261. IMO 2009, problem 2 and JBMO 2007, problems 1 & 2.

by Virgil Nicula, Apr 6, 2011, 11:53 AM

An easy extension. Let $ ABC$ be a triangle with the circumcircle $ C(O,R)$ . Condider the points $ P\in (AC)$ , $ Q\in (AB)$

and a point $ M\in (PQ)$ for which $ MQ = m\cdot MP$ , $ m\ne 0$ . Let $ K\in PB$ , $ MK\parallel AB$ and $ L\in QC$ , $ ML\parallel AC$ .

Suppose that the line $ PQ$ is tangent to the circumcircle of $ \triangle MKL$ . Prove that $ \boxed {\ OQ^2 - m\cdot OP^2 = R^2(1 - m)\ }$ .


Proof. Observe that $ \left\|\begin{array}{ccc} \frac {MK}{QB} = \frac {PM}{PQ} = \frac {1}{m + 1} & \implies & MK = \frac {1}{m + 1}\cdot QB \\
 \\
\frac {ML}{PC} = \frac {QM}{QP} = \frac {m}{m + 1} & \implies & ML = \frac {m}{m + 1}\cdot PC\end{array}\right\|$ and $ \left\|\begin{array}{c} \widehat {KLM}\equiv\widehat {QMK}\equiv\widehat {PQA} \\
 \\
\widehat {LKM}\equiv\widehat {PML}\equiv\widehat {QPA}\end{array}\right\|\ \implies$

$ \triangle KLM\ \sim\ \triangle PQA\ \implies\ \frac {MK}{AP} = \frac {ML}{AQ}\ \implies$ $ \frac {1}{m + 1}\cdot\frac {QB}{PA} = \frac {m}{m + 1}\cdot\frac {PC}{QA}$ $ \implies$

$ QB\cdot QA = m\cdot PA\cdot PC$ $ \implies$ $ OQ^2 - R^2 = m\left(OP^2 - R^2\right)$ $ \implies$ $ OQ^2 - m\cdot OP^2 = R^2(1 - m)$ .

Remark. For $m:=1$ obtain the second proposed problem from
IMO 2009.


JBMO 2007, PP2. Let $ABCD$ be a quadrilateral with $ \angle{DAC}= \angle{BDC}= 36^\circ$ , $ \angle{CBD}= 18^\circ$ and $ \angle{BAC}= 72^\circ$. Find $m\left(\widehat{APD}\right)$, where $ P\in AC\cap BD$ .

Proof. Construct the point $T$ in the outside such that $\measuredangle{TAD}=72^{\circ}$ and $\measuredangle{TDA}=\measuredangle{ABC}$ . This means that $T, A, B$ are collinear and

$\triangle{TAD}\sim\triangle{CAB}$ . It results that $\frac{TA}{AC}=\frac{DA}{AB}\Longrightarrow \frac{TA}{DA}=\frac{CA}{BA}$. And because $\measuredangle{TAC}=\measuredangle{DAB}$, from the last relation we obtain $\triangle{TAC}\sim\triangle{DAB}$ .

Continuing, let the lines $TC$ and $BD$ intersect in point $O$ . Since triangles $TAC$ and $DAB$ are similar, we obtain $\measuredangle{ABO}=\measuredangle{ACO}$ . Thus the quadrilateral $AOCB$

is cyclic. This means that $\measuredangle{OAC}=\measuredangle{OBC}=18^{\circ}\Longrightarrow \measuredangle{DAO}=18^{\circ}$ . Also, let $\measuredangle{ADB}=x\Longrightarrow \measuredangle{ABD}=72^{\circ}-x\Longrightarrow\measuredangle{OCA}=72^{\circ}-x$ . Also,

in cyclic quadrilateral $OABC$, we have $\measuredangle{OAB}=90^{\circ}\Longrightarrow \measuredangle{OCB}=90^{\circ}$ . But $\measuredangle{DCB}=126^{\circ}\Longrightarrow \measuredangle{OCD}=36^{\circ}$ . Now we have calculated all the angles

around $O$ and $\triangle DAC$, thus from the generalized Ceva trig, we obtain $\frac{\sin\widehat{DAO}}{\sin\widehat{OAC}}\cdot\frac{\sin\widehat{ACO}}{\sin\widehat{OCD}}\cdot\frac{\sin\widehat{ODC}}{\sin\widehat{ODA}}=1\Longrightarrow$

$ \frac{\sin18^{\circ}}{\sin18^{\circ}}\cdot\frac{\sin(72^{\circ}-x)}{\sin36^{\circ}}{\cdot\frac{\sin36^{\circ}}{\sin x}}=1$ $\Longrightarrow \sin (72^{\circ}-x)=\sin x\Longrightarrow x=72^{\circ}-x\Longrightarrow x=36^{\circ}$ $\implies$ $\measuredangle{ADP}=36^{\circ}\Longrightarrow \measuredangle{APD}=108^{\circ}$ .



