446. Mathematics "instant" for the middle school.

by Virgil Nicula, Jun 22, 2016, 12:05 AM

P0. Prove that in any $\triangle ABC$ there is the inequality $\boxed{\sin\frac A2\le \frac a{b+c}\le\sqrt{1-\sin B\sin C}}\ (*)\ .$

Proof 1. Let $w=\mathbb C(I,r)$ be the incircle of $\triangle ABC$ and $D\in BC\cap AI\ .$ Thus, $\sin\frac A2=\frac r{IA}\le\frac {ID}{IA}=\frac {BD}{BA}=\frac {\frac {ac}{b+c}}c=\frac a{b+c}\implies$ $\sin\frac A2\le \frac a{b+c}$ with equality iff $AB=AC\ .$

Otherwise. Let $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)\ .$ Thus, $I_aA\ge h_a+r_a\implies$ $\sin\frac A2=$ $\frac {r_a}{I_aA}\le$ $\frac {r_a}{h_a+r_a}=$ $ \frac {ar_a}{ah_a+a r_a}=$ $\frac {ar_a}{2(s-a)r_a+ar_a}=\frac a{b+c}\implies$ $\sin\frac A2\le\frac a{b+c}\ .$

Proof 2. $\sin\frac A2\le \frac a{b+c}\iff$ $\sin^2\frac A2\le \left(\frac a{b+c}\right)^2\iff$ $\frac {(s-b)(s-c)}{bc}\le \frac {a^2}{(b+c)^2}\iff$ $\frac {bc-s(s-a)}{bc}\le \frac {a^2}{(b+c)^2}\iff$ $1-\frac {a^2}{(b+c)^2}\le\frac {s(s-a)}{bc}\iff$

$\frac {4s(s-a)}{(b+c)^2}\le\frac {s(s-a)}{bc}\iff$ $4bc\le (b+c)^2\iff$ $(b-c)^2\ge 0\ ,$ what is true. I'll have equality iff $B=C\ .$

Proof 3. $\sin\frac A2\le \frac a{b+c}\iff$ $\sin\frac A2\le\frac {\sin A}{\sin B+\sin C}\iff$ $\sin\frac A2\le\frac {2\sin \frac A2\cos\frac A2}{2\cos\frac A2\cos\frac {B-C}2}\iff$ $\cos\frac {B-C}2\le 1\ ,$ what is true. I'll have equality iff $B=C\ .$

Remark 1. $\frac a{b+c}\le\sqrt{1-\sin B\sin C}\iff$ $\sin B\sin C\le 1-\frac {a^2}{(b+c)^2}\iff$ $\frac {2S}{ac}\cdot\frac {2S}{ab}\le \frac {4s(s-a)}{(b+c)^2}\iff$ $\frac {(s-b)(s-c)}{bc}\le \left(\frac a{b+c}\right)^2\iff$ $\sin\frac A2\le\frac a{b+c}\ .$

Remark 2. Prove easily the identities $\boxed{\begin{array}{ccccccc}
1-\sin B\sin C & = & \sin^2\frac A2 & + & \left(\frac {b-c}a\right)^2\cdot \cos^2\frac A2 & \ge & \sin^2\frac A2\\\\
\left(\frac a{b+c}\right)^2 & = & \sin^2\frac A2 & + & \left(\frac {b-c}{b+c}\right)^2\cdot \cos^2\frac A2 & \ge &  \sin^2\frac A2\\\\
1-\sin B\sin C & = & \left(\frac a{b+c}\right)^2 & + & \frac {4s(s-a)(b-c)^2}{a^2(b+c)^2}\cdot\cos^2\frac A2 & \ge & \left(\frac a{b+c}\right)^2\end{array}}\ .$


Extension. Let $L\in (BC)$ be a point for what denote $\left\{\begin{array}{ccc}
m\left(\widehat{LAC}\right) & = & x\\\
m\left(\widehat{LAB}\right) & = & y\end{array}\right\|\ ,$ i.e. $x+y=A\ .$ Prove that there is the inequality $\boxed{b\sin x+c\sin y\le a}\ (*)\ .$

Proof 1. Let $AL=l\ ,$ $P\in BC$ so that $AP\perp BC$ and area $S$ of $\triangle ABC\ .$ Thus, $ah_a=2S=cl\sin y+bl\sin x=$ $l(c\sin y+b\sin x)$ $\implies$

$\frac a{b\sin x+c\sin y}=$ $\frac l{h_a}\ge 1$ $\implies$ $b\sin x+c\sin y\le a\ .$ In the particular case $x=y=\frac A2$ obtain that $\sin\frac A2\le\frac a{b+c}\ .$

Proof 2. $(\exists )\ |u|\le \frac A2$ so that $\left\{\begin{array}{ccc}
x & = & \frac A2-u\\\\
y & = & \frac A2+u\end{array}\right\|\ .$ Therefore, $b\sin x+c\sin y\le a$ $\iff$ $\sin B\sin\left(\frac A2-u\right)+$ $\sin C\sin\left(\frac A2+u\right)\le $ $\sin A$ $\iff$

$\sin B\cos\left(\frac {B+C}2+u\right)+$ $\sin C\cos\left(\frac {B+C}2-u\right)\le $ $\sin A$ $\iff$ $\sin\left(\frac{3B+C}2+u\right)+$ $\cancel{\sin\left(\frac {B-C}2-u\right)}+$ $\sin\left(\frac {3C+B}2-u\right)-$

$\cancel{\sin\left(\frac {B-C}2-u\right)}\le $ $2\sin A\iff$ $2\sin (B+C)\cos\left(\frac {B-C}2+u\right)\le 2$ $\sin A$ $\iff$ $\cos\left(\frac {B-C}2+u\right)\le 1\ ,$ what is true.


