370. Some metrical relations in a triangle.

by Virgil Nicula, Feb 14, 2013, 11:19 AM

PP1 (Hanoi Open Mathematical Olympiad 2010). Let $\triangle ABC$ with the incenter $I$ . Denote $\left\{\begin{array}{ccc}
M\in AB & ; & N\in AC\\\\
I\in MN & ; & MN\perp AI\end{array}\right|$ . Prove that $\frac {MB}{NC}=\left(\frac {IB}{IC}\right)^2$ .

Proof 1. $\left\{\begin{array}{c}
m\left(\widehat{AIB}\right)=90^{\circ}+\frac C2\implies m\left(\widehat{MIB}\right)=\frac C2\\\\
m\left(\widehat{AIC}\right)=90^{\circ}+\frac B2\implies m\left(\widehat{NIC}\right)=\frac B2\end{array}\right|\implies$ $\triangle MIB\sim\triangle {NCI}\implies$ $\frac {MI}{NC}=\frac {IB}{CI}=\frac {MB}{NI}\implies$ $\left\{\begin{array}{c}
MB=IN\cdot\frac {IB}{IC}\\\\
NC=IM\cdot\frac {IC}{IB}\end{array}\right|\implies$ $\frac {MB}{NC}=\left(\frac {IB}{IC}\right)^2$ .

Proof 2. Suppose $c<b$ and let $L\in MN\cap BC$ . Apply Menelaus' theorem to $\overline{LMN}$ and $\triangle ABC\ :\ \frac {LB}{LC}$ $\cdot\frac {NC}{NA}$ $\cdot\frac {MA}{MB}=1$ $\implies$ $\frac {MB}{NC}=\frac {LB}{LC}$ . Prove

that $\triangle LIB\sim\triangle LCI$ , i.e. $LI$ is tangent to the circumcircle of $\triangle BIC\implies$ $\frac {LI}{LC}=\frac {IB}{CI}=\frac {LB}{LI}\implies$ $\left\{\begin{array}{c}
LB=LI\cdot\frac {IB}{IC}\\\\
LC=LI\cdot\frac {IC}{IB}\end{array}\right|\implies$ $\frac {LB}{LC}=\left(\frac {IB}{IC}\right)^2$ . In conclusion, $\frac {MB}{NC}=\left(\frac {IB}{IC}\right)^2$

Proof 3. Let $\left\{\begin{array}{ccc}
F\in AB & ; & IF\perp AB\\\\
E\in AC & ; & IE\perp AC\end{array}\right|$ . From $IA^2=\frac {bc(s-a)}{s}$ , where $2s=a+b+c$ and $AE=AF=s-a$ obtain $AM\cdot AF=AI^2\implies$

$AM=AN=\frac {bc}{s}\implies$ $\left\{\begin{array}{c}
MB=\frac {c(s-b)}{s}\\\\
NC=\frac {b(s-c)}{s}\end{array}\right|$ $\implies$ $\frac {MB}{NC}=\frac {c(s-b)}{b(s-c)}\ (*)$ . Thus, $IB^2=\frac {ac(s-b)}{s}\ ,\ IC^2=\frac {ab(s-c)}{s}\implies$ $\left(\frac {IB}{IC}\right)^2=$ $\frac {c(s-b)}{b(s-c)}\ \stackrel{(*)}{\implies}\ \frac {MB}{NC}=$ $\left(\frac {IB}{IC}\right)^2$ .

Proof 4. Apply theorem of Sinus in $:\ \left\{\begin{array}{cc}
\triangle BIM\ : & \frac {MB}{\sin \frac C2}=\frac {IB}{\cos\frac A2}\\\\
\triangle BIN\ : & \frac {NC}{\sin\frac B2}=\frac {IC}{\cos\frac A2}\\\\
\triangle BIC\ : & \frac {IB}{IC}=\frac {\sin\frac C2}{\sin\frac B2}\end{array}\right|\implies$ $\frac {MB}{NC}=$ $\left(\frac {IB}{IC}\right)^2$ .

Remark. Prove that $s(s-a)+(s-b)(s-c)=bc\ (1)$ . Thus, $IA^2=FA^2+FI^2=$ $(s-a)^2+r^2=$ $(s-a)^2+\frac {S^2}{s^2}=$ $\frac {s^2(s-a)^2+s(s-a)(s-b)(s-c)}{s^2}=$

$\frac {(s-a)\left[s(s-a)+(s-b)(s-c)\right]}{s}\ \stackrel{(1)}{\implies}$ $IA^2=\frac {bc(s-a)}{s}$ . Otherwise, $AI\cos\frac A2=AF\implies$ $AI^2=\frac {(s-a)^2}{\frac {s(s-a)}{bc}}\implies$ $AI^2=\frac {bc(s-a)}{s}=bc-4Rr$ .



PP2 (Hanoi OMO 2009). Let acute $\triangle ABC$ with area $S$ . Let $\left\{A_1,B_1,C_1\right\}$ be located as follows: $A_1$ is the point where altitude from $A$ on $BC$ meets the outwards

facing semicirle drawn on $[BC]$ as diameter. $B_1$ and $C_1$ are located similarly. Evaluate the sum $T=[BCA_1]^2+[CAB_1]^2+[ABC_1]^2$ , where denoted $[XYZ]$ - the area of $\triangle ABC$ .


Proof 1. $4\cdot \sum\sin A\cos B\cos C=2\cdot \sum\sin A\left[\cos (B+C)+\cos (B-C)\right]=$ $2\cdot \sum\sin A\left[-\cos A+\cos (B-C)\right]=$ $\sum \left[-\sin 2A+2\sin (B+C)\cos (B-C)\right]=$

$\sum \left(-\sin 2A+\sin 2B+\sin 2C\right)=\sum\sin 2A=4\cdot\prod\sin A=$ $\frac {2S}{R^2}$ . Let $D\in BC\ ,\ AD\perp BC$ . So $DA_1^2=DB\cdot DC\implies$ $DA_1^2=bc\cdot \cos B\cos C\implies$ $[BCA_1]^2=$

$\left(\frac 12\cdot BC\cdot DA_1\right)^2=$ $\frac {a^2bc}{4}\cdot\cos B\cos C\implies$ $\sum [BCA_1]^2=\frac {abc}{4}\cdot\sum a\cdot\cos B\cos C=$ $2R^2S\sum\sin A\cos B\cos C=$ $2R^2S\cdot\frac {S}{2R^2}=S^2$ $\implies$ $\boxed{\sum [BCA_1]^2=S^2}$ .

Proof 2. Let $D\in BC\cap AA_1$ and orth. $H$ of $\Delta ABC\implies$ $\frac{[A_1BC]^2}{[ABC]^2}=\frac{A_1D^2}{AD^2}=$ $\frac {BD\cdot CD}{AD^2}=$ $\frac {AD\cdot DH}{AD^2}=$ $\frac{DH}{AD}=\frac{[BCH]}{[ABC]}$ . Thus, $\sum [BCH]=S\implies$ $\sum [BCA_1]^2=S^2$

Remark. $\sum a\cos B\cos C=2R\sum \sin A\cos B\cos C=$ $2R\cdot\prod\cos A\cdot\sum \tan A=$ $2R\cdot\prod\cos A\cdot\prod\tan A=$ $2R\prod\sin A=\frac SR$ .



