446. Mathematics "instant" for the middle school.
by Virgil Nicula, Jun 22, 2016, 12:05 AM
P0. Prove that in any
there is the inequality
Proof 1. Let
be the incircle of
and
Thus,
with equality iff 
Otherwise. Let
-excircle
Thus,

Proof 2.

what is true. I'll have equality iff 
Proof 3.
what is true. I'll have equality iff 
Remark 1.

Remark 2. Prove easily the identities
Extension. Let
be a point for what denote
i.e.
Prove that there is the inequality 
Proof 1. Let
so that
and area
of
Thus,

In the particular case
obtain that 
Proof 2.
so that
Therefore,


what is true.
P1 (Cristian Tello). Let
with
and the circle
with the diameter
The bisector of
cut again
in
and
at
Let
and
Prove that
Proof 1. Let

In conclusion,
i.e. relation 
Proof 2.
i.e.
and
i.e. relation 
Proof 3. Let
and symmetric point
of
w.r.t.
i.e.
Prove easily that 
is cyclic
and
i.e.
In conclusion,
(David Rodriguez).
P2 (Miguel Ochoa Sanchez). Let the incircle
of the square
and a point
for which denote its projections
on
respectively where
Prove that
Proof. Let midpoints
of
respectively and the projections
of
on
respectively. Thus, 
Apply the theorem of cathetus in

Therefore, if denote
where
then obtain

P3 (Edson Curahua Ortega). In the first quadrant
of the circle
where
inscribe circles
and 
so that
and
are exterior tangent one to other and both are interior tangent to
and
Prove that
Proof. Let
be the projection of
on
Observe that

Thus,


P4. Prove that
there is the chain of the equivalencies
where
is the length of the interior
-bisector.
Proof 1. Let
- the interior
-bisector of
where
Prove easily that
Thus, 

Proof 2. Denote
so that
and
Thus,
and

Proof 3. Theorem of SINES

Remark.
where
is the midpoint of
and
is the projection of
on
Indeed, I"ll use only two relations 
and
Therefore,

P5. Let
with
and
so that
and
Prove that
Proof. Prove easily that
and
In conclusion,

Thus, 
Thus, 
P6. Let
with the excircles
Denote
. Prove that
Proof. Let
Is well known that
Thus, 

P7 (Miguel Ochoa Sanchez). Let
and
so that
and
Prove that 
Proof 1. Let
so that
and suppose w.l.o.g.
i.e.
Observe that
and
Therefore,
and
Observe that
and

Therefore,



where

Otherwise.

where 

P8 (Miguel Ochoa Sanchez). Let
-rightangled
and
so that
The bisectors of the
angles
meet
at the points
respectively. Prove that ![$[ABD]+[ACE]\ge [ADE]\sqrt 2\ .$](//latex.artofproblemsolving.com/f/3/0/f30e4e1f32d20c887d809eccaae1a6ca4b2e02cc.png)
Proof 1. Let
Thus, 
and
and ![$\left\{\begin{array}{c}
\frac {[ABD]}{[ADE]}=\frac {DB}{DE}=\frac {a-b}{b+c-a}\\\\
\frac {[ACE]}{[ADE]}=\frac {CE}{DE}=\frac {a-c}{b+c-a}\end{array}\right\|\bigoplus\implies$](//latex.artofproblemsolving.com/c/0/d/c0dab76ed93bdaf8b0dbc3f1598af86e72b1dcd0.png)
(equality iff b=c).
Proof 2. Suppose w.l.o.g.
and I'll use same notations from upper proof. Denote 
where

Thus,

From the relation
obtain that
Thus, ![$\frac {[ABD]+[ACE]}{[ADE]}=$](//latex.artofproblemsolving.com/6/3/a/63a7cf6ef5deed975c3da404669dd2bddb9483f0.png)
So

what is truly. Have equality iff
i.e.
what means
Very nice problem!
Proof 3. Observe that
Denote
![$A_2=[ACE]$](//latex.artofproblemsolving.com/0/9/c/09ce5988ccd1e098c7fea5a5f9ea667ca4684575.png)
and
Thus,
where
From the simple inequality
obtain that
i.e.
Hence,

Very nice proof!
P9 (Kunihiko Chikaya). Ascertain the natural numbers
what are multiples of
where
are digits in the base
i.e. 
Proof. Define the equivalence
Thus,