P1 (Cristian Tello). Let $\triangle ABC$ with $BA\perp BC$ and the circle $w$ with the diameter $[AB]\ .$ The bisector of $\widehat{BAC}$ cut again

$w$ in $E$ and $BC$ at $F\ .$ Let $AE=a\ ,$ $EF=b$ and $m\left(\widehat{ACB}\right)=\theta\ .$ Prove that $\boxed{\sin\theta =\frac {a-b}{a+b}}\ (*)\ .$


Proof 1. Let $m\left(\widehat{FAB}\right)=m\left(\widehat{FAC}\right)=\alpha\implies$ $\left\{\begin{array}{c}
AF\cos\widehat{FAB}=AB\implies AF\cos \alpha =AB\\\\
AB\cos \widehat{BAE}=AE\implies AB\cos\alpha =AE\end{array}\right\|$ $\bigodot\implies$ $\cos^2\alpha =\frac {AE}{AF}\iff$ $\cos^2\alpha =\frac a{a+b}\iff$ $2\cos^2\alpha =\frac {2a}{a+b}$

$\iff$ $1+\cos 2\alpha =\frac {2a}{a+b}\iff$ $\cos 2\alpha =\frac {2a}{a+b}-1\iff$ $\boxed{\cos 2\alpha =\frac {a-b}{a+b}}\ (1)\ .$ In conclusion, $\theta +2\alpha =\frac {\pi}2\implies$ $\sin\theta =\cos 2\alpha\ \stackrel{(1)}{\iff}\ \sin\theta =\frac {a-b}{a+b}\ ,$ i.e. relation $(*)\ .$

Proof 2. $AE^2=EB\cdot EF=ab\ ,$ i.e. $AE=\sqrt{ab}$ and $\tan\alpha =\frac {EF}{EA}=\frac b{\sqrt {ab}}\implies$ $\boxed{\tan\alpha =\sqrt {\frac ba}}\implies$ $\underline{\underline{\sin\theta}} =\cos 2\alpha=\frac {1-\tan^2\alpha }{1+\tan^2\alpha}=$ $\frac {1-\frac ba }{1+\frac ba}=\underline{\underline{\frac {a-b}{a+b}}}\ ,$ i.e. relation $(*)\ .$

Proof 3. Let $\{A,D\}=\{A,C\}\cap w\ ,$ $G\in BD\cap AF$ and symmetric point $K$ of $F$ w.r.t. $B\ ,$ i.e. $AK=AF=a+b\ .$ Prove easily that $m\left(\widehat{KAG}\right)=m\left(\widehat{GBF}\right)=2\alpha $

$\implies$ $AKBG$ is cyclic $\implies$ $KG\perp AF$ and $\widehat{AKG}\equiv\widehat{ABG}\equiv\widehat{ACB}\ ,$ i.e. $m\left(\widehat{AKG}\right)=\theta\ .$ In conclusion, $\sin\theta =\frac {AG}{AK}\implies$ $\sin\theta =\frac {a-b}{a+b}$ (David Rodriguez).



P2 (Miguel Ochoa Sanchez). Let the incircle $w=\mathbb C(I,1)$ of the square $ABCD$ and a point $X\in w$ for which denote its projections

$(U,V,W,Z)$ on $(AB,BC,CD,DA)$ respectively where $XU=b\ ,$ $XV=c\ ,$ $XW=d\ ,$ $XZ=a\ .$ Prove that $a^3+b^3+c^3+d^3=10\ .$


Proof. Let midpoints $(M,N,P,Q)$ of $([AB],[BC],[CD],[DA])$ respectively and the projections $(K,L)$ of $X$ on $(MP,NQ)$ respectively. Thus, $XK^2+XL^2=XI^2\iff$

$\boxed{(1-c)^2+(1-b)^2=1}\ (*)\ .$ Apply the theorem of cathetus in $:\ \left\{\begin{array}{cccc}
\triangle MXP\ : & XK^2=KM\cdot KP & \implies & (1-c)^2=bd\\\\
\triangle NXQ\ : & XL^2=LN\cdot LQ & \implies & (1-b)^2=ac\end{array}\right\|$ $\bigoplus\ \stackrel{(*)}{\implies}\ ac+bd=1\ .$

Therefore, if denote $s\equiv a+c=b+d=2\ ,$ $u\equiv ac=(1-b)^2=(d-1)^2\ ,$ $v\equiv bd=(1-c)^2=(a-1)^2\ ,$ where $u+v=1\ ,$ then obtain

$a^3+b^3+c^3+d^3=\left(a^3+c^3\right)+\left(b^3+d^3\right)=$ $\left(s^3-3su\right)+\left(s^3-3sv\right)=$ $2s^3-3s(u+v)=16-6\cdot 1=10\implies a^3+b^3+c^3+d^3=10\ .$



P3 (Edson Curahua Ortega). In the first quadrant $\overline O\overarc{AB}$ of the circle $w=\mathbb C(O,R)\ ,$ where $OA\perp OB\ ,$ inscribe circles $w_1=\mathbb C(I,x)$ and $w_2=\mathbb C(J,y)$

so that $:\ w_1$ and $w_2$ are exterior tangent one to other and both are interior tangent to $w\ ;\ J\in (OB)$ and $2y<R\ .$ Prove that $\boxed{\ 2x\ +\ y\ =\ R\ }\ (*)\ .$


Proof. Let $C$ be the projection of $I$ on $OB\ .$ Observe that $OC=x\ ,OI=R-x\ ,\ IC^2=OI^2-OC^2=(R-x)^2-x^2$ $\implies$ $IC^2=R^2-2Rx\ ;$ $CJ=R-(x+y)\ ,$

$IJ=x+y\ .$ Thus, $IC\perp OB\iff$ $IO^2-IJ^2=CO^2-CJ^2\iff$ $(R-x)^2-(x+y)^2=x^2-[R-(x+y)]^2\iff$ $R^2-2Rx=-R^2+2R(x+y)\iff$

$2R^2=2Rx+2R(x+y)\iff$ $R=x+(x+y)\iff$ $2x+y=R\ .$



P4. Prove that $(\forall )$ $\triangle ABC$ there is the chain of the equivalencies $:\ \boxed{A=2B\ \iff\ l_a=\frac {bc}a\ \iff\ a^2=b(b+c)}\ ,$ where $l_a$ is the length of the interior $A$-bisector.