PP3. Let $\triangle ABC$ and suppose that its incircle $w=C(I,r)$ touch $BC$ , $CA$ , $AB$ at $(D,E,F)$ and $\left\{\begin{array}{c}
M\in BI\cap EF\\\\
N\in CI\cap EF\\\\
K\in DI\cap EF\end{array}\right\|$ . Prove that $\frac {DM}{DN}=\frac {KF}{KE}$ .

Proof. From a well-known property (or prove easily) $NB\perp NI$ , $MC\perp MI$ . Thus, $BNMC$ , $BNFID$ , $CMEID$ are cyclicaly. Thus, $\overline{DIK}$ is the radical axis of the circumcircles

for $BNFID$ , $CEMID$ , i.e. $KF\cdot KN=KE\cdot KM$ and $DK$ is the bisector of $\widehat{MDN}$ . Thus, $\frac {DM}{DN}=\frac {KM}{KN}=\frac {KF}{KE}$ , i.e. $\frac {DM}{DN}=\frac {KF}{KE}$ . Remark that $R\in DI\cap BN\cap CM$ .



PP4. The inscribed circle of $w=\Delta ABC$ touches $BC$ , $AC$ , $AB$ in $D$ , in $(D,E,F)$ . $[GF]$ is a diameter of $w$ and $P\in EF\cap GD$ . Prove that $CE=CP$.

Proof 1. $\left\{\begin{array}{c}R\in EP\\\\ CR\perp EP\end{array}\right\|$ $\Longrightarrow \left\{\begin{array}{c}ER=CE\cdot\sin\frac{A}{2}=(p-c)\sin\frac{A}{2}\\\\ EP=EG\cdot\cot\frac{C}{2}=FG\cdot\sin\frac{A}{2}\cdot \frac{p-c}{r}=2(p-c)\sin\frac{A}{2}\end{array}\right\|$ $\Longrightarrow$ $EP=2\cdot ER$ $\Longrightarrow$ $CD=CE=CP$ .

Proof 2. Is well-known that $C\in PR$ , where $R\in DF\cap EG$ . Indeed, apply Pascal's theorem to $DDFEEG\ : \left\{\begin{array}{c}C\in DD\cap EE\\\\ R\in DF\cap EG\\\\ P\in FE\cap GD\end{array}\right\|$ $\Longrightarrow$ $C\in PR$ . $D$ , $E$ belong to the circle with

the diameter $[PR]$ because $PD\perp FD$ , $RE\perp FE$ and $C$ is its center because $CD=CE=s-c$ . So, $D$ , $E$ , $P$ , $R$ belong to the circle $\mathrm w(C,s-c)$ , where $2s=a+b+c$ .

Remark. After having shown $P-C-R$ collinear, $G$ is the orthocenter of $\Delta FPR$ . Hence $PC\parallel AB$ and $\Delta CEP\sim\Delta FEA$ . As $\Delta AEF$ is isosceles, the conclusion follows.



PP5. Let $ABC$ be a triangle with the incircle $w=C(I,r)$ and the $A$-exincircle $w_a=C(I_a,r_a)$ . Let $D\in BC\cap w_a$ and $\{D,S\}=ID\cap w_a$ . Prove that $[SD$ is the bisector of $\widehat{BSC}$ .

Proof 1. Suppose w.l.o.g. $b>c$ . Let $K\in BC\cap w$ , the diameter $[DL]$ of $w_a$ and $T\in LS\cap BC$ . Thus, $\triangle IKD\sim\triangle TDL\implies$ $\frac {IK}{TD}=\frac {KD}{DL}\implies$ $\frac {r}{TD}=\frac {b-c}{2r_a}\implies$

$TD=\frac {2rr_a}{b-c}\implies$ $\boxed{TD=\frac {2(s-b)(s-c)}{b-c}}\implies$ $\left\{\begin{array}{ccccc}
TB=TD+DB & \implies & TB=\frac {2(s-b)(s-c)}{b-c}+(s-c) & \implies & TB=\frac {a(s-c)}{b-c}\\\\
TC=TD-DC & \implies & TC=\frac {2(s-b)(s-c)}{b-c}-(s-b) & \implies & TC=\frac {a(s-b)}{b-c}\end{array}\right|$ $\implies$

$\frac {TB}{TC}=\frac {DB}{DC}=\frac {s-c}{s-b}$ $\implies$ the division $(B,C;D,T)$ is harmonically. Since $SD\perp ST$ obtain that the ray $[SD$ is the bisector of the angle $\widehat{BSC}$ .

Proof 2. Suppose w.l.o.g. $b>c$ . Let $K\in BC\cap w$ , the diameter $[DL]$ of $w_a$ and the midpoints $M$ , $N$ of $[BC]$ , $[ID]$ respectively. Prove easily that $NM\parallel IK$ ,

$\triangle IKD\sim\triangle DSL$ . Thus, $\frac {IK}{DS}=\frac {ID}{DL}\iff$ $DI\cdot DS=2rr_a\iff$ $2(s-b)(s-c)=2\cdot DN\cdot DS\iff$ $(s-b)(s-c)=DN\cdot DS\iff$

$DB\cdot DC=DN\cdot DS\iff$ $BNCS$ is cyclically. Since $NM\perp BC$ obtain that $NB=NC\iff$ the ray $[SN$ , i.e. the ray $[SD$ is the bisector of $\widehat{BSC}$ .


An easy extension. Let $w=C(O,r)$ be a circle what is tangent to $d$ in the point $A\in d$ . Consider $\{B,D,A,C\}\subset d$ in this order so that $BD=AC$ .

Denote the point $E$ for which $ED\perp AB$ and $EB\perp OB$ . Define the intersection $F\in AE\cap w$ . Prove that the ray $[FA$ is the bisector of the angle $\widehat {BFC}$ .


Proof. Denote the diameter $[AL]$ of $w$ and the midpoint $N$ , $M$ of the segments $[AE]$ , $[BC]$ respectively. Thus,

$\left\{\begin{array}{ccccc}
\triangle BDE\sim\triangle OAB & \implies & \frac {BD}{OA}=\frac {DE}{AB} & \implies & AB\cdot AC=OA\cdot DE\\\\
\triangle EDA\sim\triangle AFL & \implies & \frac {ED}{AF}=\frac {EA}{AL} & \implies & OA\cdot DE=AN\cdot AF\end{array}\right|$ $\implies$ $AB\cdot AC=AN\cdot AF\implies$

$BNCF$ is an cyclical quadrilateral. Since $NM$ is the bisector of the segment $[BC]$ obtain that $NB=NC$ $\implies$ $[FA$ is the bisector of the angle $\widehat {BFC}$ .



Lemma (Freeman). Let acute $\triangle ABC$ with circumcircle $w=C(O,R)$ . Denote the midpoints $M$ , $N$ of $[OA]$ and $[BC]$ respectively. Then $m\left(\widehat{OMN}\right)=\frac {C-B}{2}$ $\iff $ $A=60^{\circ}$ .

Proof. Let $\left\{\begin{array}{ccc}
S\in ON\ ;\ AS\parallel MN\\\\
m\left(\widehat{OMN}\right)=\frac {C-B}{2}\end{array}\right\|\implies$ $\left\{\begin{array}{c}
m\left(\widehat{BAS}\right)=m\left(\widehat{BAO}\right)+m\left(\widehat{OAS}\right)=90^{\circ}-C+\frac {C-B}{2}=90^{\circ}-\frac {B+C}{2}=\frac A2\\\\
m\left(\widehat{CAS}\right)=m\left(\widehat{CAO}\right)-m\left(\widehat{SAO}\right)=90^{\circ}-B-\frac {C-B}{2}=90^{\circ}-\frac {B+C}{2}=\frac A2\end{array}\right|$ $\iff$ $S\in w$ $\iff$ $A=60^{\circ}$


PP6. Let an acute $\triangle ABC$ with circumcircle $w=C(O,R)$ . Let midpoints $M$ , $N$ of $[OA]$ and $[BC]$ and $m\left(\widehat{OMN}\right)=x$ . Suppose that $B=4x$ and $C=6x$ . Find $m\left(\widehat{OMN}\right)$ .

