-2}}\cdot\arctan\frac {x^2+1}{x\sqrt {b-2}}-\frac {1}{\sqrt {a-2}}\cdot\arctan\frac {x^2+1}{x\sqrt {a-2}}\right)$ $+\mathbb C$ . In conclusion,

$\blacktriangleright\ 2A=$ $\frac {1}{a-b}$ $\left(\frac {1}{\sqrt {b+2}}\arctan\frac {x^2-1}{x\sqrt {b+2}}-\frac {1}{\sqrt {a+2}}\arctan\frac {x^2-1}{x\sqrt {a+2}}\right)+\frac {1}{a-b}$ $\left(\frac {1}{\sqrt {b-2}}\arctan\frac {x^2+1}{x\sqrt {b-2}}-\frac {1}{\sqrt {a-2}}\arctan\frac {x^2+1}{x\sqrt {a-2}}\right)$ $+\mathbb C$ .

$\blacktriangleright\ 2B=$ $\frac {1}{a-b}$ $\left(\frac {1}{\sqrt {b+2}}\arctan\frac {x^2-1}{x\sqrt {b+2}}-\frac {1}{\sqrt {a+2}}\arctan\frac {x^2-1}{x\sqrt {a+2}}\right)-\frac {1}{a-b}$ $\left(\frac {1}{\sqrt {b-2}}\arctan\frac {x^2+1}{x\sqrt {b-2}}-\frac {1}{\sqrt {a-2}}\arctan\frac {x^2+1}{x\sqrt {a-2}}\right)$ $+\mathbb C$ .

Remark. The following decomposition will immediately lead to the answer:

$ \frac{x^4}{(x^4 + ax^2 + 1)(x^4 + bx^2 + 1)} = $ $ \frac{1}{2(b-a)}\cdot  \left[\frac{\left(x-\frac 1x\right)'}{\left( x - \frac 1x \right)^{2} + a + 2} + \frac{\left(x+\frac 1x\right)'}{\left( x+\frac 1x \right)^{2} + a - 2}- \frac{\left(x-\frac 1x\right)'}{\left( x - \frac 1x \right)^{2} + b + 2}-\frac{\left(x+\frac 1x\right)'}{\left( x+\frac 1x \right)^{2} + b - 2}\right] $ . Indeed,

$A=\frac{x^{4}}{(x^{4}+ax^{2}+1)(x^{4}+bx^{2}+1)}=$ $\frac{x^2}{b-a}\cdot \left(\frac{1}{x^4+ax^2+1} - \frac{1}{x^4+bx^2+1} \right)=$ $\frac{1}{2 \left( b-a \right)} \cdot\left[\frac{ \left( x^2+1 \right) + \left( x^2-1 \right) }{x^4+ax^2+1} - \frac{ \left( x^2+1 \right) + \left( x^2-1 \right) }{x^4+bx^2+1} \right]=$

$\frac{1}{2 \left( b-a \right)}\cdot \left(\frac{x^2+1}{x^4+ax^2+1} + \frac{x^2-1}{x^4+ax^2+1} - \frac{x^2+1}{x^4+bx^2+1} - \frac{x^2-1}{x^4+bx^2+1} \right)=$

$\frac{1}{2 \left( b-a \right)}\cdot  \left[\frac{x^2+1}{(x^2-1)^2+(a+2)x^2} + \frac{x^2-1}{(x^2+1)^2+(a-2)x^2} - \frac{x^2+1}{(x^2-1)^2+(b+2)x^2} - \frac{x^2-1}{(x^2+1)^2+(b-2)x^2}\right]=$

$\frac{1}{2 \left( b-a \right)} \cdot\left[\frac{1+\frac{1}{x^2}}{\left( x-\frac{1}{x}\right)^{2}+a+2} + \frac{1-\frac{1}{x^2}}{\left( x+\frac{1}{x}\right)^{2}+a-2} - \frac{1+\frac{1}{x^2}}{\left( x-\frac{1}{x}\right)^{2}+b+2} - \frac{1-\frac{1}{x^2}}{\left( x+\frac{1}{x}\right)^{2}+b-2} \right]$ . Then, $\displaystyle{ \int A \ \mathrm{dx} }$ is reduced to a sum of $\displaystyle{ \int \frac{1}{u^2+1} \ \mathrm{du} = \arctan u +\mathbb  C}$ .