Proof 1. Let $AD$ - the interior $A$-bisector of $\triangle ABC\ ,$ where $D\in (BC)\ .$ Prove easily that $\frac {DC}b=\frac {DB}c=\frac a{b+c}\implies$ $\boxed{DC=\frac {ab}{b+c}}\ (1)\ .$ Thus, $A=2B\iff$

$\widehat{CAD}\equiv\widehat{CBA}\iff$ $\triangle CAD\sim\triangle CBA\iff$ $\frac{CA}{CB}=\frac {AD}{BA}=\frac {CD}{CA}\ \stackrel{(1)}{\iff}\ \frac ba=\frac {l_a}c=\frac {\frac {ab}{b+c}}b=\frac a{b+c}\iff$ $\odot\begin{array}{cccccc}
\nearrow & l_a & = & \frac {bc}a & (2) & \searrow\\\\
\searrow & a^2 & = & b(b+c) & (3) & \nearrow\end{array}\odot$

Proof 2. Denote $X\in AB$ so that $A\in (BX)$ and $AX=AC=b\ .$ Thus, $CX=CB=a$ and $\triangle XCA\sim\triangle XBC\iff$ $\frac {XC}{XB}=\frac {XA}{XC}\iff$ $\frac a{b+c}=\frac ba\iff$ $a^2=b(b+c)\ .$

Proof 3. Theorem of SINES $\ : a^2=b^2+bc\iff$ $\sin^2A-\sin^2B=\sin B\sin C\iff$ $\sin (A+B)\sin (A-B)=\sin B\sin C\iff$ $\sin (A-B)=\sin B\iff$ $A=2B\ .$

Remark. $B=2C\iff AB=2\cdot DM\ , $ where $M$ is the midpoint of $[BC]$ and $D$ is the projection of $A$ on $BC\ .$ Indeed, I"ll use only two relations $:$

$\boxed{B = 2C\iff b^2 = c^2+ ac}\ (1)$ and $\boxed{2a\cdot DM = b^2-c^2}\ (2)\ .$ Therefore, $c = 2\cdot HM\stackrel{(2)}{\iff}\  ac = b^2 - c^2\iff$ $b^2=c^2+ac\ \stackrel{(1)}{\iff}\ B = 2C .$



P5. Let $\triangle ABC$ with $a>\max\{b,c\}$ and $\{P,Q\}\subset [BC]$ so that $BP=AP$ and $CQ=AC\ .$ Prove that $AB\perp AC\iff PQ^2=2\cdot BQ\cdot CP\iff m\left(\widehat{PAQ}\right)=45^{\circ}\ .$

Proof. Prove easily that $Q\in (BP)\ ,$ $QP=b+c-a$ and $\left\{\begin{array}{ccc}
BQ=a-b\\\\
PC=a-c\end{array}\right\|\ .$ In conclusion, $PQ^2=2\cdot BQ\cdot CP\iff$ $(b+c-a)^2=2\cdot (a-b)(a-c)\iff$

$(b+c)^2-\cancel{2a(b+c)}+\cancel{a^2}=\cancel 2a^2-\cancel{2a(b+c)}+2bc\iff$ $b^2+c^2=a^2\iff$ $AB\perp AC\ .$ Thus, $\left\{\begin{array}{cccccc}
m\left(\widehat{QAB}\right)=A-m\left(\widehat{QAC}\right)=A-\left(90^{\circ}-\frac C2\right)=\frac {A-B}2\\\\
m\left(\widehat{PAC}\right)=A-m\left(\widehat{PAB}\right)=A-\left(90^{\circ}-\frac B2\right)=\frac {A-C}2\end{array}\right\|\implies$

$m\left(\widehat{PAQ}\right)=A-m\left(\widehat{QAB}\right)-m\left(\widehat{PAC}\right)=$ $A- \frac {A-B}2-\frac {A-C}2=\frac {B+C}2\implies$ $\boxed{m\left(\widehat{PAQ}\right)=\frac {B+C}2}\ (*)\ .$ Thus, $AB\perp AC\ \stackrel{(*)}{\iff}\ m\left(\widehat{PAQ}\right)=45^{\circ}\ .$



P6. Let $\triangle ABC$ with the excircles $w_b=\mathbb C\left(I_b,r_b\right),\ w_c=\left(I_c,r_c\right).$ Denote $\left\{\begin{array}{ccccc}
D\in AC\cap w_b & ; & E\in AB\cap w_c\\\\
\{D,F\}=ED\cap w_b & ; & \{E,G\}=ED\cap w_c\end{array}\right\|$. Prove that $FD=GE.$

Proof. Let $\left\{\begin{array}{ccc}
X & \in & AC\cap w_c\\\\
Y & \in & AB\cap w_b\end{array}\right\|.$ Is well known that $\left\{\begin{array}{ccc}
AX=AE=s-b\\\\
AY=AD=s-c\end{array}\right\|.$ Thus, $\left\{\begin{array}{ccc}
DX=DA+AX=(s-c)+(s-b) & \implies & DX=a\\\\
EY=EA+AY=(s-b)+(s-c) & \implies & EY=a\end{array}\right\|\implies$