Proof 1. Since $m\left(\widehat{OMN}\right)=\frac {C-B}{2}$ from upper lemma obtain $A=60^{\circ}$ and $120^{\circ}=B+C=10x\implies$ $x=12^{\circ}$ .

Proof 2. Let $D\in BC\ ,\ AD\perp BC$ , $P\in AD\cap NM$ , $m\left(\widehat{DPN}\right)=\phi$ . So $\phi =C-B-x$ , where $\tan\phi =\frac {DN}{DP}$ . Therefore, $\tan (6x-4x-x)=\frac {\frac {c^2-b^2}{2a}}{h_a+R\cos A}=$

$\frac {\frac {4R^2\left(\sin^2C-\sin^2B\right)}{4R\sin A}}{2R\sin B\sin C+R\cos A}=$ $\frac {\sin (C+B)\sin (C-B)}{\sin A(2\sin B\sin C+\cos A)}=$ $\frac {\sin (C-B)}{\cos (C-B)+2\cos A}\implies$ $\tan x=\frac {\sin 2x}{\cos 2x-2\cos 10x}\iff$ $\frac {\sin x}{\cos x}=\frac {2\sin x\cos x}{\cos 2x-2\cos 10x}$ $\iff$

$1+\cos 2x=$ $\cos 2x-2\cos 10x\iff$ $\cos 10x=-\frac 12\iff$ $10x=\frac {2\pi}{3}\iff$ $x=\frac {\pi}{15}$ , i.e. $x=\boxed{m\left(\widehat{OMN}\right)=12^{\circ}}$ .



PP7. Let $\triangle ABC$ with orthocentre $H$ and circumcircle $w=C(O)$ and the parallelogram $AXHY$ , where $X\in AB$ and $Y\in AC$ . Prove that $OX = OY$ .

Proof. $\triangle BXH\sim\triangle CYH\iff$ $\frac {BX}{CY}=\frac {XH}{YH}\iff$ $\frac {BX}{CY}=\frac {AY}{AX}\iff$ $XA\cdot XB=YA\cdot YB\iff$ $p_w(X)=p_w(Y)\iff$ $OX=OY$ .

An easy extension. Let $\triangle ABC$ with the circumcenter $O$ and let its interior point $P$ so that $\widehat{PBA}\equiv\widehat{PCA}$ . Define $\left\{\begin{array}{c}
X\in AB\ ,\ PX\parallel AC\\\\
Y\in AC\ ,\ PY\parallel AB\end{array}\right\|$ . Prove that $OX=OY$ .

Proof. $\triangle BXP\sim\triangle CYP\iff$ $\frac {BX}{CY}=\frac {XP}{YP}\iff$ $\frac {BX}{CY}=\frac {AY}{AX}\iff$ $XA\cdot XB=YA\cdot YB\iff$ $p_w(X)=p_w(Y)\iff$ $OX=OY$ .


PP8. Let an equilateral $\triangle ABC$ and $P$ which belongs to the small $\mathrm{arc}\ BC$ . Denote $Q\in AP\cap BC$ . Prove that $\frac{1}{PQ}=\frac{1}{PB}+\frac{1}{PC}$ .

Proof 1. $\triangle APB\sim\triangle CPQ\iff$ $\frac {PA}{PC}=\frac {PB}{PQ}\iff$ $PA\cdot PQ=PB\cdot PC$ . Ptolemy's theorem $\implies$

$PA=PB+PC$ . Thus, $\frac 1{PQ}=\frac {PA}{PA\cdot PQ}=\frac {PB+PC}{PB\cdot PC}\implies$ $\frac 1{PQ}=\frac 1{PB}+\frac 1{PC}$ .

Proof 2. From the second theorem of the $P$-bisector in $\triangle BPC$ obtain tat $PQ^2=PB\cdot PC-QB\cdot QC\iff$

$PQ^2=PB\cdot PC-QA\cdot QP\iff$ $PQ\cdot (PQ+QA)=PB\cdot PC\iff$ $PQ\cdot PA=PB\cdot PC$ . Using the

Ptolemy
's theorem
in $ABPC$ obtain that $PA=PB+PC$ . Thus, $\frac 1{PQ}=\frac {PA}{PA\cdot PQ}=\frac {PB+PC}{PB\cdot PC}\implies$ $\frac 1{PQ}=\frac 1{PB}+\frac 1{PC}$ .

Proof 3. Apply in $\triangle BPC$ relation for length of the $P$-bisector: $\phi =m\left(\widehat{BPC}\right)=120^{\circ}\implies$ $ PQ=\frac {2\cdot PB\cdot PC\cdot\cos\frac {\phi}{2}}{PB+PC}\implies$ $PQ=\frac {PB\cdot PC}{PB+PC}\implies$ $\frac 1{PQ}=\frac 1{PB}+\frac 1{PC}$ .



PP9. Let $w_k=C(I_k,r_k)\ ,\ k\in\overline{1,3}$ be three circles so that $(\forall ) k\in\overline{1,3}\ ,\ w_k$ is interior tangent to the circles $w=C(O,R)$ in the points $A_k$ ,

where $\triangle A_1A_2A_3$ is equilateral. Ascertain the radius $r$ of the circle $C(I,r)$ which is inside of $w$ and is exterior tangent to the circles $w_k\ ,\ k\in\overline{1,3}$ .


Proof. Apply the generalized Pythagoras' theorem:

$\left\{\begin{array}{cccc}
\triangle I_1OI_2\ : & I_1I_2^2=\left(R-r_1\right)^2+\left(R-r_2\right)^2+\left(R-r_1\right)\left(R-r_2\right) & \implies & I_1I_2^2=3R^2-3R\left(r_1+r_2\right)+r_1^2+r_2^2+r_1r_2\\\\
\triangle I_2OI_3\ : & I_2I_3^2=\left(R-r_2\right)^2+\left(R-r_3\right)^2+\left(R-r_2\right)\left(R-r_3\right) & \implies & I_2I_3^2=3R^2-3R\left(r_2+r_3\right)+r_2^2+r_3^2+r_2r_3\\\\
\triangle I_3OI_1\ : & I_3I_1^2=\left(R-r_3\right)^2+\left(R-r_1\right)^2+\left(R-r_3\right)\left(R-r_1\right) & \implies & I_3I_1^2=3R^2-3R\left(r_3+r_1\right)+r_3^2+r_1^2+r_3r_1\end{array}\right\|$