PP3. Ascertain the integrals $L_k=\int\frac {x^k}{1+x^6}\ \mathrm{dx}$ , where $k\in\overline{0,5}$ .

Proof.

$\blacktriangleleft\blacktriangleright\ L_2=\int\frac {x^2}{1+x^6}\ \mathrm{dx}=$ $\frac 13\cdot\int\frac {\left(x^3\right)'}{1+x^6}\ \mathrm{dx}\implies$ $\boxed{L_2=\frac 13\cdot\arctan x^3+\mathbb C}\ (1)\ .$

$\blacktriangleleft$ $\blacktriangleright\ L_0+2L_2+L_4=$ $\int\frac {1+2x^2+x^4}{1+x^6}\ \mathrm{dx}=$ $\int\frac {\left(1+x^2\right)^2}{1+x^6}\ \mathrm{dx}=$ $\int\frac {1+x^2}{1-x^2+x^4}\ \mathrm{dx}=$

$\int\frac {1+\frac {1}{x^2}}{\frac {1}{x^2}-1+x^2}\ \mathrm{dx}=$ $\int\frac {\left(x-\frac {1}{x}\right)'}{\left(x-\frac 1x\right)^2+1}\ \mathrm{dx}\implies$ $\boxed{L_0+2L_2+L_4=\arctan\frac {x^2-1}{x}+\mathbb C}\ (2)\ .$

$\blacktriangleleft$ $\blacktriangleright\ L_4-L_0=$ $\int\frac {x^4-1}{1+x^6}\ \mathrm{dx}=$ $\int\frac {x^2-1}{1-x^2+x^4}\ \mathrm{dx}=$ $\int\frac {1-\frac {1}{x^2}}{\frac {1}{x^2}-1+x^2}\ \mathrm{dx}=$ $\int\frac {\left(x+\frac {1}{x}\right)'}{\left(x+\frac 1x\right)^2-3}\ \mathrm{dx}\implies$

$\boxed{L_4-L_0=\frac {1}{2\sqrt 3}\cdot\ln\left|\frac {x^2-x\sqrt 3+1}{x^2+x\sqrt 3+1}\right|+\mathbb C}\ (3)$ . From $(1)\ ,\ (2)\ ,\ (3)$ obtain that $L_0\ ,\ L_2\ ,\ L_4$ , i.e. $L_2\odot\begin{array}{c}
\nearrow\\\\
\searrow\end{array}$ $\begin{array}{cc}L_4+L_0 & \searrow\\\\
L_4-L_0 & \nearrow\end{array}\odot\implies$ $L_0\ \wedge\ L_4\ .$

$\blacktriangleleft$ $\blacktriangleright\ L_3+L_1=\int\frac {x\left(x^2+1\right)}{1+x^6}\ \mathrm{dx}=$ $\int\frac {x}{1-x^2+x^4}\ \mathrm{dx}=$ $\frac 12\cdot\int\frac {\left(x^2\right)'}{1-\left(x^2\right)+\left(x^2\right)^2}\ \mathrm{dx}=$ $G\left(x^2\right)+\mathbb C$ , where

$G=\int\frac {1}{t^2-t+1}\ \mathrm{dt}=$ $\int\frac {\left(t-\frac 12\right)'}{\left(t-\frac 12\right)^2+\frac 34}\ \mathrm{dt}=$ $\frac {2}{\sqrt 3}\arctan\frac {2t-1}{\sqrt 3}+\mathbb C$ . In conclusion, $\boxed{L_3+L_1=\frac {2}{\sqrt 3}\arctan\frac {2x^2-1}{\sqrt 3}+\mathbb C}\ (4)\ .$

$\blacktriangleleft$ $\blacktriangleright\ L_3-L_1=$ $\int\frac {x^3-x}{\left(1+x^2\right)\left(1-x^2+x^4\right)}\ \mathrm{dx}=$ $\int\frac {1-\frac {1}{x^2}}{\left(x+\frac 1x\right)\left(\frac {1}{x^2}-1+x^2\right)}\ \mathrm{dx}=$ $\int\frac {\left(x+\frac 1x\right)'}{\left(x+\frac 1x\right)\left[\left(x+\frac {1}{x}\right)^2-3\right]}\ \mathrm{dx}=$ $F\left(x+\frac 1x\right)+\mathbb C$ ,