$\boxed{EY=DX=a}\ (*)$ $\implies$ $\left\{\begin{array}{ccc}
DX^2 & = & DE\cdot DG\\\\
EY^2 & = & ED\cdot EF\end{array}\right\|\ \stackrel{(*)}{\implies}\ \cancel{DE}\cdot DG=$ $\cancel{ED}\cdot EF\implies$ $DG=EF\implies$ $\cancel{DE}+EG=\cancel{ED}+DF\implies$ $EG=FD.$



P7 (Miguel Ochoa Sanchez). Let $\triangle ABC$ and $D\in (AC)$ so that $m\left(\widehat{ADB}\right)=30^{\circ}$ and $m\left(\widehat{ABD}\right)=2\cdot m\left(\widehat{DBC}\right).$ Prove that $BD^2=b^2-c^2\iff C=18^{\circ}.$

Proof 1. Let $E\in AC$ so that $BE\perp AC$ and suppose w.l.o.g. $BE=1,$ i.e. $\boxed{\ BD\ =\ 2\ }.$ Observe that $\left\{\begin{array}{ccc}
m\left(\widehat{DBC}\right) & = & 30^{\circ}-C\\\
m\left(\widehat{ABD}\right) & = & 60^{\circ}-2C\end{array}\right\|$ and $m\left(\widehat{EBA}\right)= 2C.$ Therefore,

$1=c\cdot \cos 2C=a\cdot \sin C$ and $\left\{\begin{array}{ccc}
AE & = & c\cdot \sin 2C\\\
CE & = & a\cdot\cos C\end{array}\right\|\ .$ Observe that $\boxed{c=\frac 1{\cos 2C}}\ (1)$ and $b=CE-AE=a\cdot\cos C-c\cdot \sin 2C\implies$ $\boxed{b=\cot C-\tan 2C}\ (2)\ .$

Therefore, $BD^2=b^2-c^2\iff b^2-c^2=4\iff\ \stackrel{(1\wedge 2)}{\iff}\ \left(\cot C-\tan 2C\right)^2=4+\frac 1{\cos^22C}\iff$ $\frac {\cos^23C}{\sin^2C\cos^22C}=4+\frac 1{\cos^22C}\iff$

$\cos^23C=(2\sin C\cos 2C)^2+\sin^2C\iff$ $\cos^23C=(\sin 3C-\sin C)^2+\sin^2C\iff$ $\cos^23C=\sin^23C+2\sin^2C-2\sin C\sin 3C\iff$

$\cos^23C-\sin^23C=(1-\cos 2C)-(\cos 2C-\cos 4C)\iff$ $\cos 6C+2\cos 2C=1+\cos 4C\iff$ $\cancel{\cos 2C}\left(4\cos^22C-3\right)+2\cancel{\cos 2C}=2\cos\cancel{^2}2C\iff$

$4\cos^22C-3+2=2\cos 2C\iff$ $4t^2-2t-1=0$ where $\boxed{t=\cos 2C}\iff$ $t=\frac {1+\sqrt 5}4\iff$ $\cos 2C=\cos 36^{\circ}\iff$ $2C=36^{\circ}\iff \boxed{\ C\ =\ 18^{\circ}\ }\ .$

Otherwise. $BD^2=b^2-c^2\iff b^2-c^2=4\iff\ \stackrel{(1\wedge 2)}{\iff}\ \left(\cot C-\tan 2C\right)^2=4+\frac 1{\cos^22C}\iff$ $\left(\cot C-\tan 2C\right)^2=5+\tan^22C\iff$ $\frac 1{\tan^2C}-\frac {2\tan 2C}{\tan C}=5$

$\iff$ $1-2\tan C\tan 2C=5\tan^2C\iff$ $\frac {4\tan^2C}{1-\tan^2C}+5\tan^2C=1\iff$ $5\tan^4C-10\tan^2C+1=0\iff$ $5\cdot \left(\frac {1-t}{1+t}\right)^2-10\cdot \frac {1-t}{1+t}+1=0\ ,$ where $t=\cos 2C,$

$\tan^2C=\frac {1-t}{1+t}\iff$ $5(1-t)^2-10(1-t^2)+(1+t)^2=0\iff$ $16t^2-8t-4=0\iff$ $4t^2-2t-1=0\iff$ $t=\frac {1+\sqrt 5}4\iff$ $\cos 2C=\cos 36^{\circ}\iff$ $C=18^{\circ}.$



P8 (Miguel Ochoa Sanchez). Let $A$-rightangled $\triangle ABC$ and $H\in (BC)$ so that $AH\perp BC.$ The bisectors of the

angles $\widehat{BAH},$ $\widehat{CAH}$ meet $BC$ at the points $D,$ $E$ respectively. Prove that $[ABD]+[ACE]\ge [ADE]\sqrt 2\ .$


Proof 1. Let $\left\{\begin{array}{c}
m\left(\widehat{DAB}\right)=m\left(\widehat{DAH}\right)=\gamma\\\\
m\left(\widehat{EAC}\right)=m\left(\widehat{EAH}\right)=\beta\end{array}\right\|\ ,\ \beta +\gamma=45^{\circ}\ ,\ \left\{\begin{array}{c}
B=m\left(\widehat{HAC}\right)=2\beta\\\\ 
C=m\left(\widehat{HAB}\right)=2\gamma\end{array}\right\|\ .$ Thus, $(b+c)^2\le 2\left(b^2+c^2\right)=2a^2\implies\boxed{b+c\le a\sqrt 2}\ (*)$

and $\left\{\begin{array}{c}
m\left(\widehat{BAE}\right)=m\left(\widehat{BEA}\right)=\beta +2\gamma\implies BE=BA=c\ \mathrm{and}\ CE=a-c\\\\
m\left(\widehat{CAD}\right)=m\left(\widehat{CDA}\right)=\gamma +2\beta\implies CD=CA=b\ \mathrm{and}\ BD=a-b\end{array}\right\|\implies$ $ DE=b+c-a$ and $\left\{\begin{array}{c}
\frac {[ABD]}{[ADE]}=\frac {DB}{DE}=\frac {a-b}{b+c-a}\\\\
\frac {[ACE]}{[ADE]}=\frac {CE}{DE}=\frac {a-c}{b+c-a}\end{array}\right\|\bigoplus\implies$

$\frac {[ABD]+[ACE]}{[ADE]}=$ $\frac {2a-(b+c)}{(b+c)-a}=$ $\frac {a-(b+c-a)}{b+c-a}=$ $\frac a{(b+c)-a}-1\ \stackrel{(*)}{\ge}$ $\frac a{a\sqrt 2-a}-1=$ $\frac 1{\sqrt 2-1}-1=$ $\sqrt 2\implies$ $[ABD]+[ACE]\ge [ADE]\sqrt 2$ (equality iff b=c).

