343. Problems with collinear points and concurrent lines.

by Virgil Nicula, Jun 18, 2012, 1:36 AM

PP1. Let rectangle $ABCD$ with circumcircle $w=C(O,R)$ . For $P\in w$ , $Q\in (CD)$ let $E=\mathrm{pr}_{PA}(Q)$ , $F=\mathrm{pr}_{PB}(Q)$ , $G\in QE\cap AD$ , $H\in QF\cap BC$ . Prove $P\in GH$ .

Proof 1. $PEQF$ is inscribed in circle $\gamma$ with diameter $[PQ]$ , $ADQE$ is inscribed circle $\alpha$ with diameter $[AQ]$ and $BCQF$ is inscribed in circle $\beta$ with diameter $[BQ]$ .

Let $\{X_1,P\}=GP\cap w$ , $\{X_2,P\}=HP\cap w$ . Thus, $\left\{\begin{array}{ccccc}
GX_1\cdot GP\stackrel{(w )}{=}GA\cdot GD\stackrel{(\alpha )}{=}GE\cdot GQ & \implies & X_1\in\odot (PEQ)\equiv\gamma & \implies & X_1\in \gamma\cap w\\\\
HX_2\cdot HP\stackrel{(w )}{=}HB\cdot HC\stackrel{(\beta )}{=}HF\cdot HQ & \implies & X_2\in\odot (PFQ)\equiv\gamma & \implies &  X_2\in \gamma\cap w\end{array}\right|$

$\implies$ $\left\{X_1,X_2\right\}\subset w\cap \gamma\implies X_1\equiv X_2=X\in PG\cap PH\implies  P\in GH$ .

Proof 2. Let $D'\in PD\cap BC$ and $C'\in  PC\cap AD$ . Note $ QF\parallel PD $ , $ QE\parallel PC $ . Thus, $ \frac {D'H}{HC}=\frac {DQ}{QC}=\frac {DG}{GC'} $ . In conclusion, $P\in GH$ .



PP2. Let $\triangle ABC$ for which there is interior $P$ such that $(\forall )$ line which pass through $P$ and intersects

$AB$ , $AC$ at $E$ , $F$ respectively have $\frac{1}{AE} + \frac{1}{AF} = \frac{a+b+c}{bc}$ . Prove that $P$ is incenter $I$ of $\triangle ABC$ .


Proof. $\left\{\begin{array}{ccccccc}
E:=B & \implies & AE=c\ ;\ \frac 1c+\frac {1}{AF}=\frac {2s}{bc} & \implies & AF=\frac {bc}{c+a} & \implies & P\in BI\\\\
F:=C & \implies & AF=b\ ;\ \frac 1{AE}+\frac 1b=\frac {2s}{bc} & \implies & AE=\frac {bc}{b+a} & \implies & P\in CI\end{array}\right|$ $\implies P\equiv I$ . Prove easily ($*$) that for any $E\in (AB)$

and $F\in (AC)$ so that $I\in EF$ exists the relation $b\cdot \frac {EB}{EA}+c\cdot \frac {FC}{FA}=a\iff$ $ b\cdot \left(\frac {EB}{EA}+1\right)+c\cdot \left(\frac {FC}{FA}+1\right)=2s\iff $ $ \frac{1}{AE} + \frac{1}{AF} = \frac{2s}{bc}$ . Denote $D\in BC\cap AI$ ,

$X\in BC\cap EF$ and $Y\in EF$ so that $AY\parallel BC$ . Suppose w.l.o.g. that $B\in (XC)$ . Thus, $b\cdot \frac {EB}{EA}+c\cdot \frac {FC}{FA}=$ $b\cdot \frac {XB}{AY}+c\cdot\frac {XC}{AY}=$ $\frac {b\cdot XB+c\cdot XC}{AY}=$

$\frac {b\cdot (XD-BD)+c\cdot (XD+DC)}{AY}=$ $\frac {(b+c)\cdot XD-b\cdot\frac {ac}{b+c}+c\cdot \frac {ab}{b+c}}{AY}=$ $(b+c)\cdot\frac {XD}{AY}=$ $(b+c)\cdot\frac {ID}{IA}=$ $(b+c)\cdot\frac {a}{b+c}=a\implies$ $\boxed{\ b\cdot \frac {EB}{EA}+c\cdot \frac {FC}{FA}=a\ }$ .



