307. Very nice proofs !
by Virgil Nicula, Jul 31, 2011, 11:50 PM



Proof 1.



Commentary. I used the Viete's relations and the identities

Proof 2. Prove easily that



In conclusion,








Commentary. Without of the relations






where


Proof 3.
![$\sum bc=\sum [s(s-a)+(s-b)(s-c)]\implies$](http://latex.artofproblemsolving.com/0/1/e/01e7b89be9316b10f4fe226478e16f59ae6cee03.png)

![$4Rsr=abc=\prod [s-(s-a)]=$](http://latex.artofproblemsolving.com/3/f/1/3f17da768efcf4b4c13cabfc06d9dad89db69136.png)



Remark.







Proof. Using the well-known inequality



obtain for




Remark.



Proof 1 (Mudok).


![$a^2\le \left(b^2+c^2\right)\left[1-\cos A\cos (B-C)\right]\iff$](http://latex.artofproblemsolving.com/f/1/4/f144933cd5e339b447b2b848d28454335997102a.png)


Proof 2 (own).











Proof 3 (metric - own).



![$\frac {2\left[a^4-\left(b^2-c^2\right)^2\right]+2a^2\left(b^2+c^2-a^2\right)}{4a^2bc}\implies$](http://latex.artofproblemsolving.com/7/8/8/7881fd080152bdd0f113b9686303538372c1b018.png)

In conclusion,



![$a^2\left[\left(b^2+c^2\right)^2-4b^2c^2\right]\le\left(b^2+c^2\right)\left(b^2-c^2\right)^2\iff$](http://latex.artofproblemsolving.com/c/0/2/c0228508543da11826d0598c9efa1cfdac4149db.png)


Proof 4 (trigonometric - own).





![$\cos A\left[1-\cos^2(B-C)\right]\ge 0$](http://latex.artofproblemsolving.com/b/a/7/ba7dbf7d3906ef9c15283b189809551fac90144e.png)
Proof 5 (own). Add





Multiply by









the relation







![$ \Longleftrightarrow\ \left(b^2 + c^2\right)\left[a^2 - (b - c)^2\right]\le 2a^2bc$](http://latex.artofproblemsolving.com/d/3/0/d30f65d12d049d613aeaa013c1f4e6b64b8d2497.png)
![$ \Longleftrightarrow\ a^2\left[\left(b^2 + c^2\right) - 2bc\right]\le\left(b^2 + c^2\right)(b - c)^2$](http://latex.artofproblemsolving.com/0/5/3/0530e46549d3ef999a5384550d1ebf8872d6841e.png)


Remark. For the last one on right side :



$](http://latex.artofproblemsolving.com/9/2/7/92773c370a05b00f00d272a65a43bf957985e95b.png)


Proof 6 (Tiger100). Show easily that




![$ \Longleftrightarrow (b^2+c^2)\left[b^2(a^2+c^2-b^2)+c^2(a^2+b^2-c^2)\right]\le 4a^2b^2c^2$](http://latex.artofproblemsolving.com/5/f/f/5ff8dd99986dac48685be9573c84dad8b16bf975.png)
Denote

![$ (y+z)\left[x(y+z)-(y-z)^2\right]\le 4xyz\Longleftrightarrow$](http://latex.artofproblemsolving.com/a/3/4/a3499e84d6e0f639770791735a19151b07bb1a01.png)
![$x\left[(y+z)^2-4yz\right]\le (y+z)(y-z)^2$](http://latex.artofproblemsolving.com/6/9/a/69abec8be1f81bce903e3fd3f7ed8464e181da8c.png)



Proof 7 (trigonometric - own).









![$2\cos A [1-\cos (B-C)]\ge 0$](http://latex.artofproblemsolving.com/a/b/e/abe824580ea3ea05d2947dfce365fd0c50eece29.png)
Proof 8 (synthetic - own). Denote the second intersection






Suppose w.l.o.g.





![$[NS]$](http://latex.artofproblemsolving.com/8/0/d/80de18ed66832d94ce5323f567fc5b59dc992316.png)

Thus,

![$NS^2=2L^2\left[1-\cos (B-C)\right]$](http://latex.artofproblemsolving.com/e/5/f/e5f72a236e7aa6ae2daacd6bdaf75437b25ad574.png)









what is truly because




Remark. Prove that if in




Indeed,



![$\left[a^2-(b-c)^2\right]\left(b^2+c^2\right)\le 2a^2bc\iff$](http://latex.artofproblemsolving.com/b/c/7/bc720459953bef4a8703a4d4401f11a1807078e5.png)











Proof 1 (trigonometric).








Proof 2 (synthetic). Denote the second intersection










Proof 1.












Proof 2 (algebraic). If





An easy extension (own).

Proof.






![$4S^2\left[\frac {1}{b^2\cdot\sin^2\left(A+\frac B2\right)}+\frac {1}{c^2\cdot\sin^2\left(B+\frac C2\right)}\right]\le as\implies$](http://latex.artofproblemsolving.com/d/4/c/d4c0a8e03e8ff27fdc3f9e23a1a5689467101919.png)





Proof 1 (synthetic). Denote the second intersection




Apply in




Proof 2 (by extremum). Suppose w.l.o.g. that





















Remark.This inequality is well-known and is equivalently with

Proof 1. Let diameters
![$[AA']$](http://latex.artofproblemsolving.com/f/8/3/f83bdc8e170d3bc867097c603fa03cf6edefbb4b.png)
![$[BB']$](http://latex.artofproblemsolving.com/c/0/d/c0ddaebfdb98e7f3547c20b86a61b060dc528f24.png)











with equality iff






Observe that







![$\left[2\left(b^{2}+c^{2}\right)-a^{2}\right]\cdot\left[2\left(8R^{2}-b^{2}-c^{2}\right)-a^{2}\right]\ge a^{4}$](http://latex.artofproblemsolving.com/2/5/d/25de8a97b5cde33e1d08e43371ef70da777a4b52.png)



![$4R^{2}\left[2\left(b^{2}+c^{2}\right)-a^{2}\right]\ge \left(b^{2}+c^{2}\right)^{2}$](http://latex.artofproblemsolving.com/8/b/5/8b590607317ed8449dc6046b2634e83f03967cfc.png)










Proof 2. Suppose w.l.o.g.


