Proof 2. Suppose w.l.o.g. $AH=1$ and I'll use same notations from upper proof. Denote $:$

$\left\{\begin{array}{ccccc}
\tan \gamma = x & \implies & HD=x\ ,\ HB=\tan 2\gamma =\frac {2x}{1-x^2} & \implies & DB=HB-HD=\frac {2x}{1-x^2}-x\\\\
\tan\beta =y & \implies & HE=y\ ,\ HC=\tan 2\beta =\frac {2y}{1-y^2} & \implies & CE=HC-HE=\frac {2y}{1-y^2}-y\end{array}\right\|$ where $\beta +\gamma =45^{\circ}$ $\implies$ $\tan(\beta +\gamma )=1$ $\implies$ $\frac {\tan \beta +\tan\gamma}{1-\tan\beta\tan\gamma}=$

$\frac {y+x}{1-xy}=1$ $\implies$ $x+y+xy=1\implies$ $\boxed{(1+x)(1+y)=2}\ (*)\ .$ Thus, $\frac {[ABD]+[ACE]}{[ADE]}=\frac {BD+CE}{DE}=$ $\frac {\frac {2x}{1-x^2}+\frac {2y}{1-y^2}-(x+y)}{x+y}=$ $\frac {\frac {2x}{1-x^2}+\frac {2y}{1-y^2}}{x+y}-1=$

$\frac {2\cancel{(x+y)}-2xy\cancel{(x+y)}}{\cancel{(x+y)}\left(1-x^2\right)\left(1-y^2\right)}-1=$ $\frac {\cancel 2(1-xy)}{\cancel{(1+x)(1+y)}(1-x)(1-y)}-1\ \stackrel{(*)}{=}\ \frac {1-xy}{(1-x)(1-y)}-1\ .$ From the relation $(*)$ obtain that $\boxed{y=\frac {1-x}{1+x}}\ .$ Thus, $\frac {[ABD]+[ACE]}{[ADE]}=$

$\frac {1-xy}{(1-x)(1-y)}-1=\frac {1-x\cdot \frac {1-x}{1+x}}{(1-x)(1-\frac {1-x}{1+x})}-1=$ $\frac {x^2+1}{2x(1-x)}-1\ .$ So $\frac {[ABD]+[ACE]}{[ADE]} \ge \sqrt 2\iff$ $\frac {x^2+1}{2x(1-x)}\ge 1+\sqrt2\iff$ $x^2+1\ge 2\left(1+\sqrt 2\right) \left(x-x^2\right)$ $\iff$

$\left(3+2\sqrt 2\right)x^2-2\left(1+\sqrt 2\right)x+1\ge 0\iff$ $\left[x\left(1+\sqrt 2\right)-1\right]^2\ge 0$ what is truly. Have equality iff $x=\frac 1{1+\sqrt 2},$ i.e. $x=y=\sqrt 2-1$ what means
$\gamma=\beta =\frac {\pi}8\ .$
Very nice problem!

Proof 3. Observe that $\left\{\begin{array}{ccccccccccccccccccccc}
\frac {DB}a & = & \frac {DH}b & = & \frac {BH}{a+b} & = & \frac {\frac {c^2}a}{a+b} & = & \frac {a^2-b^2}{a(a+b)} & = & \frac {a-b}{a} & \implies & \frac {DB}a & = & \frac {a-b}a & = & \boxed{\ DB=a-b\ }\ (1) & \implies & \boxed{DH=\frac {b(a-b)}a\ } & (2.1)\\\\

\frac {CE}a & = & \frac {EH}c & = & \frac {CH}{a+c} & = & \frac {\frac {b^2}a}{a+c} & = & \frac {a^2-c^2}{a(a+c)} & = & \frac {a-c}{a} & \implies & \frac {EC}a & = & \frac {a-c}a & = & \boxed{\ EC=a-c\ }\ (3) & \implies  & \boxed{\ EH=\frac {c(a-c)}a\ } & (2.2)\end{array}\right\|$

$\implies$ $DE=HD+HE\ \stackrel{2.1 \wedge\ 2.2}{=}\ \frac {b(a-b)}a+\frac {c(a-c)}a=$ $\frac {a(b+c)-\left(b^2+c^2\right)}a=$ $\frac {a(b+c)-a^2}a=b+c-a\implies$ $\boxed{\ DE=b+c-a\ }\ (4)\ .$ Denote $A_1=[ABD]\ ,$ $A_2=[ACE]$

and $A_3=[ADE]\ .$ Thus, $\frac {A_1}{BD}=\frac {A_3}{DE}=\frac {A_2}{CE}\iff$ $\frac {A_1}{a-b}=\frac {A_3}{b+c-a}=\frac {A_2}{a-c}=\frac {A_1+A_2}{2a-b-c}\implies$ $\frac {A_1+A_2}{A_3}=$ $\frac {2a-b-c}{b+c-a}=\frac {2-t}{t-1}\ ,$ where $t=\frac {b+c}a\ .$ From the simple inequality

$(b+c)^2\le 2\left(b^2+c^2\right)=2a^2$ obtain that $t=\frac {b+c}a\le \sqrt 2\ ,$ i.e. $\boxed{\ t\le\sqrt 2\ }\ (5)\ .$ Hence, $\frac {A_1+A_2}{A_3}=$ $\frac {2-t}{t-1}=$ $-1+\frac 1{t-1}\ \stackrel{(5)}{\ge}\ -1+\frac 1{\sqrt 2-1}=$ $\frac {\left(1-\sqrt 2\right)+1}{\sqrt 2-1}=$ $\frac {2-\sqrt 2}{\sqrt 2-1}=$ $\sqrt 2\implies$

$\frac{A_1+A_2}{A_3}\ge \sqrt 2$ $\implies$ $A_1+A_2\ge A_3\sqrt 2\implies$ $[ABD]+[ACE]\ge [ADE]\sqrt 2\ .$
Very nice proof!