PP3. In a parallelogram $ABCD$ denote $E\in AB$ , $F\in AD$ so that $CE\perp AB$ , $CF\perp AD$ and $G\in EF\cap BD$ . Prove that $CA\perp CG$ .

Proof 1.Observe that the convex quadrilateral $AECF$ is inscribed in the circle $w$ with the diameter $[AC]$ . Denote $\left\{\begin{array}{c}
AB=CD=a\\\\
AD=BC=b\end{array}\right\|$ and prove easily that

$\triangle CDF\sim\triangle CBE\iff \boxed{\frac ab=\frac {CD}{CB}=\frac {DF}{BE}=\frac {FC}{EC}}\ (*)$ . Define $G'\in EF\cap CC$ , where $CC$ is the tangent line to the circle $w$ in the point $C\in w$ ,

i.e. $CG'\perp CA$ . From an well-known property $\frac {G'F}{G'E}=\left(\frac {CF}{CE}\right)^2\stackrel{(*)}{\iff}$ $\boxed{\frac {G'F}{G'E}=\left(\frac ab\right)^2}\ (1)$ . Apply the Menelaus' theorem to the transversal $\overline {GBD}$ and $\triangle AEF\ :$

$\frac {GE}{GF}\cdot\frac {DF}{DA}\cdot\frac {BA}{BE}=1\iff$ $\frac {GF}{GE}=\frac {DF}{DA}\cdot\frac {BA}{BE}=\frac {DF}{BE}\cdot\frac {BA}{DA}\stackrel{(*)}{\iff}$ $\boxed{\frac {GF}{GE}=\left(\frac ab\right)^2}\ (2)$ . From the relations $(1)$ and $(2)$ obtain that

$\frac {G'F}{G'E}=\frac {GF}{GE}=\left(\frac ab\right)^2$ what means $G'\equiv G$ . In conclusion, $G\in BD\cap EF\cap CC$ , i.e. $CA\perp CG$ .

Remark. Apply the generalized Phytagoras' theorem to the sides $[BC]$ and $[CD]$ which belong to the triangles $ABC$ and $ACD$

respectively: $\left\{\begin{array}{c}
BC^2=AB^2+AC^2-2\cdot AB\cdot AE\\\\
CD^2=AD^2+AC^2-2\cdot AD\cdot AF\end{array}\right\|\bigoplus\implies$ $\boxed{\ AB\cdot AE+AD\cdot AF=AC^2\ }$ .

Proof 2. Denote $O\in AC\cap BD$ . Observe that $w=C(O)$ is the circumcircle with the diameter $[AC]$ of $\triangle AEF$ and $O$ is the midpoint of $[BD]$ , where $B\in AE$

and $D\in AF$ . From an well-known property $G\in BD\cap EF\cap CC$ , where $CC$ is the tangent line to the circle $w=C(O)$ in the point $C\in w$ , i.e. $CA\perp CG$ .


An equivalent enunciation. Let $ABC$ be a triangle with the circumcircle $w=C(O,R)$ . A line $d$ for which $O\in d$ cut the sidelines $BC$ , $CA$ , $AB$ in the

points $D$ , $E$ , $F$ respectively. Denote $\{A,S\}=\{A,O\}\cap w$ and the tangent $t_a$ to $w$ in the point $S\in w$ . Prove that $OE=OF\iff D\in t_a$ .


PP4. Let an acute $\triangle ABC$ with the circumcircle $w=C(O)$ and $\left\{\begin{array}{c}
E\in BO\cap AC\\\
F\in CO\cap AB\end{array}\right\|$ . Prove that $AE=AF\iff AB=AC$ .

Proof 1 (synthetic - Sorin Borodi). Denote the incenter $I$ of the triangle $ABC$ , $\{A,K\}=AI\cap w$ , the midpoints $M$ , $H$ and $S$ of $[BC]$ , $[OA]$ and $[EF]$ respectively.

$AE=AF\iff S\in AK\implies$ $\overline {HSM}$ is the Gauss' line of the complete quadrilateral $AFOE$ . Therefore, it is possibly iff $O\in AK$ , i.e. $ABC$ is $A$-isosceles.

