304. Integrals ("brothers") III.
by Virgil Nicula, Jul 27, 2011, 9:43 PM
PP1. Ascertain the integrals
and
, where
.
Proof.
, where
and 
. Observe that
,
.
Denote
. Thus, the system
has extended matrix
, where 
and its determinant
is

. Thus, the equation
has the solution
, i.e.
.
Example,

. Indeed,
.
Remark. Can solve system
.
.0
.
PP2. Ascertain the integrals
, where
and
.
Proof. Denote
and
. Observe that :
, where ![$E\stackrel{(y=x-\frac 1x)}{\ =\ }\int\frac {1}{\left[y^2+(a+2)\right]\left[y^2+(b+2)\right]}\ \mathrm{dy}=$](//latex.artofproblemsolving.com/6/d/0/6d039a9694663a9c28b85ca0a8f446f083070066.png)
.
Therefore,
.
, where ![$F\stackrel{(y=x+\frac 1x)}{\ =\ }\int\frac {1}{\left[y^2+(a-2)\right]\left[y^2+(b-2)\right]}\ \mathrm{dy}=$](//latex.artofproblemsolving.com/6/6/4/6648ccb464315e6e42099b57a768a074c592dc3e.png)
.
Therefore,
. In conclusion,
.
.
Remark. The following decomposition will immediately lead to the answer:
. Indeed,
![$\frac{1}{2 \left( b-a \right)} \cdot\left[\frac{ \left( x^2+1 \right) + \left( x^2-1 \right) }{x^4+ax^2+1} - \frac{ \left( x^2+1 \right) + \left( x^2-1 \right) }{x^4+bx^2+1} \right]=$](//latex.artofproblemsolving.com/e/6/4/e6467f07038e2279a0a6ce748e752fe97379b771.png)

![$\frac{1}{2 \left( b-a \right)}\cdot \left[\frac{x^2+1}{(x^2-1)^2+(a+2)x^2} + \frac{x^2-1}{(x^2+1)^2+(a-2)x^2} - \frac{x^2+1}{(x^2-1)^2+(b+2)x^2} - \frac{x^2-1}{(x^2+1)^2+(b-2)x^2}\right]=$](//latex.artofproblemsolving.com/e/e/9/ee98a3a69753887bc472e941413a7886466fa5d5.png)
. Then,
is reduced to a sum of
.
PP3. Ascertain the integrals
, where
.
Proof.




. From
obtain that
, i.e.

, where
. In conclusion, 
,
where
, where

. In conclusion,
and
. From
obtain that 
.
PP4. Ascertain the integrals
and
.
Proof.

.


PP5. Evaluate the definite integral
.
Proof. Let
and
, where
,
and
. Thus, 
.
PP6. Let
, where
. Evaluate
and show that
.
Proof. Let
. I"ll use the partial integration
. Therefore, 
. Observe that 
the sequence
is (strict) decreasing, in particulat has limit, i.e.
. Suppose
. Then for
in the recurrence relation 
obtain that
, what is absurd. In conclusion,
. Denote
. Thus,
, where
.
Prove easily that
. Since
obtain that
. Hence
.
PP7. Prove that
and ascertain
.
Proof.

.
,
where
.
PP8. Ascertain an indefinite integral of the function
, where
and
.
Proof.
, where 
, where
, where
, Thus,
, where
. From
obtain that
. In conclusion,
. See here



Proof.













Denote




and its determinant










Example,


![$\frac 12\cdot \left[K+J_1+\left(J_2-J_0\right)-J_3\right]$](http://latex.artofproblemsolving.com/3/3/d/33de655a68f6fa56cdfd3f43ac260beb7aabb320.png)






Remark. Can solve system





![$\boxed{I_2=\frac 12\cdot \left[K+J_1+\left(J_2-J_0\right)-J_3\right]}$](http://latex.artofproblemsolving.com/4/9/0/4906f024ab9043cc1a413ea7e5283e2b5fca32b5.png)
PP2. Ascertain the integrals



Proof. Denote


![$\blacktriangleright\ A+B=\int\frac {\left(x-\frac 1x\right)'}{\left[\left(x-\frac 1x\right)^2+a+2\right]\left[\left(x-\frac 1x\right)^2+b+2\right]}\ \mathrm{dx}=$](http://latex.artofproblemsolving.com/6/3/0/630799c680546907738bc71d8002b62536f54d3c.png)

![$E\stackrel{(y=x-\frac 1x)}{\ =\ }\int\frac {1}{\left[y^2+(a+2)\right]\left[y^2+(b+2)\right]}\ \mathrm{dy}=$](http://latex.artofproblemsolving.com/6/d/0/6d039a9694663a9c28b85ca0a8f446f083070066.png)
![$\frac {1}{a-b}\cdot\int \left[\frac {1}{y^2+(b+2)}-\frac {1}{y^2+(a+2)}\right]\ \mathrm {dy}=$](http://latex.artofproblemsolving.com/e/e/d/eed9893bdeb20f2b054d5effd75ce2a619d6c078.png)

Therefore,



![$\blacktriangleright\ A-B=\int\frac {\left(x+\frac 1x\right)'}{\left[\left(x+\frac 1x\right)^2+a-2\right]\left[\left(x+\frac 1x\right)^2+b-2\right]}\ \mathrm{dx}=$](http://latex.artofproblemsolving.com/b/c/1/bc16df5b73458e404c0366eea01a4976eb322ac9.png)