P9 (Kunihiko Chikaya). Ascertain the natural numbers $n=\overline{ab24}$ what are multiples of $17,$ where $\{a,b\}$ are digits in the base $10\ ,$ i.e. $\{a,b\}\subset \overline{0,9}\ .$

Proof. Define the equivalence $:\ (\forall\ )\ \{x,y\} 
 \subset\mathbb Z\ , \boxed{x\ \sim\ ~y\iff 17\ |\left(x-y\right)}\ .$ Thus, $n=\overline{ab24}=$ $100(10a+b)+24=$ $\left(\cancel{17\cdot 6}-2\right)\left(\cancel{17a}-7a+b\right)+\left(\cancel{17}+7\right)\ \sim\ (14a-2b+7)\ \sim$

$17a-(14a-2b+7)\implies \boxed{n\ \sim (3a+2b-7)}\ .$ Observe that $\{a,b\}\subset\overline{0,9}\implies$ $17\ |\ (3a+2b-7)\subset [-7,38]\cap Z=\{0,17,34\}\ ,$ i.e. $\boxed{(3a+2b)\in \{7,24,41\}}\ .$

Therefore $:\ 3a+2b=7\iff (a,b)=(1,2)\ ;\ 3a+2b=24\iff (a,b)\in\left\{(2,9),(4,6),(6,3),(8,0)\right\}\ ;\ 3a+2b=41\iff (a,b)=(9,7)\ .$

In conclusion, $(a,b)\in \{(1,2),(2,9),(4,6),(6,3),(8,0),(9,7)\}\ .$


P10 (Luis A. S. Cruz, Peru). Let $\triangle ABC$ with $AB\perp AC$ and $AB=AC\ .$ Choose the points $\{M,N\}\subset (BC)$ so that $BM<BN$ and $m\left(\widehat{MAN}\right)=\frac {\pi}4\ .$ Prove that $MB^2+NC^2=MN^2\ .$

Proof 1. Let $O$ be the midpoint of the side $[BC]\ .$ Suppose w.l.o.g. $AB=AC=AO=1\ .$ Hence $BC=\sqrt 2$ and there are $\{\alpha ,\beta\}\subset \left(0,\frac {\pi}4\right)$ so that $\alpha +\beta =\frac {\pi}4$ and

$\left\{\begin{array}{ccccccccc}
OM=x & \implies & MB=1-x & ; & m\left(\widehat{OAM}\right)=\alpha & \implies & m\left(\widehat{BAM}\right)=\beta & \implies & x=\tan\alpha\\\\
ON=y & \implies & NC=1-y & ; & m\left(\widehat{OAN}\right)=\beta & \implies & m\left(\widehat{CAN}\right)=\alpha & \implies & y=\tan\beta\end{array}\right\|\ .$ Thus, $MB^2+NC^2=MN^2\iff$ $(1-x)^2+(1-y)^2=(x+y)^2\iff$

$2-2(x+y)+\cancel{x^2}+\cancel{y^2}=$ $\cancel{x^2}+2xy+\cancel{y^2}\iff$ $(x+y)+xy=1\iff$ $(1+x)(1+y)=2\iff$ $(1+\tan \alpha )(1+\tan\beta )=2\iff$ $(\cos\alpha +\sin\alpha )(\cos\beta+\sin\beta )=2\cos\alpha\cos\beta\iff$

$\cos \alpha\sin\beta +\sin\alpha\cos\beta=\cos\alpha\cos\beta -\sin\alpha\sin\beta\iff$ $\sin\left(\alpha +\beta\right)=\cos\left(\alpha +\beta\right)\iff$ $\sin\frac {\pi}4=\cos\frac{\pi}4\ ,$ what is true. In conclusion $,\ \boxed{MB^2+NC^2=MN^2}\ .$

Proof 2.


Application (Nelson C. D. Velasquez, Peru). Let the circle $w=\mathbb C(O,R)$ with the diameter $[AB]$ and for a point $S\in w$ construct $:$ the bisectors $[OP\ ,\ [OQ$ of the angles $\widehat{AOS}\ ,\ \widehat {BOS}$

respectively, where $\{P,Q\}\subset w\ ;$ the circle $\alpha =\mathbb C(I,m)$ what is interior tangent to $w$ at $P$ and to the lines $OA\ ,\ OS$ at $M\ ,U$ respectively $;$ the circle $\beta =\mathbb C(J,n)$ what is interior

tangent to $w$ at $N$ and to the lines $OB\ ,\ OS$ at $N\ ,V$ respectively. Prove that $MA^2+NB^2=MN^2\ .$


Proof. Let the midpoint $C$ of the semicircle $\overarc {AB}$ so that $AB$ separates $S\ ,\ C\ .$ Prove easily or is well-known that $C\in PM\cap QN\ .$

Observe that $OP\perp OQ\implies m\left(\widehat{MCN}\right)=m\left(\widehat{PCQ}\right)=\frac {\pi}4\ .$ Apply to $\triangle ACB$ the previous problem P10.