Proof 2 (Tsikaloudakis). Suppose $OM<ON$ . Extend the ray $[OM$ at $OD=ON$ and let $E\in AD\cap BC$ . Denote $\left\{\begin{array}{c}
m\left(\widehat{NDE}\right)=w\\\\
m\left(\widehat{NIC}\right)=\phi\\\\
m\left(\widehat{NMC}\right)=\theta\end{array}\right\|$ . Then triangles

$AEB$ , $EDN$ and $CMN$ are isosceles and $\omega  = m\left(\widehat{INE}\right)=m\left(\widehat{IDE}\right) >\phi >\theta  =m\left(\widehat{CMN}\right)= m\left(\widehat{MNC}\right)$ , that is inappropriate.

Proof 3 (trigonometric). Denote $D\in AO\cap BC$ and $\{A,L\}=AO\cap w$ . Thus, $\frac {DB}{DC}=\frac {BA\cdot BL}{CA\cdot CL}=\frac {c\cdot 2R\cos C}{b\cdot 2R\cos B}\implies$ $\boxed{\frac {DB}{DC}=\frac {c\cdot\cos C}{b\cdot\cos B}}$ . Obtain analogously that

$\left\{\begin{array}{ccc}
\frac {EA}{EC}=\frac {c\cdot \cos C}{a\cdot\cos A} & \iff & \frac {EA}{c\cdot\cos C}=\frac {EC}{a\cdot\cos A}=\frac {b}{a\cdot \cos A+c\cdot\cos C}\\\\
\frac {FA}{FB}=\frac {b\cdot \cos B}{a\cdot\cos A} & \iff & \frac {FA}{b\cdot\cos B}=\frac {FB}{a\cdot\cos A}=\frac {c}{a\cdot \cos A+b\cdot\cos B}\end{array}\right\|$ . Therefore, $AE=AF\iff$ $\frac {\cos C}{a\cdot \cos A+c\cdot\cos C}=$ $\frac {\cos B}{a\cdot \cos A+b\cdot\cos B}\iff$

$\boxed{a\cdot\cos A(\cos B-\cos C)=(b-c)\cdot \cos B\cos C}\ (*)$ . Observe that $b\ge c\iff B\ge C\iff \cos B\le \cos C$ . In conclusion, if denote

$X=a\cdot\cos A(\cos B-\cos C)$ and $Y=(b-c)\cdot \cos B\cos C$ , then $X=Y$ and $XY\le 0$ , what means $X=Y=0$ , i.e. $b=c$ .



PP5. Let $\triangle ABC$ with the incenter $I$ and $P$ and $Q$ the intersections of the parallel to $BC$ that passes through $A$ with the

external bisectors of $\widehat{ABC}$ and $\widehat{ACB}$ respectively. Let $R$ such that $RP\perp BP$ and $RQ\perp CQ$ . Show that $RA  = IA$ .


Proof. $\left\{\begin{array}{c}
I_a\in PB\cap QC\\\\
D\in II_a\cap BC\end{array}\right\|$ . Prove easily $IB\parallel RP$ , $IC\parallel RQ$ and $\boxed{\triangle PRQ\sim \triangle BIC}\ (*)$ . Thus, $\{R,A,I,D,I_a\}$ are collinearly (using the Desarques' theorem).

Since $\frac {AP}{AQ}=\frac cb=\frac {DB}{DC}$ obtain $A\in PQ$ and $D\in BC$ are homologously in the similarity $(*)$ . Thus, $\frac {RA}{ID}=\frac {PQ}{BC}=$ $\frac {b+c}{a}=\frac {IA}{ID}$ (using the Van Aubel's relation) $\implies RA=IA$ .



Lemma (well-known "atomic bomb"). Let $ABCDEF$ be a cyclic hexagon. Then $AD\cap BE\cap CF\ne\emptyset\Longleftrightarrow AB\cdot CD\cdot EF=BC\cdot DE\cdot FA$ .

PP6. Let $\triangle ABC$ with incircle $w=C(I)$ which touches it in $D\in BC$ , $E\in CA$ and $F\in AB$ . Circle $w_1$ is tangent to $AB$ , $AC$ and is exterior tangent to $w$ in $K$ .

Circle $w_2$ is tangent to $BC$, $BA$ and is exterior tangent to $w$ in $M$ . Circle $w_3$ is tangent to $CA$ , $CB$ and is exterior tangent to $w$ in $N$ . Prove that $KD\cap ME\cap NF\ne\emptyset$ .


Proof. Apply above lemma to cyclic $KENDMF$, where $\left\{\begin{array}{c}
KE=KF\\\
MF=MD\\\
ND=NE\end{array}\right\|$ . Relation $KE\cdot ND\cdot MF=EN\cdot DM\cdot FK$ is true. Hence $KF\cap EN\cap MD\ne \emptyset$ .