Lemma (extension). Let $ ABCD$ be a convex quadrilateral. Prove that $ \left\{\begin{array}{c}m(\widehat{CBD})=x\ ,\ m(\widehat{BDC})=2x\\\\ m(\widehat{CAD})=y\ ,\ m(\widehat{CAB})=2y\\\\ P\in AC\cap BD\ ,\ m(\widehat{APD})=z\end{array}\right\|\ \implies$

$ \boxed{\cos (z+x-y)+\cos (z+y-x)+\cos (x+y-z)=0}\ \ (*)$ .


Proof of the lemma.

Remark. The relation $ (*)$ is symmetrically in the variables $ x$, $ y$. Thus, I can propose the following problem :
Quote:
Let $ ABCD$ be a quadrilateral with $ \angle{DAC}=18^{\circ}$, $ \angle{BDC}= 72^\circ$ and $ \angle{CBD}=\angle{BAC}= 36^\circ$. Find $m\left(\widehat{APD}\right)$ , where $ P\in AC\cap BD$ .
Proof of the proposed problem. For $ \left\{\begin{array}{c}x=18^{\circ}\\\ y=36^{\circ}\end{array}\right\|$ the relation from the above lemma becomes $ \cos (54-z)+\cos (z-18)+\cos (z+18)=0$ , i.e.

$ f(z)\equiv\sin (36+z)+$ $2\cos z\cdot\cos 18=0$ . Observe that $ z>90^{\circ}$ and on $ \left(\frac{\pi}{2},\pi \right)$ function $ f$ is strict decreasing and $ f\left(108^{\circ}\right)=0$ , i.e. $ m(\widehat{APD})=108^{\circ}$ .


JBMO 2007, PP1. Let $a$ be a positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+ax+a^{2}-6=0$ has no real solution.

Proof 1. For $a>0$ obtain that $a^3=6(a+1)$ $\implies$ $a\left(a-2\sqrt 2\right)\left(a+2\sqrt 2\right)=2(3-a)$ $\implies$ $\left(a-2\sqrt 2\right)(3-a)>0$ $\implies$ $a\in\left(2\sqrt 2,3\right)$ .

Observe that $\Delta\equiv a^2-4\left(a^2-6\right)=-3\left(a^2-8\right)<0$ . In conclusion, the mentioned equation $x^{2}+ax+a^{2}-6=0$ has no real solution.

Proof 2. Show easily that the function $ \left\{\begin{array}{c}f\ : \ (0,\infty )\rightarrow\mathcal R\\\ f(x)=x^{2}(x+1)\end{array}\right\|$ is strict increasing. Therefore, the equation $ f\left(\frac{1}{a}\right)=\frac{1}{6}$, i.e. the equation $ a^{3}=6(a+1)$ has at most one

positive root. Observe that for the function $ \left\{\begin{array}{c}g\ : \ (0,\infty )\rightarrow \mathcal R\\\ g(a)=a^{3}-6(a+1)\end{array}\right\|$ there is the relation $ g(2\sqrt 2)=2(2\sqrt 2-3)<0<3=g(3)$, i.e. $ g(2\sqrt 2)<0<g(3)$.

In conclusion, the our equation has a single positive root $a$ and $a\in (2\sqrt 2, 3)$. The equation $ x^{2}+ax+a^{2}-6=0$ has no real roots iff $ a^{2}> 8$, what is truly.

Remark. Observe and prove easily that the equation $a^3=6(a+1)$ has only one real root, $a=\sqrt [3]2+\sqrt [3]4$ .

Generally for any $p\in\mathbb N^*$ , $a>0$ , $a^3=p(p-1)(a+1)\ \implies\ \sqrt {p^2-1}<a<p$ , i.e. $1+\left[a^2\right]=p^2$ . Indeed, $a^3=p(p-1)(a+1)\ \iff$

$a\cdot \left[a^2-\left(p^2-1\right)\right]=$ $(p-1)(p-a)\ \implies\ \left(a-\sqrt {p^2-1}\right)(p-a)$ $>0\ \iff\ \sqrt{p^2-1}<a<p\ \iff\ 1+\left[a^2\right]=p^2$ .
This post has been edited 25 times. Last edited by Virgil Nicula, Nov 22, 2015, 8:58 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a