P11 (Ceran Mathematic, Turkey). In the regular pentagon $ABCDE$ denote $:\ P\in AC\cap BE\ ;$ the areas $[PAB]=x\ ,$ $[PBC]=y\ ,$ $[PCD]=z\ .$ Prove that there is the relation $\boxed{\frac 1x=\frac 1y+\frac 1z}\ .$

Proof. Observe that $CE\parallel AB\implies ABCE$ is an isosceles trapezoid $\implies$ $[PAE]=[PBC]=y\implies \boxed{xz=y^2}\ (1)$ and $[ABC]=[CDE]=[PCD]=z\implies$

$\boxed{x+y=z}\ (2)\ .$ From the relations $(1)$ and $(2)$ obtain that $\left\{\begin{array}{ccc}
z-x & = & y\\\\
xz & = & y^2\end{array}\right\|\implies$ $\frac {z-x}{xz}=\frac y{y^2}\implies$ $\frac 1x-\frac 1y=\frac 1y\implies \frac 1x=\frac 1y+\frac 1z\ .$



P12 (Tezcan SAHIN, Turkey). Let $\triangle\ ABC$ and $D\in (BC)$ so that $\left\{\begin{array}{ccccc}
m\left(\widehat{DAB}\right) & = & 90^{\circ}-C & ; & S_b=[DAB]\\\
m\left(\widehat{DAC}\right) & = & 90^{\circ}-B & ; & S_c=[DAC]\end{array}\right\|\ .$ Prove that $\boxed{\frac {S_b}{S_c}=\frac {\sin 2C}{\sin 2B}}\ .$

Proof. Apply an well-known relation $:\ \frac {S_b}{S_c}=\frac {[DAB]}{[DAC]}=\frac {DB}{DC}=\frac {AB}{AC}\cdot\frac {\sin\widehat{DAB}}{\sin\widehat{DAC}}=$ $\frac {\sin C}{\sin B}\cdot\frac {\cos C}{\cos B}=$ $\frac {\sin 2C}{\sin 2B}\ .$ Remark that the circumcenter $O$ of $\triangle ABC$ belongs to $AD\ .$

Particular case. If $\left\{\begin{array}{ccc}
B & = & 63^{\circ}\\\
C & = & 75^{\circ}\end{array}\right\|\ ,$ then $\frac {S_b}{S_c}=$ $\frac {\sin \left(2\cdot 75^{\circ}\right)}{\sin\left(2\cdot 63^{\circ}\right)}=$ $\frac {\sin 150^{\circ}}{\sin 126^{\circ}}=$ $\frac {\sin 30^{\circ}}{\sin 54^{\circ}}=\frac 1{2\cos 36^{\circ}}\ .$ Since $\cos 36^{\circ}=\frac {1+\sqrt 5}4\ ,$ obtain that $\frac {S_b}{S_c}=\frac 1{2\cdot\frac {1+\sqrt 5}4}=\frac{\sqrt 5-1}2\implies$ $\boxed{\frac {S_b}{S_c}=\frac{\sqrt 5-1}2}\ .$



P13 (Kunihiko Chikaya). Let $\triangle ABC$ with $a=5\ ,\ b=4$ and $c=3\ .$ Find the area $[IOG]\ ,$ where $G$-centroid, $O$-circumcenter $($midpoint of $[BC])$ and $I$-incenter (standard notations).

Proof 1. Denote $D\in AI\cap BC\ ,$ where $DO=CD-CO=\frac {ab}{b+c}-\frac a2=\frac {a(b-c)}{2(b+c)}\implies$ $\boxed{DO=\frac {a(b-c)}{2(b+c)}}\ (1)\ .$ From $\frac {IA}{b+c}=\frac {ID}a=\frac {AD}{a+b+c}$ obtain that $\boxed{\frac {AI}{AD}=\frac {b+c}{a+b+c}}\ (2)\ .$

Hence $:\ \left\{\begin{array}{ccccc}
\frac {[IOG]}{[IOA]} & = & \frac {OG}{OA} & = & \frac 13\\\
\frac {[OAI]}{[OAD]} & = & \frac {AI}{AD} & \stackrel{(2)}{=} & \frac 7{12}\\\
\frac {[ADO]}{[ABC]} & = & \frac {DO}{BC} & \stackrel{(1)}{=} & \frac 1{14}\end{array}\right\|$ $\bigodot\implies$ $\frac {[IOG]}{\cancel{[IOA]}}\cdot\frac {\cancel{[OAI]}}{\cancel{[OAD]}}\cdot\frac {\cancel{[ADO]}}{[ABC]}=\frac 13\cdot\frac 7{12}\cdot \frac 1{14}=\frac 1{72}\implies$ $\frac {[IOG]}{[ABC]}=\frac 1{72}\implies$ $[IOG]=\frac {[ABC]}{72}=\frac 6{72}=\frac 1{12}\implies$ $\boxed{\ [IOG]=\frac 1{12}\ }\ .$

Proof 2. Observe that $[IOG]=\frac 13\cdot [AIO]$ and $m\left(\widehat{IAO}\right)=45^{\circ}-C\ .$ Hence $[AIO]=\frac 12\cdot AI\cdot AO\cdot\sin\left(45^{\circ}-C\right)=$

$\frac 12\cdot (s-a)\sqrt 2\cdot \frac {\cancel a}2\cdot \frac {\sqrt 2}2\cdot\left(\frac b{\cancel a}-\frac c{\cancel a}\right)=$ $\frac 18\cdot (b+c-a)(b-c)=\frac{2\cdot 1}8=\frac 14\implies [AIO]=\frac 14$ $\implies$ $[IOG]=\frac 13\cdot\frac 14\implies$ $[IOG]=\frac 1{12}\ .$