where $F=\int\frac {1}{t\left(t^2-3\right)}\ \mathrm{dt}=$ $\frac 12\cdot \int\frac {\left(t^2\right)'}{t^2\left(t^2-3\right)}\ \mathrm{dt}=$ $H\left(t^2\right)+\mathbb C$ , where $H(y)=\int\frac {1}{y(y-3)}\ \mathrm{dy}=$ $\frac 13\cdot \int\frac {y-(y-3)}{y(y-3)}\ \mathrm{dy}=$ $\frac 13\cdot \int\left(\frac {1}{y-3}-\frac 1y\right)\ \mathrm{dy}\implies$

$H=\frac 13\cdot\ln\left|\frac {y-3}{y}\right|+\mathbb C$ . In conclusion, $F(t)=\frac 13\cdot\ln\left|\frac{t^2-3}{t^2}\right|+\mathbb C$ and $\boxed {L_3-L_1=\frac 13\cdot\ln\frac {x^4-x^2+1}{\left(x^2+1\right)^2}+\mathbb C}\ (5)$ . From $(4)\ ,\ (5)$ obtain that $L_1\ ,\ L_3\ .$

$\blacktriangleleft\blacktriangleright\ L_5=$ $\int\frac {x^5}{1+x^6}\ \mathrm{dx}=$ $\frac 16\cdot \int\frac {\left(1+x^6\right)'}{1+x^6}\ \mathrm{dx}\implies$ $\boxed{L_5=\frac 16\cdot\ln\left(1+x^6\right)+\mathbb C}$ .



PP4. Ascertain the integrals $\int\frac{1-2e^x\sin x}{\left(e^x+\cos x\right)\left(e^x-\sin x\right)}\ \mathrm{dx}$ and $\int\frac{x^{2}}{(x \sin x + \cos x)(x\cos x - \sin x)}\ \mathrm {dx}$ .

Proof.

$\blacktriangleright\ \int\frac{1-2e^x\sin x}{\left(e^x+\cos x\right)\left(e^x-\sin x\right)}\ \mathrm{dx}=$ $\int\frac {\left(e^x-\sin x\right)^2-\left(e^x-\cos x\right)\left(e^x+\cos x\right)}{\left(e^x+\cos x\right)\left(e^x-\sin x\right)}\ \text{d}x=$

$\int\left(\frac {\text{e}^x-\sin x}{\text{e}^x+\cos x}-\frac {\text{e}^x-\cos x}{\text{e}^x-\sin x}\right)\ \text{d}x=$ $\int\left[\frac {\left(\text{e}^x+\cos x\right)^{\prime}}{\text{e}^x+\cos x}-\frac {\left(\text{e}^x-\sin x\right)^{\prime}}{\text{e}^x-\sin x}\right]\ \text{d}x=\ln\left|\frac {\text{e}^x+\cos x}{\text{e}^x-\sin x}\right|+\mathbb C$ .

$\blacktriangleright\ \int\frac{x^{2}}{(x \sin x + \cos x)(x\cos x - \sin x)}\ \mathrm{dx}=$ $\int\frac{x^{2}\cos ^{2} x - x\sin x\cos x+ x^{2}\sin^{2} x + x\sin x\cos x}{(x\sin x + \cos x)(x\cos x-\sin x)}\ \mathrm{dx}=$

$\int\left(\frac{x\cos x}{x\sin x + \cos x} + \frac{x \sin x}{x\cos x - \sin x}\right)\ \mathrm{dx}=$ $\int\left(\frac{x\cos x}{x\sin x+ \cos x} - \frac{-x\sin x}{x\cos x-\sin x}\right)\ \mathrm{dx}=$ $\ln\left|\frac {x\sin x +\cos x}{\cos x-\sin x}\right| + \mathbb C$



PP5. Evaluate the definite integral $\int_0^{\frac {\pi}{2}}\frac {\sin^2x}{a^2\sin^2x+b^2\cos^2x}\ \mathrm{dx}$ .