Observe that
i.e. 
Therefore
In conclusion,
P10 (Luis A. S. Cruz, Peru). Let
with
and
Choose the points
so that
and
Prove that 
Proof 1. Let
be the midpoint of the side
Suppose w.l.o.g.
Hence
and there are
so that
and
Thus,


what is true. In conclusion 
Proof 2.
Application (Nelson C. D. Velasquez, Peru). Let the circle
with the diameter
and for a point
construct
the bisectors
of the angles 
respectively, where
the circle
what is interior tangent to
at
and to the lines
at
respectively
the circle
what is interior
tangent to
at
and to the lines
at
respectively. Prove that 
Proof. Let the midpoint
of the semicircle
so that
separates
Prove easily or is well-known that 
Observe that
Apply to
the previous problem P10.
P11 (Ceran Mathematic, Turkey). In the regular pentagon
denote
the areas
Prove that there is the relation 
Proof. Observe that
is an isosceles trapezoid
and ![$[ABC]=[CDE]=[PCD]=z\implies$](//latex.artofproblemsolving.com/c/b/0/cb068dedf9d358e27f41dc60f2443f1cc36c7d72.png)
From the relations
and
obtain that
P12 (Tezcan SAHIN, Turkey). Let
and
so that
Prove that 
Proof. Apply an well-known relation
Remark that the circumcenter
of
belongs to 
Particular case. If
then
Since
obtain that

P13 (Kunihiko Chikaya). Let
with
and
Find the area
where
-centroid,
-circumcenter
midpoint of
and
-incenter (standard notations).
Proof 1. Denote
where
From
obtain that 
Hence
![$\boxed{\ [IOG]=\frac 1{12}\ }\ .$](//latex.artofproblemsolving.com/4/f/a/4fac063fe6901e1e279a005c7a8f598b72da7fa4.png)
Proof 2. Observe that
and
Hence ![$[AIO]=\frac 12\cdot AI\cdot AO\cdot\sin\left(45^{\circ}-C\right)=$](//latex.artofproblemsolving.com/4/5/7/457c2aaf659594ea9f28b47b6912bfd01c0a2601.png)
![$[IOG]=\frac 1{12}\ .$](//latex.artofproblemsolving.com/9/3/b/93bf8df967b01df3d31c61733f4a681984513058.png)
Proof 3. Denote the projection
of
on
and
Prove easily that
and
Since
is the bisector of
obtain that 
and

![$[IOG]=\frac 1{12}\ .$](//latex.artofproblemsolving.com/9/3/b/93bf8df967b01df3d31c61733f4a681984513058.png)
P13 (An easy extension). Let
with the centroid
the circumcircle
and the incircle
Prove that the area ![$\boxed{\ [IOG]=\frac {|(a-b)(b-c)(c-a)|}{24r}\ }\ .$](//latex.artofproblemsolving.com/a/3/5/a3508497e708b01158cd19c91964de8c20ea4aec.png)
Proof.
P14 (Seventh class). https://scontent.fotp3-1.fna.fbcdn.net/v/t1.0-9/21616185_1538076272897682_2381212052937400875_n.jpg?oh=cec95381137b423dda44f11a6bdf2ffe&oe=5A5B06DA
Proof 1. The upper square
with
is placed to south-west. Consider a broken line
from
to
so that
where

Construct the rectangle
where
so that
and
so that
Observe that
and 
In the particular case
obtain
Very nice !
Remark. Construct only
so that
Thus
and
Hence
a.s.o.
P15 (Marian Dinca). Prove that
there is the following implication
(standard notations). Nice inequality!
Proof 1.
So

![$\left[2a-(b+c)\right]^2+6a(b+c)-(b+c)^2+2bc-5\left(b^2+c^2\right)\ge 0\iff$](//latex.artofproblemsolving.com/7/8/9/789d08e4e83aad0660bc718e4426711187605b3c.png)
what is true from the relation 
Proof 2.

what is true.


Proof 1. Let






Otherwise. Let









Proof 2.









Proof 3.





Remark 1.





Remark 2. Prove easily the identities

Extension. Let




Proof 1. Let














Proof 2.





















P1 (Cristian Tello). Let



![$[AB]\ .$](http://latex.artofproblemsolving.com/f/4/3/f43654eb147de5ab7da28700a60e256a697a2e10.png)









Proof 1. Let













Proof 2.