Proof 3. Denote the projection $P$ of $A$ on $BC$ and $R\in IO\cap AP\ .$ Prove easily that $AR=r$ and $OP=\frac {b^2-c^2}{2a}\ .$ Since $AI$ is the bisector of $\widehat{PAO}$ obtain that $\frac {IR}r=\frac {IO}R=\frac {RO}{R+r}$

and $\frac {[AIO]}{[ARO]}=\frac {OI}{OR}=\frac {R}{R+r}\implies$ $[AIO]=\frac R{R+r}\cdot [ARO]=\frac R{R+r}\cdot \frac {AR\cdot PO}2=$ $\frac R{R+r}\cdot\frac {r\left(b^2-c^2\right)}{4a}=$ $\frac {\frac a2}{\frac a2+(s-a)}\cdot \frac {(s-a)\left(b^2-c^2\right)}{4a}=$ $\frac {{\cancel a}(s-a)\left(b^2-c^2\right)}{4\cancel a(b+c)}=$

$\frac {(s-a)(b-c)}4=\frac {(b+c-a)(b-c)}8\implies $ $[AIO]=\frac 14\implies$ $[IOG]=\frac 13\cdot\frac 14\implies$ $[IOG]=\frac 1{12}\ .$


P13 (An easy extension). Let $\triangle ABC$ with the centroid $G\ ,$ the circumcircle $\Omega =\mathbb C(O,R)$ and the incircle $w=\mathbb C(I,r)\ .$ Prove that the area $\boxed{\ [IOG]=\frac {|(a-b)(b-c)(c-a)|}{24r}\ }\ .$

Proof.


P14 (Seventh class). https://scontent.fotp3-1.fna.fbcdn.net/v/t1.0-9/21616185_1538076272897682_2381212052937400875_n.jpg?oh=cec95381137b423dda44f11a6bdf2ffe&oe=5A5B06DA

Proof 1. The upper square $ABCD$ with $AB=x$ is placed to south-west. Consider a broken line $AXYC$ from $A$ to $C$ so that $XA\perp XY\perp YC\ ,$ where $AX=m ,$ $XY=n\ ,$ $YC=p\ .$

Construct the rectangle $AUCV$ where $U\in CY$ so that $UA\perp UC$ and $V\in AX$ so that $VA\perp VC\ .$ Observe that $UC=AX+YC=m+p\ ,$ $VC=n$ and $2x^2=AC^2=CU^2+CV^2=$
$(m+p)^2+n^2\implies$ $\boxed{\ x=\sqrt{\frac {(m+p)^2+n^2}2}\ }\ .$ In the particular case $m=14\ ,\ n=7\ ,\ p=9$ obtain $2x^2=23^2+7^2=$ $529+49=578=2\cdot 289=$ $2\cdot 17^2\implies$ $\boxed{\ x=17\ }\ .$ Very nice !

Remark. Construct only $U\in CY$ so that $UA\perp UC\ .$ Thus $UC=UY+YC=AX+YC=m+p$ and $UA=XY=n\ .$ Hence $2x^2=AC^2=UC^2+UA^2=$ $(m+p)^2+n^2$ a.s.o.



P15 (Marian Dinca). Prove that $(\forall )\ \triangle ABC$ there is the following implication $:\ \boxed{\ a=\max\{a,b,c\}\implies m_a\sqrt 3\le s\ }$ (standard notations). Nice inequality!

Proof 1. $a=\max\{a,b,c\}\implies\ \left\{\begin{array}{ccc}
a\ge b & \iff & ab\ge b^2\\\\
a\ge c & \iff & ac\ge c^2\end{array}\right\|\stackrel{\bigoplus}{\implies}\boxed{\ \begin{array}{ccc}
a(b+c) & \ge & b^2+c^2\\\\\
2a & \ge & b+c\end{array}\ }\ (*)\ .$ So $m_a\sqrt 3\le s$ $\iff$ $3\cdot 4a^2\le 4s^2\iff$ $3\left[2\left(b^2+c^2\right)-a^2\right]\le (a+b+c)^2$ $\iff$

$6\left(b^2+c^2\right)-3a^2\le$ $a^2+2a(b+c)+2bc+b^2+c^2\iff$ $4a^2+2a(b+c)+2bc-5\left(b^2+c^2\right)\ge 0\iff$ $\left[2a-(b+c)\right]^2+6a(b+c)-(b+c)^2+2bc-5\left(b^2+c^2\right)\ge 0\iff$

$\left[2a-(b+c)\right]^2+6a(b+c)-\left(b^2+c^2\right)-\cancel{2bc}+\cancel{2bc}-5\left(b^2+c^2\right)\ge 0\ \stackrel{(*)}{\iff}\ \left[(2a-(b+c)\right]^2+6\left[a(b+c)-\left(b^2+c^2\right)\right]\ge 0\ ,$ what is true from the relation $(*)\ .$

Proof 2. $\underline{\underline{m_a\sqrt 3\le s}}\iff $ $3\cdot \left[2\left(b^2+c^2\right)-a^2\right]\le (a+b+c)^2\stackrel{:(b+c)^2}{\implies}\ 3\le 3\cdot \frac {2\left(b^2+c^2\right)}{(b+c)^2}\le $ $3\cdot \left(\frac a{b+c}\right)^2+\left(\frac a{b+c}+1\right)^2\ \stackrel{t(b+c)=a}{\implies}\ 3\le 3t^2+(t+1)^2\iff$

$3t^2+(t+1)^2-3\ge 0$ $\iff 4t^2+2t-2\ge 0\iff $ $2t^2+t-1\ge 0\iff $ $(t+1)(2t-1)\ge 0\iff t\ge \frac 12\iff \frac a{b+c}\ge \frac 12\ \stackrel{(*)}{\iff}\ \underline{\underline{2a\ge b+c}}\ ,$ what is true.
This post has been edited 404 times. Last edited by Virgil Nicula, Jan 13, 2019, 12:49 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a