Denote $\left\{\begin{array}{cc}
m\left(\widehat{I_2II_3}\right)=\phi_1\ ; & \rho_1=\frac {\left(R-r_2\right)\left(R-r_3\right)}{\left(r+r_2\right)\left(r+r_3\right)}\\\\
m\left(\widehat{I_3II_1}\right)=\phi_2\ ; & \rho_2=\frac {\left(R-r_3\right)\left(R-r_1\right)}{\left(r+r_3\right)\left(r+r_1\right)}\\\\
m\left(\widehat{I_1II_2}\right)=\phi_3\ ; & \rho_3=\frac {\left(R-r_1\right)\left(R-r_2\right)}{\left(r+r_1\right)\left(r+r_2\right)}\end{array}\right\|$ . Apply theorem of Cosine in $\triangle I_1II_2\ :$ $\cos \phi_3=\frac {\left(r+r_1\right)^2+\left(r+r_2\right)^2-\left[3R^2-3R\left(r_1+r_2\right) +r_1^2+r_2^2+r_1r_2\right]}{2\left(r+r_1\right)\left(r+r_2\right)}=$

$\frac{2\left(r+r_1\right)\left(r+r_2\right)-3\left(R-r_1\right)\left(R-r_2\right)}{2\left(r+r_1\right)\left(r+r_2\right)}\implies$ $\boxed{\cos\phi_3=1-\frac {3\rho_3}{2}}\iff$ $\sin^2\frac {\phi_3}2=\frac {1-\cos\phi}{2}=\frac {3\rho_3}{4}\implies$ $\boxed{\cos\frac {\phi_3}{2}=\frac 12\cdot\sqrt {4-3\rho_3}}$ . Prove easily that

$\sum_{k=1}^3\phi_k=2\pi\implies$ $1+\sum_{k=1}^3\cos \phi_k+4\prod_{k=1}^3\cos\frac {\phi_k}2=0\implies$ $1+\sum_{k=1}^3\left(1-\frac {3\rho_k}{2}\right)+4\prod_{k=1}^3\left(\frac 12\cdot\sqrt {4-3\rho_k}\right)=0\iff$ $\boxed{8+\sqrt{\prod_{k=1}^3\left(4-3\rho_k\right)}=3\sum_{k=1}^3\rho_k}$ .



PP10. Let $\triangle ABC$ with $AB\perp AC$ and $M\in (BC)$ . Denote $\left\{\begin{array}{cc}
AM=l\ ; & MB=x\ ,\ MC=y\\\\
E\in (AB)\ ; & \widehat{EMA}\equiv\widehat{EMB}\\\\
F\in (AC)\ ; & \widehat{FMA}\equiv\widehat{FMC}\end{array}\right\|$ . Prove that $\left\{\begin{array}{c}
\frac {c^2}{l+x}+\frac {b^2}{l+y}=a\\\\
c\cdot AE+b\cdot AF=a\cdot AM\\\\
c^2\cdot MC^2+b^2\cdot MB^2=a^2\cdot AM^2\end{array}\right\|$ .

Proof 1 (metric). Apply the Stewart's relation to the cevian $AM\ :\ \boxed{al^2+axy=c^2y+b^2x}\ (*)$ . Thus, $\boxed{\frac {c^2}{l+x}+\frac {b^2}{l+y}=a}\ (1)$ $\iff$ $c^2(l+y)+b^2(l+x)=$

$a(l+x)(l+y)\iff$ $l\left(c^2+b^2\right)+c^2y+b^2x=$ $al^2+al(x+y)+axy$ $\iff$ $a^2l+c^2y+b^2x=al^2+a^2l+axy$ $\iff$ $c^2y+b^2x=al^2+axy$ , what is the relation

$(*)\iff$ $a^2l^2+xy\left(b^2+c^2\right)=$ $c^2ay+b^2ax\iff a^2l^2=$ $b^2x(a-y)+c^2y(a-x)\iff$ $\boxed{a^2l^2=b^2x^2+c^2y^2}$ . Observe that $\left\{\begin{array}{c}
AE=\frac {cl}{l+x}\\\\
AF=\frac {bl}{l+y}\end{array}\right\|\implies$

$c\cdot AE+b\cdot AF=\frac {c^2l}{l+x}+\frac {b^2l}{l+y}=$ $l\left(\frac {c^2}{l+x}+\frac {b^2}{l+y}\right)\stackrel{(1)}{=}la$ $\implies$ $\boxed{c\cdot AE+b\cdot AF=a\cdot AM}$ .

Proof 2. Denote $\left\{\begin{array}{ccc}
m\left(\widehat{EMA}\right) & = & m\left(\widehat{EMB}\right)=\alpha \\\\
m\left(\widehat{FMA}\right) & = & m\left(\widehat{FMC}\right)=\beta\end{array}\right\|$ and apply Sinus' theorem in $\left\{\begin{array}{cc}
\triangle AME\ : & \frac {AE}{AM}=\frac {\sin\alpha}{\sin (B+\alpha )}\\\\
\triangle AMF\ : & \frac {AF}{AM}=\frac {\sin\beta}{\sin (C+\beta)}\end{array}\right\|$ , where $\alpha +\beta =B+C=90^{\circ}$ .

Therefore, $c\cdot AE+b\cdot AF=a\cdot AM\iff$ $\frac ca\cdot\frac {AE}{AM}+\frac ba\cdot\frac {AF}{AM}=1\iff$ $\frac {\cos B\cdot \sin \alpha}{\sin(B+\alpha )}+$ $\frac {\cos C\cdot \sin \beta}{\sin(C+\beta)}=1\iff$ $\frac {\tan\alpha}{\tan B+\tan\alpha}+\frac {\tan \beta}{\tan C+\tan\beta}=1\iff$

$\frac {\tan\alpha}{\tan B+\tan\alpha}+\frac {\frac 1{\tan\alpha}}{\frac 1{\tan B}+\frac 1{\tan\alpha}}=1\iff$ $\frac {\tan\alpha}{\tan B+\tan\alpha}+\frac {\tan B}{\tan B+\tan\alpha}=1$ , what is truly.

Remark. I"ll apply to the degenerate quadrilateral $ABDC$ one well-known property: if $ABCD$ is a quadrilateral with $(A+C)\in \left\{90^{\circ},270^{\circ}\right\}$ , then there is the relation

$e^2f^2=a^2c^2+b^2d^2$ , where $\left\{\begin{array}{c}
AB=a\ ;\ BC=b\ ;\ CD=c\\\
DA=d\ ;\ AC=e\ ;\ BD=f\end{array}\right\|$ . Obtain that $l^2a^2=c^2y^2+b^2x^2$ . Otherwise. $c^2y^2+b^2x^2=$ $c^2y(a-x)+b^2x(a-y)=$

$a\left(c^2y+b^2x\right)-xy\left(b^2+c^2\right)=$ $a\left(c^2y+b^2x\right)-xya^2=$ $a\left(c^2y+b^2x-axy\right)\stackrel{(*)}{\implies}$ $c^2y^2+b^2x^2=a^2l^2$ .



PP11. In $ \triangle ABC$ denote the points of tangenty $ D\in (BC)$ , $ E\in (CA)$ , $ F\in (AB)$ of the incircle $ C(I)$ .

The bisector of $ \widehat{BIC}$ meet $ BC$ at $ M$ and denote $ P\in AM\cap EF$ . Prove that $ DP$ bisects $ \widehat {EDF}$ .


Proof. $ \frac {MB}{MC}=\frac {IB}{IC}\ \Longrightarrow\ \frac {PF}{PE}=$ $ \frac {MB}{MC}\cdot\frac {AC}{AB}\cdot\frac {AF}{AE}=\frac {MB}{MC}\cdot\frac bc=$ $ \frac {IB\cdot\sin B}{IC\cdot\sin C}=\frac {DF}{DE}\ \Longrightarrow\ \frac {PF}{PE}=$ $ \frac {DF}{DE}\ \Longrightarrow\ DP$ bisects $ \widehat {EDF}$ .