Remark. Since $KE=KF$ the ray $[DK$ is the bisector of $\widehat {EDF}$ a.s.o. Is evidently that the upper intersection is circumcenter $I$ of $\triangle DEF$ !


PP7. Let $ABCD$ be a parallelogram and let $M\in (AB)\ ,\ N\in (AD)$ be two points. Denote $\left\{\begin{array}{ccc}
P\in CD & ; & MP\parallel AD\\\\
Q\in BC & ; & NQ\parallel AB\end{array}\right|$ and $\left\{\begin{array}{c}
R\in MP\cap NQ\\\\
S\in AP\cap CN\end{array}\right|$ . Prove that $B\in RS$ .

Proof 1. Denote $AD=a\ ,\ AB=b$ and $\left\{\begin{array}{c}
AN=x\in (0,a)\\\
AM=y\in (0,b)\end{array}\right|$ . Apply the Menelaus' theorem to the transversal $\overline {CSN}$ and $\triangle ADP\ :\ \frac {CP}{CD}$ $\cdot\frac {ND}{NA}\cdot \frac {SA}{SP}=1\iff$

$\frac {b-y}{1}\cdot\frac {a-x}{x}\cdot\frac {SA}{SP}=1\iff$ $\frac {SA}{SP}=\frac {x}{(b-y)(a-x)}\ (*)$ . Apply again the Menelaus' theorem (reciprocally) to the points $\{B,R,S\}$ and $\triangle AMP\ :$

$\frac {BM}{BA}\cdot \frac {SA}{SP}\cdot\frac {RP}{RM}=1\stackrel{(*)}{\iff}$ $\frac {b-y}{1}\cdot \frac {x}{(b-y)(a-x)}\cdot \frac {a-x}{x}=1$ , what is truly. In conclusion, the point $B$ belongs to the line $RS$ .

Proof 2. Denote $X\in AB\cap CN\ ,\ AD=a\ ,\ AB=b$ and $\left\{\begin{array}{c}
AN=x\in (0,a)\\\
AM=y\in (0,b)\end{array}\right|$ . Apply the Menelaus' theorem (reciprocally)

to the points $\{B,R,S\}$ and $\triangle AMP\ :\ \frac {BM}{BA}\cdot \frac {SA}{SP}\cdot\frac {RP}{RM}=$ $\frac {b-y}{b}\cdot \frac {AX}{CP}\cdot \frac {a-x}{x}=$ $\frac {(a-x)(b-y)}{bx}\cdot\frac {AX}{CD}\cdot\frac {CD}{CP}=$

$\frac {(a-x)(b-y)}{bx}\cdot \frac {NA}{ND}\cdot\frac {b}{b-y}=$ $\frac {(a-x)(b-y)}{bx}\cdot\frac {x}{a-x}\cdot\frac {b}{b-y}=1\implies$ $\frac {BM}{BA}\cdot \frac {SA}{SP}\cdot\frac {RP}{RM}=1\implies$ $B\in RS$ .



PP8. Let $ABC$ be an acute triangle. Also, let $K$ and $L$ to be the two intersections of the perpendicular from $B$ with respect to side $AC$

with the circle of diameter $AC$, with $K$ closer to $B$ than $L$. Analogously, $X$ and $Y$ are the two intersections of the perpendicular from $C$

with respect to side $AB$ with the circle of diamter $AB$, with $X$ closer to $C$ than $Y$. Prove that the intersection of $XL$ and $KY$ lies on $BC$.


Proof. Let $H$ be the orthocenter of $ABC$, and let $D,E,F$ be its projections onto $BC$ , $AC$ , $AB$ respectively. Note that the circle with diameter $[AB]$ goes

through $D$ , $E$ and the circle with diameter $[AC]$ goes through $D$ , $F$. Now by power of point $HY\cdot HX=HD\cdot HA=HK\cdot HL$ . So $KLXY$ is cyclic.

Since $AF$ , $AE$ are perpendicular bisectors of $XY$ , $KL$ and $A$ is the center of this circle. Clearly $BX^2 = BF \cdot BA = BK \cdot BL$ i.e. $BK$ is tangent to the

circumcircle of $KLXY$ . Similarly, since $BY = BX$ , $BY^2 = BK \cdot BL$ , i.e. $BY$ also tangent. Similarly $CL$ and $CK$ are tangent to the circumcircle of $KLXY$ .