Remark. The proposed inequality can write



From








Observe that






























Proof 1 (synthetic). Denote incenter










i.e.





Proof 2 (synthetic). Let



Since the line







Proof 3 (metric).











Proof 4 (metric).


![$(A'A-A'I)[(A'I+IA)+A'I]=$](http://latex.artofproblemsolving.com/2/7/b/27b1cb3c7f6e1625d0a10cbb311605a8971dc022.png)







Proof 5 (trigonometric).
![$A'A^2-A'B^2=4R^2\cdot\left[\sin^2\left(B+\frac A2\right)-\sin^2\frac A2\right]=$](http://latex.artofproblemsolving.com/6/0/9/60922acbe48ae873d86d46894704d46f425a6733.png)





Lemma. Let



division" on




![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)
Proof. Define by









Proof 6. Observe that



on the



![$[II_a]$](http://latex.artofproblemsolving.com/b/9/d/b9d69f173ce4bad72631095440791204d2b021e3.png)







![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)
![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)
![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)
![$[DA]$](http://latex.artofproblemsolving.com/7/b/e/7be1ee9448ef63ac6f1f6b8dd6982c30bad9bb31.png)


Proof. Denote the length















PP10. Let



orthocenter




Proof 1 (trigonometric). Observe that





Proof 2 (synthetic). Denote the second intersection





is a trapezoid with



Remark. Denote the second intersection











An equivalent enunciation. Let





Proof (metric).










PP11 (Selection Team of BOSNIA-HERTEGOVINA, 2011). Let


its incenter



![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)
![$[AC]$](http://latex.artofproblemsolving.com/0/9/3/0936990e6625d65357ca51006c08c9fe3e04ba0c.png)

Proof 1. Denote the circumcircle


![$[NS]$](http://latex.artofproblemsolving.com/8/0/d/80de18ed66832d94ce5323f567fc5b59dc992316.png)










![$[AS]\iff IM\parallel SB\ \ \wedge\ \ IN\parallel SC\iff$](http://latex.artofproblemsolving.com/5/e/d/5ed8968f639938baa0247b23c40af9480d05f364.png)


I used the notation




Remark.




Otherwise. Is well-known



![$AS]\iff$](http://latex.artofproblemsolving.com/9/3/8/9389b67e6df2e20c2f13a949c3676bec2f77aca3.png)




PP12 (France, 1999). Let







Let







Proof. Let






are the feet of the perpendiculars from

















is missing from the Grobber's proof, i.e.

![$ [OH]$](http://latex.artofproblemsolving.com/4/6/e/46ea267a185fec752acd45fecae75ceecb95040f.png)












PP13. Stronger than Nesbitt's inequality:












PP14. Let






Proof 0 (synthetic - Andrei Theodor, very nice !). Denote









Proof 1 (synthetic). Denote




![$[AQ]$](http://latex.artofproblemsolving.com/9/0/b/90b276b00258efc6015a7c62e6f8c1edad3cd77d.png)


is an isosceles trapezoid,







Proof 2 (with vectors). Denote














Proof 3 (analytic). Suppose w.l.o.g.




and




the centroid





what is truly because we have in the first determinant


Otherwise, prove easily that




PP15 (the extension of RMO2, India). Let



![$[AA']$](http://latex.artofproblemsolving.com/f/8/3/f83bdc8e170d3bc867097c603fa03cf6edefbb4b.png)
of







Proof. Let









PP16. Solve for all


Proof 1. Applying the Cauchy-Schwarz's inequality obtain that

![$ \le\left[\left(2\sqrt{2}\right)^2+x+1\right]\cdot$](http://latex.artofproblemsolving.com/8/b/2/8b29ce2b907995ddb95d32b87bf0df872222fc47.png)






Proof 2.




![$8\cdot \left[2x+9+2\sqrt {x(x+9)}\right]=81(x+1)\iff$](http://latex.artofproblemsolving.com/e/3/e/e3e547b561e6c0d874f1667b88518d6406850fe7.png)






Proof 3.











PP17 (bzprules). Prove that

Proof. Let's have some weights





But how to do this? From the weighted-AM-GM inequality, we have that





solving the system of equations yields



![$\sqrt[51]{a^{102}b^{51}c^{51}d^{51}} = a^2bcd$](http://latex.artofproblemsolving.com/b/d/a/bda1f7685f49b26b476c1d803b3143dd07a0434a.png)
This method can be applied in general using the same ideas.
An easy extension. Prove that for any



Proof. Prove similarly that


PP18. Solve the system of the equations


Proof. Obseve that













In conclusion, appear two cases :

PP19. Solve the system of the equations


Proof.





Therefore, the initial system becomes



PP20. Prove that



Proof. Prove esily that



This post has been edited 320 times. Last edited by Virgil Nicula, Feb 24, 2019, 9:02 AM