Proof. Let $I=\int_0^{\frac {\pi}{2}}\frac {\sin^2x}{a^2\sin^2x+b^2\cos^2x}\ \mathrm{dx}$ and $J=\int_0^{\frac {\pi}{2}}\frac {\cos^2x}{a^2\sin^2x+b^2\cos^2x}\ \mathrm{dx}$ , where $a>0$ , $b>0$ and $a\ne b$ . Thus, $I+J=\int_0^{\frac {\pi}{2}}\frac {1}{a^2\sin^2x+b^2\cos^2x}\ \mathrm{dx}=$

$\int_0^{\frac {\pi}{2}}\frac {1}{a^2\tan^2x+b^2}\cdot\left(\tan x\right)'\ \mathrm{dx}=$ $\int_0^{\infty}\frac {1}{a^2t^2+b^2}\ \mathrm{dt}=$ $\frac {1}{a^2}\cdot \int_0^{\infty}\frac {1}{t^2+\left(\frac ba\right)^2}\ \mathrm{dt}=$ $\frac {1}{ab}\cdot \left|\arctan\frac {at}{b}\right|^{\infty}_0\implies$ $\left\{\begin{array}{c}
I+J=\frac {\pi}{2ab}\\\\
 a^2I+b^2J=\frac {\pi}{2}\end{array}\right\|\ \implies\ \boxed{\ aI=bJ=\frac {\pi}{2(a+b)}\ }$ .



PP6. Let $a_n=\int_{1}^{e} \ln^{n} x\ \mathrm{dx}$ , where $n\in\mathbb N$ . Evaluate $a_n$ and show that $a_n\searrow 0\ ,\ \frac {a_n}{n!}\rightarrow 0$ .

Proof. Let $n\in\mathbb N$ . I"ll use the partial integration $\left\{\begin{array}{ccc}
u(x)=\ln^{n+1}x & \implies & u'(x)=(n+1)\cdot\frac {\ln ^nx}{x}\\\\
v'(x)=1 & \implies & v(x)=x\end{array}\right\|$ . Therefore, $a_{n+1}=\int_{1}^{e} \ln ^{n+1}x\ \mathrm{dx}=$

$\left| x\cdot\ln^{n+1}x\right|_1^e-(n+1)\cdot \int_1^e\ln^nx\ \mathrm{dx}\implies$ $\boxed{\begin{array}{c}
a_0=e-1\\\\
a_{n+1}=e-(n+1)a_n\ ,\ n\in\mathbb N\end{array}}\ (*)$ . Observe that $a_{n+1}-a_n=\int_1^e\ln^nx\left(\ln x-1\right)\ \mathrm{dx}<0$

$\implies$ the sequence $a_n$ is (strict) decreasing, in particulat has limit, i.e. $a_n\searrow l\in \left[0,a_0\right)$ . Suppose $l>0$ . Then for $n\rightarrow \infty$ in the recurrence relation $(*)$

obtain that $l=-\infty$ , what is absurd. In conclusion, $\boxed{a_n\searrow 0}$ . Denote $\boxed{b_n=\frac {a_n}{n!}}\ ,\ n\in\mathbb N$ . Thus, $b_{n+1}=\frac {e}{(n+1)!}-b_n$ , where $b_0=e-1$ .

Prove easily that $\boxed{b_n=e\cdot\sum_{k=0}^n\frac {(-1)^k}{k!}-1}$ . Since $\sum_{k=0}^n\frac {(-1)^k}{k!}\rightarrow\frac 1e$ obtain that $b_n\rightarrow 0$ . Hence $\boxed{a_n=n!\cdot \left[e\cdot\sum_{k=0}^n\frac {(-1)^k}{k!}-1\right]}$ .



PP7. Prove that $K\equiv \int_{\frac 12}^2\frac {\ln x}{x^2+1}\ \mathrm{dx}=0$ and ascertain $L\equiv \int_0^{\frac {\pi}{4}}\sqrt{\tan x}\ \mathrm{dx}$ .

Proof. $K=\int_{\frac 12}^2\frac {\ln x}{x^2+1}\ \mathrm{dx}=$ $\int_{\frac 12}^1\frac {\ln x}{x^2+1}\ \mathrm{dx}+\int_1^2\frac {\ln x}{x^2+1}\ \mathrm{dx}=$ $\int_{\frac 12}^1\frac {\ln x}{x^2+1}\ \mathrm{dx}+$ $\int_1^{\frac 12}\frac {-\ln t}{\frac 1{t^2}+1}\left(-\frac 1{t^2}\right)\ \mathrm{dt}=$