So using Pascal's theorem on $XXLLKY$ gives the intersections of $B\in XX\cap LK$ , $C\in LL\cap XY$ and $S\in XL\cap KY$ are collinear, which is the same as

$S\in BC$ , which is equivalent to the problem statement.



PP9. Let $ABCD$ be an isosceles trapezoid with $AB\parallel CD$ and $I\in AC\cap BD$ and which is inscrisbed in the circle $w$ . Denote $T\in AA\cap DD$ . Prove that $IT\parallel AB$ .

Proof 1. Prove easily that $\triangle ATD\sim\triangle CID$ . Thus, $\widehat{CID}\equiv\widehat{ATD}\iff$ $AIDT$ is cyclically and $TI$ is bisector of $\widehat{AID}$ , i.e. $TI\parallel AB$ .

Proof 2. Denote: $I\in AC\cap BD$ , $T\in AA\cap DD$ and $E\in AD\ ,\ F\in BC$ so that $I\in EF$ and $EF\parallel AB$ ; the circumcircles $w$ , $w_a$ , $w_d$

of the triangles $ABD$ , $AEI$ , $DEI$ respectively. The radical axis of $w$ , $w_a$ is $AT$ ; the radical axis of $w$ , $w_d$ is $DT$ ; the radical axis of $w_a$ ,

$w_d$ is $EF$ . In conclusion, the lines $AT$ , $DT$ and $EF$ are concurrently $\implies T\in EF$ , i.e. the point $T$ is the radical center of $w$ , $w_a$ , $w_d$ .



PP10. Let $\triangle ABC$ and $P\in (BC)\ ,\ R\in (AB)$ so that $Q\in PR\cap AC$ and $C\in (AQ)$ . For a $\triangle XYZ$ let its area is $S(XYZ)$ ,

length $r$ of its circumradius and ratio $f(XYZ)=\frac {S(XYZ)}{R^2}$ . Prove that $f(ABC)+f(PQC)=f(AQR)+f(BPR)\ .$


Proof. I"ll use identities $\boxed{\ S=2R^2\sin A\sin B\sin C}$ , i.e. $f(ABC)=2\prod\sin A$ and $\boxed{\sum \sin 2A=4\prod\sin A}\ (*)$ . Suppose w.l.o.g. that $C\in (AQ)$ . Denote

$\left\{\begin{array}{ccc}
m\left(\widehat{AQR}\right)=y & ; & m\left(\widehat{ARQ}\right)=z\\\\
m\left(\widehat{BPR}\right)=x & ; & m\left(\widehat{BRP}\right)=\pi -z\\\\
m\left(\widehat{CPQ}\right)=x & ; & m\left(\widehat{CQP}\right)=y\end{array}\right\|$ where $\left\{\begin{array}{c}
y=C-x\\\\
z=B+x\end{array}\right\|\ .$ Thus, $f(ABC)+f(PQC)=$ $f(AQR)+f(BPR)\iff$ $\sin A\sin B\sin C+\sin C\sin x\sin y=$

$\sin A\sin y\sin z+\sin B\sin x\sin z\iff$ $\sin A\sin B\sin C+\sin C\sin x\sin (C-x)=$ $\sin A\sin (C-x)\sin (B+x)+\sin B\sin x\sin (B+x)\iff$

$2\prod \sin A+\sin C[\cos (C-2x)-\cos C]=$ $\sin A[\cos (B-C+2x)+\cos A]+\sin B[\cos B-\cos (B+2x)]\iff$ $\underline{4\prod \sin A}+2\sin C\cos (C-2x)-\underline{\sin 2 C}=$

$2\sin A\cos (B-C+2x)+\underline{\sin 2A}+$ $\underline{\sin 2B}-2\sin B\cos (B+2x)\ \stackrel{(*)}{\iff}$ $\sin C\cos (C-2x)=$ $\sin A\cos (B-C+2x)-\sin B\cos (B+2x)\iff$

$\sin (2C-2x)+\sin 2x+\sin (2B+2x)-\sin 2x=\sin (2C-2x)+\sin (2B+2x)$ , what is truly for $(\forall )\ x\in\mathbb R$ .
This post has been edited 95 times. Last edited by Virgil Nicula, Nov 18, 2015, 9:31 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a