Proof 3. Let















P2 (Miguel Ochoa Sanchez). Let the incircle










Proof. Let midpoints

![$([AB],[BC],[CD],[DA])$](http://latex.artofproblemsolving.com/8/6/6/866a1d9bd29a04196d9f1cb516181e689cccfb67.png)







Therefore, if denote







P3 (Edson Curahua Ortega). In the first quadrant





so that





Proof. Let










![$(R-x)^2-(x+y)^2=x^2-[R-(x+y)]^2\iff$](http://latex.artofproblemsolving.com/8/c/d/8cddb58d03115e9448356200362ad4fee34da372.png)




P4. Prove that





Proof 1. Let











Proof 2. Denote








Proof 3. Theorem of SINES





Remark.


![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)








P5. Let


![$\{P,Q\}\subset [BC]$](http://latex.artofproblemsolving.com/0/8/0/08088e126321d7aecb4e917f1cc4078eb84ce2df.png)



Proof. Prove easily that













P6. Let




Proof. Let










P7 (Miguel Ochoa Sanchez). Let





Proof 1. Let











Therefore,














Otherwise.
















P8 (Miguel Ochoa Sanchez). Let




angles





![$[ABD]+[ACE]\ge [ADE]\sqrt 2\ .$](http://latex.artofproblemsolving.com/f/3/0/f30e4e1f32d20c887d809eccaae1a6ca4b2e02cc.png)
Proof 1. Let


and


![$\left\{\begin{array}{c}
\frac {[ABD]}{[ADE]}=\frac {DB}{DE}=\frac {a-b}{b+c-a}\\\\
\frac {[ACE]}{[ADE]}=\frac {CE}{DE}=\frac {a-c}{b+c-a}\end{array}\right\|\bigoplus\implies$](http://latex.artofproblemsolving.com/c/0/d/c0dab76ed93bdaf8b0dbc3f1598af86e72b1dcd0.png)
![$\frac {[ABD]+[ACE]}{[ADE]}=$](http://latex.artofproblemsolving.com/6/3/a/63a7cf6ef5deed975c3da404669dd2bddb9483f0.png)






![$[ABD]+[ACE]\ge [ADE]\sqrt 2$](http://latex.artofproblemsolving.com/b/d/7/bd75da70515a1393d75bd125c7d3f4902ba76403.png)
Proof 2. Suppose w.l.o.g.












![$\frac {[ABD]+[ACE]}{[ADE]}=\frac {BD+CE}{DE}=$](http://latex.artofproblemsolving.com/3/0/f/30f924351b0236e32b6a2bb35021e6beeeca7e1f.png)






![$\frac {[ABD]+[ACE]}{[ADE]}=$](http://latex.artofproblemsolving.com/6/3/a/63a7cf6ef5deed975c3da404669dd2bddb9483f0.png)


![$\frac {[ABD]+[ACE]}{[ADE]} \ge \sqrt 2\iff$](http://latex.artofproblemsolving.com/f/a/3/fa3a9470f739b09907c62f32f19ffa60228465c9.png)




![$\left[x\left(1+\sqrt 2\right)-1\right]^2\ge 0$](http://latex.artofproblemsolving.com/a/d/8/ad8d0b7a47ca6e3697617da4e5a1356c16614147.png)



Proof 3. Observe that






![$A_1=[ABD]\ ,$](http://latex.artofproblemsolving.com/8/1/b/81b5a31e3792b4d8bb597c48010738ce5c389e8e.png)
![$A_2=[ACE]$](http://latex.artofproblemsolving.com/0/9/c/09ce5988ccd1e098c7fea5a5f9ea667ca4684575.png)
and
![$A_3=[ADE]\ .$](http://latex.artofproblemsolving.com/0/4/1/041e6e4843afada06c39a52bb62f573f18297ba4.png)

















![$[ABD]+[ACE]\ge [ADE]\sqrt 2\ .$](http://latex.artofproblemsolving.com/f/3/0/f30e4e1f32d20c887d809eccaae1a6ca4b2e02cc.png)
P9 (Kunihiko Chikaya). Ascertain the natural numbers





Proof. Define the equivalence






![$17\ |\ (3a+2b-7)\subset [-7,38]\cap Z=\{0,17,34\}\ ,$](http://latex.artofproblemsolving.com/8/4/f/84f4687aceeeeb88083e01510229788463726ab3.png)

Therefore

In conclusion,

P10 (Luis A. S. Cruz, Peru). Let







Proof 1. Let

![$[BC]\ .$](http://latex.artofproblemsolving.com/5/f/a/5fad78e281930919485d791e012363fda8c76507.png)

