![$F\stackrel{(y=x+\frac 1x)}{\ =\ }\int\frac {1}{\left[y^2+(a-2)\right]\left[y^2+(b-2)\right]}\ \mathrm{dy}=$](http://latex.artofproblemsolving.com/6/6/4/6648ccb464315e6e42099b57a768a074c592dc3e.png)
![$\frac {1}{a-b}\cdot\int \left[\frac {1}{y^2+(b-2)}-\frac {1}{y^2+(a-2)}\right]\ \mathrm {dy}=$](http://latex.artofproblemsolving.com/a/1/1/a11f5f73b419552a12e5e276010dfd92e74dd2df.png)

Therefore,













Remark. The following decomposition will immediately lead to the answer:

![$ \frac{1}{2(b-a)}\cdot \left[\frac{\left(x-\frac 1x\right)'}{\left( x - \frac 1x \right)^{2} + a + 2} + \frac{\left(x+\frac 1x\right)'}{\left( x+\frac 1x \right)^{2} + a - 2}- \frac{\left(x-\frac 1x\right)'}{\left( x - \frac 1x \right)^{2} + b + 2}-\frac{\left(x+\frac 1x\right)'}{\left( x+\frac 1x \right)^{2} + b - 2}\right] $](http://latex.artofproblemsolving.com/4/1/7/417e43befce19c5b13015583cacc15fa0514d579.png)


![$\frac{1}{2 \left( b-a \right)} \cdot\left[\frac{ \left( x^2+1 \right) + \left( x^2-1 \right) }{x^4+ax^2+1} - \frac{ \left( x^2+1 \right) + \left( x^2-1 \right) }{x^4+bx^2+1} \right]=$](http://latex.artofproblemsolving.com/e/6/4/e6467f07038e2279a0a6ce748e752fe97379b771.png)

![$\frac{1}{2 \left( b-a \right)}\cdot \left[\frac{x^2+1}{(x^2-1)^2+(a+2)x^2} + \frac{x^2-1}{(x^2+1)^2+(a-2)x^2} - \frac{x^2+1}{(x^2-1)^2+(b+2)x^2} - \frac{x^2-1}{(x^2+1)^2+(b-2)x^2}\right]=$](http://latex.artofproblemsolving.com/e/e/9/ee98a3a69753887bc472e941413a7886466fa5d5.png)
![$\frac{1}{2 \left( b-a \right)} \cdot\left[\frac{1+\frac{1}{x^2}}{\left( x-\frac{1}{x}\right)^{2}+a+2} + \frac{1-\frac{1}{x^2}}{\left( x+\frac{1}{x}\right)^{2}+a-2} - \frac{1+\frac{1}{x^2}}{\left( x-\frac{1}{x}\right)^{2}+b+2} - \frac{1-\frac{1}{x^2}}{\left( x+\frac{1}{x}\right)^{2}+b-2} \right]$](http://latex.artofproblemsolving.com/8/4/b/84b711a10565dcaacd54e4d659791564ec0d3363.png)


PP3. Ascertain the integrals


Proof.




































![$\int\frac {\left(x+\frac 1x\right)'}{\left(x+\frac 1x\right)\left[\left(x+\frac {1}{x}\right)^2-3\right]}\ \mathrm{dx}=$](http://latex.artofproblemsolving.com/7/3/2/7326b75393f3f2335a4366d3eb193ac7d99fe7bb.png)

where















PP4. Ascertain the integrals


Proof.



![$\int\left[\frac {\left(\text{e}^x+\cos x\right)^{\prime}}{\text{e}^x+\cos x}-\frac {\left(\text{e}^x-\sin x\right)^{\prime}}{\text{e}^x-\sin x}\right]\ \text{d}x=\ln\left|\frac {\text{e}^x+\cos x}{\text{e}^x-\sin x}\right|+\mathbb C$](http://latex.artofproblemsolving.com/d/3/6/d365e9bb35607cdd1acbf73a89362c9d47466561.png)





PP5. Evaluate the definite integral

Proof. Let











PP6. Let




Proof. Let












obtain that





Prove easily that



![$\boxed{a_n=n!\cdot \left[e\cdot\sum_{k=0}^n\frac {(-1)^k}{k!}-1\right]}$](http://latex.artofproblemsolving.com/5/9/2/592e81e76cae84c4f563ddc2300e3a3ca39dbce0.png)
PP7. Prove that


Proof.








where


![$\boxed{L=\frac {\sqrt 2}{2}\cdot\left[\frac {\pi}{2}+\ln\left(\sqrt 2-1\right)\right]}$](http://latex.artofproblemsolving.com/b/8/e/b8e460f7141d88a7fe9ee92dd6d5f7f2d6e44aa2.png)
PP8. Ascertain an indefinite integral of the function



Proof.

















![$F_n=F_{n-1}-\left\{-\frac 1{2n-1}\cdot e^t\sin t\cos^{2n-1}t+\frac 1{2n-1}\cdot\left[F_n+\frac 1{2n}\cdot \left(F_n-e^t\cos^{2n}t\right)\right]\right\}$](http://latex.artofproblemsolving.com/a/7/f/a7f6fefe669099125c243c9e8940598bc2a43a18.png)


This post has been edited 142 times. Last edited by Virgil Nicula, Nov 20, 2015, 9:26 PM