An easy extension. Let $ ABC$ be a triangle with incenter $ I$ . For an interior point $ X$ of the angle $ \widehat{BAC}$ denote its projections $ D\in (BC)$ , $ E\in (CA)$ ,

$ F\in (AB)$ to the sides of $ ABC$ . The bisector of $ \widehat {BXC}$ meet $ BC$ at $ M$ and denote $ P\in AM\cap EF$ . Prove that $ DP$ bisects $ \widehat {EDF}\ \Longleftrightarrow\ X\in AI$ .


Proof. $ \frac {MB}{MC}=\frac {XB}{XC}\ \Longrightarrow\ \frac {PF}{PE}=$ $ \frac {MB}{MC}\cdot\frac {AC}{AB}\cdot\frac {AF}{AE}=\frac {XB\cdot\sin B}{XC\cdot\sin C}\cdot\frac {AF}{AE}=$ $ \frac {DF}{DE}\cdot \frac {AF}{AE}\ \Longrightarrow\ \frac {PF}{PE}=\frac {DF}{DE}\cdot \frac {AF}{AE}\ (*)$ . Therefore, $ DP$ bisects $ \widehat {EDF}\ \Longleftrightarrow\ \frac {PF}{PE}=\frac {DF}{DE}$

$\stackrel{(*)}{\Longleftrightarrow}$ $AE=AF\ \Longleftrightarrow\ X\in AI$ . In conclusion, $ DP$ bisects $ \widehat {EDF}\ \Longleftrightarrow\ X\in AI$ . Remark that for $ X\in \left\{I,I_a\right\}$ obtain another interesting particular cases (Stergiu's problems) .



PP12. Let a $B$-rightangled $\triangle ABC$ with $AB=3$ and $BC=4$ . For a mobile point $M\in [AC]$ define the point $P\in [BC]$ so that $m\left(\widehat{BMP}\right)=120^{\circ}$ . Find the range of $BP$ .

Proof. Denote $BM=r$ and $m\left(\widehat {MBP}\right)=x$ . Prove easily that $\frac{r\cos x}{4}+\frac {r\sin x}{3}=1\iff$ $\boxed{r=\frac {12}{3\cos x+4\sin x}}\ (*)$ . Apply the theorem of sines in $\triangle BMP\ :$

$\frac {BP}{\sin 120^{\circ}}=$ $\frac {BM}{\sin \left(120^{\circ}+x\right)}\iff$ $BP=\frac {r\sqrt 3}{2\cos \left(30^{\circ}+x\right)}\stackrel{(*)}{\iff}$ $\boxed{BP=\frac {6\sqrt 3}{\cos\left(30^{\circ}+x\right)(3\cos x+4\sin x)}}\ (1)$ . Thus, $\cos\left(30^{\circ}+x\right)(3\cos x+4\sin x)=$

$\frac 32\left[\cos \left(2x+30^{\circ}\right)+\cos 30^{\circ}\right]+$ $2\left[\sin\left (2x+30^{\circ} \right)-\sin 30^{\circ}\right]=$ $\left(\frac {3\sqrt 3}{4}-1\right)+\frac 12\left[3\cos \left(2x+30^{\circ}\right)+4\sin \left(2x+30^{\circ}\right)\right]\le$ $\left(\frac {3\sqrt 3}{4}-1\right)+\frac 52\implies$

$\boxed{\cos\left(30^{\circ}+x\right)(3\cos x+4\sin x)\le \frac {3\sqrt 3+6}{4}}$ . Therefore, $BP\stackrel{(1)}{\ge} \frac {6\sqrt 3}{\frac {3\sqrt 3+6}{4}}=$ $8\left(2\sqrt 3-3\right)\implies$ $8\left(2\sqrt 3-3\right)\le BP$ with equality iff $\tan\left(2x+30^{\circ}\right)=\frac 43\iff$

$x_m=\frac 12\left(\arctan\frac 43-30^{\circ}\right)$ . In conclusion, $\boxed{8\left(2\sqrt 3-3\right)\le BP\le 4}$ .

Remark. I used only inequality $|a\sin x+b\cos x|\le\sqrt {a^2+b^2}$ with equality iff $\tan x=\frac ba$ . A shorter way to obtain relation $(1)$ is application of known relation for $\triangle PMC\ :$

$\frac {BP}{BC}=\frac {MP}{MC}\cdot\frac {\sin\widehat {BMP}}{\sin\widehat{BMC}}\iff$ $\frac {BP}{4}=\frac {\sin \widehat{MCP}}{\sin\widehat{MPC}}\cdot \frac {\sin 120^{\circ}}{\sin (C+x)}\iff$ $BP=4\cdot \frac {\frac 35}{\sin\left(120^{\circ}+x\right)}\cdot \frac {\sin 120^{\circ}}{\frac 35\cos x+\frac 45\sin x}\iff$ $BP=\frac {6\sqrt 3}{\cos\left(30^{\circ}+x\right)(3\cos x+4\sin x)}$ .


Extension. Let a $B$-right $\triangle ABC$ with $AB=a$ and $BC=b$ . For a mobile $M\in [AC]$ let $P\in [BC]$ so that $m\left(\widehat{BMP}\right)=\phi$ , so that $\boxed{\frac {\pi}{2}\le \phi\le \pi-A}\ (*)$ . Find the range of $BP$

Proof. Let $m\left(\widehat{MBC}\right)=x$ and $AC=c\sqrt{a^2+b^2}$ . Apply an well-known relation for $\triangle PMC\ :\ \frac {BP}{BC}=$ $\frac {MP}{MC}\cdot\frac {\sin\widehat {BMP}}{\sin\widehat{BMC}}\iff$ $\frac {BP}{b}=\frac {\sin \widehat{MCP}}{\sin\widehat{MPC}}\cdot \frac {\sin \phi}{\sin (C+x)}\iff$

$BP=b\cdot \frac {\frac ac}{\sin\left(\phi +x\right)}\cdot \frac {\sin \phi}{\frac ac\cos x+\frac bc\sin x}=$ $\frac {ab\sin\phi}{(a\cos x+b\sin x)\sin (\phi +x)}=$ $\frac {2ab\sin\phi}{b\left[\cos\phi -\cos (2x+\phi )\right]+a\left[\sin (2x+\phi )+\sin\phi\right]}\implies$

$\boxed{BP=\frac {2ab\sin\phi}{(b\cos\phi +a\sin\phi )+\left[a\sin (2x+\phi )-b\cos (2x+\phi )\right]}}$ . Thus, $\boxed{\frac {2ab\sin\phi}{(b\cos\phi +a\sin\phi )+c}\le BP\le b}$ because $\left|a\sin (2x+\phi )-b\cos (2x+\phi )\right|\le\sqrt {a^2+b^2}=c$ .

An interesting case. If $\phi =\frac {\pi}{2}$ , then $BP\ge \frac {2ab}{a+c}$ . If and $a+c=2b$ , then $BP\ge a$ .

Remark. $a\sin\phi +b\cos \phi\ge 0\iff$ $a\tan\phi +b\le 0\iff$ $\tan\phi\le -\frac ba\iff$ $\tan (\pi -\phi )\ge \frac ba=\tan A\iff$ $\pi -\phi\ge A\iff$ $\phi\le\pi -A$.