Proof 2.
Application (Nelson C. D. Velasquez, Peru). Let the circle

![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)




respectively, where








tangent to





Proof. Let the midpoint





Observe that


P11 (Ceran Mathematic, Turkey). In the regular pentagon


![$[PAB]=x\ ,$](http://latex.artofproblemsolving.com/7/d/c/7dc2abd39011fe6d40e34083022c6b625a4826ad.png)
![$[PBC]=y\ ,$](http://latex.artofproblemsolving.com/c/a/4/ca4622260bf242d7ef2cd2f09b3d31021d9ea62a.png)
![$[PCD]=z\ .$](http://latex.artofproblemsolving.com/f/1/b/f1b21261fbc9544bddd641e58db324183e3671c1.png)

Proof. Observe that


![$[PAE]=[PBC]=y\implies \boxed{xz=y^2}\ (1)$](http://latex.artofproblemsolving.com/1/f/7/1f7fcbd7e36ea63e3b34cf9fe94df55c41992407.png)
![$[ABC]=[CDE]=[PCD]=z\implies$](http://latex.artofproblemsolving.com/c/b/0/cb068dedf9d358e27f41dc60f2443f1cc36c7d72.png)






P12 (Tezcan SAHIN, Turkey). Let


![$\left\{\begin{array}{ccccc}
m\left(\widehat{DAB}\right) & = & 90^{\circ}-C & ; & S_b=[DAB]\\\
m\left(\widehat{DAC}\right) & = & 90^{\circ}-B & ; & S_c=[DAC]\end{array}\right\|\ .$](http://latex.artofproblemsolving.com/8/9/c/89cd9625e57237205221492763e735259db5a51b.png)

Proof. Apply an well-known relation
![$:\ \frac {S_b}{S_c}=\frac {[DAB]}{[DAC]}=\frac {DB}{DC}=\frac {AB}{AC}\cdot\frac {\sin\widehat{DAB}}{\sin\widehat{DAC}}=$](http://latex.artofproblemsolving.com/7/a/7/7a74d7e63f9373da8764885eb4f23540c70bdf6d.png)





Particular case. If








P13 (Kunihiko Chikaya). Let



![$[IOG]\ ,$](http://latex.artofproblemsolving.com/0/f/8/0f810022fd2eced5fa705e2a40a98f7d301762b4.png)



![$[BC])$](http://latex.artofproblemsolving.com/f/4/6/f4642e2c3353e3066262997e1460bc379b57195a.png)

Proof 1. Denote





Hence
![$:\ \left\{\begin{array}{ccccc}
\frac {[IOG]}{[IOA]} & = & \frac {OG}{OA} & = & \frac 13\\\
\frac {[OAI]}{[OAD]} & = & \frac {AI}{AD} & \stackrel{(2)}{=} & \frac 7{12}\\\
\frac {[ADO]}{[ABC]} & = & \frac {DO}{BC} & \stackrel{(1)}{=} & \frac 1{14}\end{array}\right\|$](http://latex.artofproblemsolving.com/1/c/6/1c6b61b3fe1d7d3d1e138345cb06a34952c3881f.png)

![$\frac {[IOG]}{\cancel{[IOA]}}\cdot\frac {\cancel{[OAI]}}{\cancel{[OAD]}}\cdot\frac {\cancel{[ADO]}}{[ABC]}=\frac 13\cdot\frac 7{12}\cdot \frac 1{14}=\frac 1{72}\implies$](http://latex.artofproblemsolving.com/0/8/7/087c29c28b1f934f341981e41e523ccd73db75c8.png)
![$\frac {[IOG]}{[ABC]}=\frac 1{72}\implies$](http://latex.artofproblemsolving.com/f/3/9/f39b859d54d901ed72d74ca37dc5927be0357e34.png)
![$[IOG]=\frac {[ABC]}{72}=\frac 6{72}=\frac 1{12}\implies$](http://latex.artofproblemsolving.com/4/c/a/4ca48b78e36f49bf5dee4ab48ea4b7d15607a43c.png)
![$\boxed{\ [IOG]=\frac 1{12}\ }\ .$](http://latex.artofproblemsolving.com/4/f/a/4fac063fe6901e1e279a005c7a8f598b72da7fa4.png)
Proof 2. Observe that
![$[IOG]=\frac 13\cdot [AIO]$](http://latex.artofproblemsolving.com/a/0/8/a081f9b3227dae13eaac215e0633ac8f674499a7.png)