$\int_{\frac 12}^1\frac {\ln x}{x^2+1}\ \mathrm{dx}+$ $\int_1^{\frac 12}\frac {\ln t}{t^2+1}\ \mathrm{dt}=$ $\int_{\frac 12}^1\frac {\ln x}{x^2+1}\ \mathrm{dx}-\int_{\frac 12}^1\frac {\ln x}{x^2+1}\ \mathrm{dx}=0$ . $L=\int_0^{\frac {\pi}{4}}\sqrt{\tan x}\ \mathrm{dx}\ \stackrel{(x:=\sqrt{\tan x})}{=}\ 2J$ ,

where $J=\int_0^1\frac {x^2}{1+x^4}\ \mathrm{dx}=$ $\left|\left(\frac {\sqrt 2}{4}\cdot\arctan\frac {x^2-1}{x\sqrt 2}+\frac {\sqrt 2}{8}\cdot\ln\left|\frac {x^2-x\sqrt 2+1}{x^2+x\sqrt 2+1}\right|\right)\right|_0^1\implies$ $\boxed{L=\frac {\sqrt 2}{2}\cdot\left[\frac {\pi}{2}+\ln\left(\sqrt 2-1\right)\right]}$ .



PP8. Ascertain an indefinite integral of the function $f:\mathbb R\rightarrow \mathbb R$ , where $f(x)=\frac {xe^{\arctan x}}{\left(x^2+1\right)^n}$ and $n\in\mathbb N\ ,\ n\ge 2$ .

Proof. $\left\{\begin{array}{ccc}
u(x)=e^{\arctan x} & \implies & u'(x)=\frac {e^{\arctan x}}{x^2+1}\\\\
v'(x)=\frac x{\left(x^2+1\right)^n} & \implies & v(x)=-\frac 1{2(n-1)\left(x^2+1\right)^{n-1}}\end{array}\right\|$ $\implies$ $I_n=\int\frac {xe^{\arctan x}}{\left(x^2+1\right)^n}\ \mathrm{dx}=$ $\frac {-e^{\arctan x}}{2(n-1)\left(x^2+1\right)^{n-1}}+$ $\frac 1{2(n-1)}\cdot J_n$ , where $J_n=\int\frac {e^{\arctan x}}{\left(x^2+1\right)^n}\ \mathrm{dx}=$

$F_{n-1}(\arctan x)+\mathcal C$ , where $F_n=\int e^t\cos ^{2n}t\ \mathrm{dt}=$ $\int e^t\cos ^{2(n-1)}t\left(1-\sin^2t\right)\ \mathrm{dt}=$ $F_{n-1}-K$ , where $K=\int e^t\cos^{2(n-1)}t\sin^2t\ \mathrm{dt}$ , Thus,

$\left\{\begin{array}{ccc}
u(x)=e^t\sin t & \implies & u'(x)=e^t(\sin t+\cos t)\\\\
v'(x)=\sin t\cos^{2(n-1)}t & \implies & v(x)=-\frac 1{2n-1}\cdot\cos ^{2n-1}t\end{array}\right\|$ $\implies$ $K=-\frac 1{2n-1}\cdot e^t\sin t\cos^{2n-1}t+\frac 1{2n-1}\cdot\left(F_n+L\right)$ , where $L=\int e^t\sin t\cos^{2n-1}\ \mathrm{dt}$ . From

$\left\{\begin{array}{ccc}
u(x)=e^t & \implies & u'(x)=e^t\\\\
v'(x)=\sin t\cos^{2n-1}t & \implies & v(x)=-\frac 1{2n}\cdot\cos ^{2n}t\end{array}\right\|$ obtain that $L=\frac 1{2n}\cdot \left(F_n-e^t\cos^{2n}t\right)$ . In conclusion,

$F_n=F_{n-1}-\left\{-\frac 1{2n-1}\cdot e^t\sin t\cos^{2n-1}t+\frac 1{2n-1}\cdot\left[F_n+\frac 1{2n}\cdot \left(F_n-e^t\cos^{2n}t\right)\right]\right\}$ $\implies$ $\boxed{\left(4n^2+1\right)F_n=2n(2n-1)F_{n-1}+2ne^t\sin t\cos^{2n-1}t+e^t\cos^{2n}t}$ .
See here
This post has been edited 142 times. Last edited by Virgil Nicula, Nov 20, 2015, 9:26 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a