PP13. Let a square $ABCD$ and $d$ so that $C\in d$ and which doesn't separate $B$ , $D$ . Define $\left\{\begin{array}{c}
M\in AB\cap d\\\\
N\in AD\cap d\end{array}\right|$ and $\left\{\begin{array}{c}
E\in BC\cap DM\\\\
F\in CD\cap BN\\\\
H\in DM\cap BN\end{array}\right|$ . Prove that $AH\perp EF$ .

Proof 1 (metric).

$\blacktriangleright\ \frac {BE}{BA}=\frac {BE}{AD}=$ $\frac {MB}{MA}=\frac {BC}{AN}=\frac {AB}{AN} $ $\implies$ $ \frac {BE}{BA}=\frac {AB}{AN}$ $\implies$ $\triangle ABE\sim\triangle NAB$ $\implies$ $\widehat{BAE}\equiv\widehat{ANB}$ $\implies$ $AE\perp NB$ $\implies$ $\boxed{AE\perp BF}\ (1)$ .

$\blacktriangleright\ \frac {DF}{DA}=\frac {DF}{AB}=$ $\frac {ND}{NA}=\frac {DC}{AM}=\frac {AD}{AM} $ $\implies$ $ \frac {DF}{DA}=\frac {AD}{AM}$ $\implies$ $\triangle ADF\sim\triangle MAD$ $\implies$ $\widehat{DAF}\equiv\widehat{AMD}$ $\implies$ $AF\perp MD$ $\implies$ $\boxed{AF\perp DE}\ (2)$ .

Thus, the relations $(1)\ \wedge\ (2)$ mean that $H$ is the orthocenter of $\triangle AEF\implies$ $AH\perp EF$ .

Proof 2 (analytic). Let $A(0,0)$ , $B(0,1)$ , $C(1,1)$ and $D(1,0)$ and $M(0,m)$ , $N(n,0)$ so that $C\in MN$ , i.e. $\left|\begin{array}{ccccc}
1 & 1 & 1\\\\
0 & m & 1\\\\
n & 0 & 1\end{array}\right|=0\iff$ $\boxed{m+n=mn}\ (*)$ .

Thus, $\left\{\begin{array}{cccccc}
DM\ : & \left|\begin{array}{ccc}
x & y & 1\\\\
0 & m & 1\\\\
1 & 0 & 1\end{array}\right|=0 & \implies & mx+y-m=0 & \stackrel{y_E=1}{\implies} & E\left(\frac {m-1}{m},1\right)\\\\
BN\ : & \left|\begin{array}{ccc}
x & y & 1\\\\
n & 0 & 1\\\\
0 & 1 & 1\end{array}\right|=0 & \implies & x+ny-n=0 & \stackrel{x_F=1}{\implies} & F\left(1,\frac {n-1}{n}\right)\end{array}\right\|$ . Thus, $H\in DM\cap BN\implies$ $\left\{\begin{array}{c}
mx+y=m\\\\
x+ny=n\end{array}\right|\implies$

$H\left(\frac {n(m-1)}{mn-1},\frac {m(n-1)}{mn-1}\right)\stackrel{(*)}{\implies}$ $H\left(\frac m{mn-1},\frac n{mn-1}\right)$ . Thus, $s_{AH}\cdot s_{EF}=\frac nm\cdot\frac {1-\frac {n-1}{n}}{\frac {m-1}{m}-1}=\frac {n-n+1}{m-1-m}=-1\implies$ $s_{AH}\cdot s_{EF}=-1\implies$ $AH\perp EF$ .



PP14. Let an $A$-isosceles $\triangle ABC$ with the incenter $I$ such that $IA=2\sqrt{3}$ and $IB=3$ . Find the length $c$ of $[AB]$ .

Proof 1. Let $m\left(\widehat{IBA}\right)=\frac B2=\phi$ , i.e. $m\left(\widehat{IAB}\right)=\frac A2=90^{\circ}-2\phi$ . Apply the theorem of Sines in $\triangle AIB\ :$ $\frac {IA}{\sin\widehat {IBA}}=\frac {IB}{\sin\widehat{IAB}}=$ $\frac {AB}{\sin\widehat{AIB}}\iff$ $\frac {2\sqrt 3}{\sin\phi}=\frac {3}{\cos 2\phi}=$

$\frac {c}{\cos\phi}=\sqrt {c^2+12}$ . Since $\boxed{\tan \phi =\frac {2\sqrt 3}{c}}$ obtain that $\boxed{\cos 2\phi =\frac {3}{\sqrt {c^2+12}}}=$ $\frac {1-\tan^2\phi}{1+\tan^2\phi}=$ $\frac {c^2-12}{c^2+12}\implies$ $\boxed{c^2-12=3\sqrt{c^2+12}}\ (*)$ . Let $c^2+12=y^2$ , where $y>0$ , i.e.

$c^2=y^2-12\implies$ $y^2-24=3y\implies$ $y^2-3y-24=0\implies$ $y=\frac {3+\sqrt{105}}{2}\implies$ $c^2=y^2-12=3y+24-12=$ $3(y+4)=$ $\frac 32\cdot\left(11+\sqrt {105}\right)\implies$

$c^2=\frac 32\cdot\left(11+\sqrt {105}\right)$ $\stackrel{\left(11^2-105=4^2\right)}{\implies}$ $c=\sqrt {\frac 32}\cdot\left(\sqrt{\frac {11+4}{2}}+\sqrt{\frac {11-4}{2}}\right)\implies$ $c=\frac {\sqrt 3\left(\sqrt 7+\sqrt {15}\right)}{2}\implies$ $\boxed{b=c=\frac {3\sqrt 5+\sqrt {21}}{2}}$ .

Prove easily $\tan\phi =\frac {\sqrt {15}-\sqrt 7}{2}$ and $\boxed{\tan B=\frac {3\sqrt 7+\sqrt {15}}{6}}$ .

Proof 2 (metric). $\left\{\begin{array}{ccc}
IA^2=\frac {bc(s-a)}{s} & \implies & \frac {b^2(2b-a)}{2b+a}=12\\\\
IB^2=\frac {ca(s-b)}{s} & \implies & \frac {a^2b}{2b+a}=9\end{array}\right|\implies$ $\frac {b(2b-a)}{a^2}=\frac 43\implies$ $4a^2+3ab-6b^2=0\implies$ $\left\{\begin{array}{c}
\frac ab=\frac {-3+\sqrt{105}}{8}\\\\
b^2=12\cdot\frac {2b+a}{2b-a}\end{array}\right|$ . Thus,

$\frac {a}{ -3+\sqrt{105} }=\frac b8=$ $\frac {2b+a}{13+\sqrt{105} }=$ $\frac {2b-a}{19-\sqrt{105} }\implies$ $\frac {2b+a}{2b-a}=\frac {13+\sqrt{105}}{19-\sqrt{105}}\implies$ $b^2=12\cdot\frac {13+\sqrt{105}}{19-\sqrt{105}}=$ $12\cdot\frac {\left(13+\sqrt{105}\right)\left(19+\sqrt{105}\right)}{256}\implies$

$b^2=\frac 32\cdot\left(11+\sqrt{105}\right)\implies$ $b=\sqrt{\frac 32}\cdot\left(\sqrt{\frac {11+4}{2}}+\sqrt{\frac {11-4}{2}}\right)=$ $\frac {\sqrt 3\left(\sqrt{15}+\sqrt 7\right)}{2}\implies$ $\boxed{b=c=\frac {3\sqrt 5+\sqrt {21}}{2}}$ .