![$[AIO]=\frac 12\cdot AI\cdot AO\cdot\sin\left(45^{\circ}-C\right)=$](http://latex.artofproblemsolving.com/4/5/7/457c2aaf659594ea9f28b47b6912bfd01c0a2601.png)

![$\frac 18\cdot (b+c-a)(b-c)=\frac{2\cdot 1}8=\frac 14\implies [AIO]=\frac 14$](http://latex.artofproblemsolving.com/f/4/5/f457b2372831386ef23ae1d6e30ad1493eacdb66.png)

![$[IOG]=\frac 13\cdot\frac 14\implies$](http://latex.artofproblemsolving.com/5/b/b/5bb3db998a20400210896a77732b0c6a120bcb55.png)
![$[IOG]=\frac 1{12}\ .$](http://latex.artofproblemsolving.com/9/3/b/93bf8df967b01df3d31c61733f4a681984513058.png)
Proof 3. Denote the projection









and
![$\frac {[AIO]}{[ARO]}=\frac {OI}{OR}=\frac {R}{R+r}\implies$](http://latex.artofproblemsolving.com/3/4/9/349ce8c38f16889aba5663090255c7185a041991.png)
![$[AIO]=\frac R{R+r}\cdot [ARO]=\frac R{R+r}\cdot \frac {AR\cdot PO}2=$](http://latex.artofproblemsolving.com/4/1/b/41b9e7ccb7db976f787ac3f0c7b2d01f1d193bba.png)




![$[AIO]=\frac 14\implies$](http://latex.artofproblemsolving.com/1/b/3/1b35b3626da6481af9276fc90fb9ea5b0074c995.png)
![$[IOG]=\frac 13\cdot\frac 14\implies$](http://latex.artofproblemsolving.com/5/b/b/5bb3db998a20400210896a77732b0c6a120bcb55.png)
![$[IOG]=\frac 1{12}\ .$](http://latex.artofproblemsolving.com/9/3/b/93bf8df967b01df3d31c61733f4a681984513058.png)
P13 (An easy extension). Let




![$\boxed{\ [IOG]=\frac {|(a-b)(b-c)(c-a)|}{24r}\ }\ .$](http://latex.artofproblemsolving.com/a/3/5/a3508497e708b01158cd19c91964de8c20ea4aec.png)
Proof.
P14 (Seventh class). https://scontent.fotp3-1.fna.fbcdn.net/v/t1.0-9/21616185_1538076272897682_2381212052937400875_n.jpg?oh=cec95381137b423dda44f11a6bdf2ffe&oe=5A5B06DA
Proof 1. The upper square









Construct the rectangle















Remark. Construct only






P15 (Marian Dinca). Prove that


Proof 1.




![$3\left[2\left(b^2+c^2\right)-a^2\right]\le (a+b+c)^2$](http://latex.artofproblemsolving.com/b/a/6/ba6a3a11bf40081955a583998fcaf364366f28ae.png)




![$\left[2a-(b+c)\right]^2+6a(b+c)-(b+c)^2+2bc-5\left(b^2+c^2\right)\ge 0\iff$](http://latex.artofproblemsolving.com/7/8/9/789d08e4e83aad0660bc718e4426711187605b3c.png)
![$\left[2a-(b+c)\right]^2+6a(b+c)-\left(b^2+c^2\right)-\cancel{2bc}+\cancel{2bc}-5\left(b^2+c^2\right)\ge 0\ \stackrel{(*)}{\iff}\ \left[(2a-(b+c)\right]^2+6\left[a(b+c)-\left(b^2+c^2\right)\right]\ge 0\ ,$](http://latex.artofproblemsolving.com/c/5/9/c5929a9f37f18e9a01f2138dbf7d4fc984a4804a.png)

Proof 2.

![$3\cdot \left[2\left(b^2+c^2\right)-a^2\right]\le (a+b+c)^2\stackrel{:(b+c)^2}{\implies}\ 3\le 3\cdot \frac {2\left(b^2+c^2\right)}{(b+c)^2}\le $](http://latex.artofproblemsolving.com/e/7/b/e7b594bc0af54b72a0aaedfc0c033198d6a0036a.png)





This post has been edited 404 times. Last edited by Virgil Nicula, Jan 13, 2019, 12:49 PM