PP15. In $\triangle ABC$ the ray $[AD$ is the bisector of the angle $\widehat{BAC}$ , where $D\in BC$ . For $M\in (AD)$ denote

$E\in BM\cap AC$ and $F\in CM\cap AB$ . Prove that $ \frac{1}{AB^{2}}+\frac{1}{AE^{2}}=\frac{1}{AC^{2}}+\frac{1}{AF^{2}} \iff AB=AC$ .


Proof. Let $\left\{\begin{array}{c}
\frac {EC}{m}=\frac {EA}1=\frac b{m+1}\\\\
\frac {FB}{n}=\frac {FA}1=\frac c{n+1}\end{array}\right\|$ . Apply Ceva's theorem to $M$ and $\triangle ABC\ :\ \frac {DB}{DC}\cdot \frac {EC}{EA}\cdot\frac {FA}{FB}=1\iff$ $\frac cb\cdot m\cdot \frac 1n=1\iff$ $\boxed{cm=bn}\ (*)$ .

Thus, $ \frac{1}{AB^{2}}+\frac{1}{AE^{2}}=\frac{1}{AC^{2}}+\frac{1}{AF^{2}} \iff$ $\frac 1{AE^2}-\frac 1{AF^2}=\frac 1{b^2}-\frac 1{c^2}\iff$ $\frac {(m+1)^2}{b^2}-\frac {(n+1)^2}{c^2}=\frac 1{b^2}-\frac 1{c^2}\iff$

$\frac {m^2+2m}{b^2}=\frac {n^2+2n}{c^2}\iff$ $(mc)^2+2(mc)c=(bn)^2+2(nb)b\stackrel{(*)}{\iff}$ $b=c$ .



PP16. Let $ABCD$ be a rectangle with $\left\{\begin{array}{c}
AD=BC=a\\\\
AB=DC=b\end{array}\right\|$ . For a point $M\in (CD)$ denote $\left\{\begin{array}{c}
x=m\left(\widehat{DAM}\right)\\\\
N\in BC\cap AM\end{array}\right\|$ ,

the incircle $w=C(I,r)$ of $\triangle ABN$ and the $A$-excircle $w'=C(I',s)$ of $\triangle ADM$ . Prove that $s=r\implies\boxed{\sin x=\frac b{a+b}}$ .


Proof. $\left\{\begin{array}{cc}
X\in AN\cap w\ ; & Y\in AN\cap w'\\\\
U\in AB\cap w\ ; & V\in AD\cap w'\end{array}\right\|\implies$ $\left\{\begin{array}{c}
AX=AU=b-r\\\\
AY=AV=a+r\end{array}\right\|\implies$ $XY=AY-AX\implies$ $\boxed{XY=a-b+2r}$ .

On other hands $\left\{\begin{array}{c}
I'I^2=a^2+(b-2r)^2\\\\
I'I^2=(a-b+2r)^2+(2r)^2\end{array}\right\|\implies$ $4r^2-2a(b-2r)=0\implies$ $2r^2+2ar-ab =0\iff$ $r=\frac {-a+\sqrt{a^2+2ab}}{2}\iff$

$\tan\frac x2=\frac r{a+r}\iff$ $\tan\frac x2=\frac {-a+\sqrt {a^2+2ab}}{a+\sqrt{a^2+2ab}}\iff$ $\frac {1-\tan\frac x2}{1+\tan\frac x2}=\sqrt{\frac a{a+2b}}\iff$ $\tan\left(\frac {\pi}{4}-\frac x2\right)=\sqrt{\frac a{a+2b}}\implies$

$\sin x=\cos\left(\frac {\pi}{2}-x\right)=$ $\cos2\left(\frac {\pi}{4}-\frac x2\right)=$ $\frac {1-\tan^2\left(\frac {\pi}{4}-\frac x2\right)}{1+\tan^2\left(\frac {\pi}{4}-\frac x2\right)}\implies$ $\sin x=\frac {1-\frac a{a+2b}}{1+\frac a{a+2b}}=\frac {2b}{2a+2b}\implies$ $\sin x=\frac b{a+b}$ .



PP17 (IMO shortlist 1998). Let $I$ be the incenter of $\triangle ABC$ . Let $K\ ,\ L$ and $M$ be the points of tangency of the incircle of $ABC$ with $AB\ ,\ BC$ and

$CA$ respectively. The line $t$ passes through $B$ and is parallel to $KL$ . The lines $MK$ and $ML$ intersect $t$ at $R$ and $S$ respectively. Prove that $\angle RIS$ is acute.

Lemma. $\triangle ABC,\ D\in BC,\ AD\perp BC\ : \ A<90^{\circ}\Longleftrightarrow AD^2>DB\cdot DC\ .$


Proof. $h_a=AD=c\sin B=b\sin C,\ DB=c\left|\cos B\right|,\ DC=b\left|\cos C\right|\ .$ Therefore, $AD^2>DB\cdot DC\Longleftrightarrow$$bc\sin B\sin C>bc\left|\cos B\cos C\right|\Longleftrightarrow$

$\sin B\sin C>\left|\cos B\cos C\right|\iff$ $\left\{\begin{array}{ccccccc}
\cos B\cos C\le 0 & \iff &  B\ge 90^{\circ} & \vee & C\ge 90^{\circ} & \iff & A<90^{\circ}\\\\
\cos B\cos C>0 & \iff & \cos (B+C)<0 & \iff & \cos A>0 & \iff & A<90^{\circ}\end{array}\right\|$ $\iff A<90^{\circ}$ .

Proof of the proposed problem. $\left\{\begin{array}{c}
\ BR\cdot BS=(p-b)^2\\\\
BI^2=\frac{ac(p-b)}{p}\end{array}\right\|\implies$ $BI^2>BR\cdot BS\iff$ $\frac{ac(p-b)}{p}>(p-b)^2\iff$ $ac>p(p-b)\iff$

$4ac>(a+c)^2-b^2\iff b>\left|a-c\right|\ .$ If $X\in RS\cap AC$, then $(Y,R,B,S)$ is harmonic and $I$ belongs to the exterior of the circle with the diameter $RS\ ,$



PP18. Prove that in any triangle $ABC$ there are the identities $\left\{\begin{array}{ccccccc}
\sin 3A\cos (B-C) & + & \sin 3B\cos (C-A) & + & \sin 3C\cos (A-B) & = & 0\\\\
a^3\cos (B-C) & + & b^3\cos (C-A) & + & c^3\cos (A-B) & = & 3abc\end{array}\right\|$ .


Proof. $2\sin 3A\cos (B-C)=\sin (3A+B-C)+\sin (3A-B+C)=$ $\sin (2C-2A)-\sin (2A-2B)$ because $\left\{\begin{array}{c}
(3A+B-C)+(2C-2A)=A+B+C=\pi\\\\
(3A-B+C)+(2B-2A)=A+B+C=\pi\end{array}\right\|$ .

In conclusion, $2\sum_{\mathrm{cyc}}\sin 3A\cos (B-C)=$ $\sum_{\mathrm{cyc}}\sin (2C-2A)-\sum_{\mathrm{cyc}}\sin (2A-2B)=0\implies$ $\boxed{\sum_{\mathrm{cyc}}\sin 3A\cos (B-C)=0}\ (1)$ . Remark that $2\sum_{\mathrm{cyc}}\sin A\cos (B-C)=$

$\sum (\sin 2B+\sin 2C)=2\sum\sin 2A=8\sin A\sin B\sin C=$ $\frac {4S}{R^2}\implies$ $\boxed{\sum_{\mathrm{cyc}}\sin A\cos (B-C)=\frac {2S}{R^2}}\ (2)$ . I"ll use the identity $\boxed{4\sin^3x=3\sin x-\sin 3x}\ (3)$ .

Thus, $\sum_{\mathrm{cyc}}a^3\cos (B-C)=$ $2R^3\cdot\sum_{\mathrm{cyc}}4\sin^3A\cos (B-C)\ \stackrel{(3)}{=}\ 2R^3$ $\cdot\sum_{\mathrm{cyc}}(3\sin A-\sin 3A)\cos (B-C)=$

$2R^3\cdot\left[3\sum_{\mathrm{cyc}}\sin A\cos (B-C)-\sum_{3\mathrm{cyc}}\sin 3A\cos (B-C)\right]\ \stackrel{1\wedge 2}{=}$ $2R^3\cdot 3\cdot\frac {2S}{R^2}=3\cdot 4RS=3abc\implies$ $\sum_{\mathrm{cyc}}a^3\cos (B-C)=3abc$ .



PP19. Let $ABC$ be an $A$-right triangle with the incenter $I$ . Prove that $IB\cdot IC=IA\cdot BC$ .

Proof 1. Let $D\in (AC)$ so that $ID\perp IA$ . Thus, $ID=IA$ and prove easily that $\triangle BIC\sim\triangle IDC$ . In conclusion, $\frac {BI}{ID}=\frac {BC}{IC}\implies$ $IB\cdot IC=IA\cdot BC$ .

Proof 2. I"ll use a known relation $IA^2=\frac {bc(s-a)}{s}$ a.s.o $IB\cdot IC=IA\cdot BC\iff$ $\frac {ac(s-b)}{s}\cdot \frac {ab(s-c)}{s}=\frac {bc(s-a)}{s}\cdot a^2\iff$ $(s-b)(s-c)=s(s-a)\iff$ $A=90^{\circ}$ .

Proof 3. Is well-known $:\ A=90^{\circ}\iff$ $\left\{\begin{array}{ccc}
IA^2 & = & (a-b)(a-c)\\\\
IB^2 & = & a(a-b)\\\\
IC^2 & = & a(a-c)\end{array}\right\|$ . Thus, $IB\cdot IC=IA\cdot BC\iff$

$IB^2\cdot IC^2=IA^2\cdot BC^2\iff$ $a(a-b)\cdot a(a-c)=(a-b)(a-c)\cdot a^2$ , what is truly.

Proof 4. $IA=r\cdot\sqrt 2$ and $ar=2\cdot [BIC]=IB\cdot IC\cdot\sin\widehat{BIC}\implies$ $ar\sqrt 2=IB\cdot IC\implies$ $IA\cdot BC=IB\cdot IC$ .

Proof 5. Apply theorem of Sines in $:\ \odot\begin{array}{cccccc}
\nearrow & \triangle AIB\ : & \frac {IA}{IB}=\frac {\sin\widehat{IBA}}{\sin\widehat{IAB}} & \implies & \frac {IA}{IB}=\frac {\sin\frac B2}{\sin 45^{\circ}} & \searrow\\\\
\searrow & \triangle CIB\ : & \frac {IC}{BC}=\frac {\sin\widehat{IBC}}{\sin\widehat{BIC}} & \implies & \frac {IC}{BC}=\frac {\sin\frac B2}{\sin 135^{\circ}} & \nearrow\end{array}\odot\implies$ $\frac {IA}{IB}=\frac {IC}{BC}=\sqrt 2\cdot\sin\frac B2\implies$ $IA\cdot BC=IB\cdot IC$ .

Remark. Denote the tangent points $(D,E,F)$ of the incircle with $(\ BC\ ,\ CA\ ,\ AB\ )$ respectively. Thus, $AEIF$ is a square and $IA^2=2r^2=2(s-a)^2\implies$

$2\cdot IA^2=(b+c-a)^2=$ $(b+c)^2+a^2-2a(b+c)=$ $2a^2+2bc-2a(b+c)\implies$ $IA^2=a^2+bc-a(b+c)\implies$ $\boxed{IA^2=(a-b)(a-c)}$ . Apply an well-known property:

$\blacktriangleright\ IE\perp AC \iff IC^2-IA^2=EC^2-EA^2 \iff $ $IC^2=(a-b)(a-c)+(s-c)^2-(s-a)^2 \iff $ $IC^2=(a-b)(a-c)+b(a-c) \iff \boxed{IC^2=a(a-c)}$ .

$\blacktriangleright\ IF\perp AB \iff IB^2-IA^2=FB^2-FA^2 \iff$ $ IB^2=(a-b)(a-c)+(s-b)^2-(s-a)^2 \iff $ $IB^2=(a-b)(a-c)+c(a-b)\iff \boxed{IB^2=a(a-b)}$ .

Remark. $(\forall )\ \triangle ABC$ there is the chain $\boxed{IA^2-(a-b)(a-c)=IB^2-a(a-b)=IC^2-a(a-c)=4Rr\cos A}$ .



PP20. Let an isosceles $\triangle ABC$ with $AB=AC$ and the midpoint $M$ of $[BC]\ ,\ AM=11\ .$ Suppose that

there is $D\in (AM)$ with $AD=10$ and $m\left(\widehat{BDC}\right)=3m\left(\widehat{BAC}\right).$ Find the perimeter of $\triangle ABC\ .$


Proof (without trigonometry). Denote $\left\{\begin{array}{c}
AB=AC=b\\\\
DB=DC=m\\\\
MB=MC=n\end{array}\right\|$ and $BC=a=2n$ . Thus, $DM=1$ , $m\left(\widehat{MAB}\right)=m\left(\widehat{MAB}\right)=x\implies m\left(\widehat{ABD}\right)=2x$

and $\left\{\begin{array}{ccccc}
m\left(\widehat{ABD}\right)=2m\left(\widehat{BAD}\right) & \stackrel{(*)}{\implies} & AD^2=BD(BD+BA) & \implies & m(m+b)=100\\\\
BM\perp AD & \implies & BA^2-BD^2=MA^2-MD^2 & \implies & b^2-m^2=120\end{array}\right\|$ $\implies $ $\frac {b^2-m^2}{m(b+m)}=\frac {120}{100}$ $\implies$

$\frac {b-m}m=\frac 65\implies$ $\frac bm=\frac {11}5\implies$ $\frac m5=\frac b{11}=\frac {m+b}{16}=$ $\sqrt{\frac {m(m+b)}{5\cdot 16}}=$ $\frac {10}{4\sqrt 5}=\frac {5}{2\sqrt 5}\implies$ $\boxed{\frac m5=\frac b{11}=\frac {\sqrt 5}2}$ . Thus, $MB^2=BD^2-DM^2\implies$

$n^2=m^2-1=$ $\frac {125}4\implies$ $\boxed{n=\frac {11}2}\implies$ $\boxed{a=11}$ . So the perimeter of $\triangle ABC$ is $2s\equiv a+2b=11+11\sqrt 5$ , i.e. $\boxed{2s=11\left(1+\sqrt 5\right)}$ .


$(*)$ Remark. Prove easily that $(\forall )\triangle ABC$ is true the equiuvalence : $\boxed{B=2C\iff b^2=c(c+a)}$ . See PP2 from here
This post has been edited 132 times. Last edited by Virgil Nicula, Dec 1, 2015, 6:34 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a