307. Very nice proofs !

by Virgil Nicula, Jul 31, 2011, 11:50 PM

$\blacktriangleright$ PP1. Prove the well-known identity $\boxed{ab+bc+ca=s^2+r^2+4Rr}$ , where $2s=a+b+c$ .

Proof 1. $(s-a)(s-b)(s-c)=sr^2\iff$ $s^3-2s^3+s\sum bc-4Rsr=sr^2\iff$ $ab+bc+ca=s^2+r^2+4Rr$ .

Commentary. I used the Viete's relations and the identities $S=pr=\sqrt {s(s-a)(s-b)(s-c)}\ ,\ abc=4RS=4Rsr$ .

Proof 2. Prove easily that $ABI_a\sim AIC$ from where obtain $AI\cdot AI_a=bc\ (1)$ . I"ll use and evident relation $IA^2=(s-a)^2+r^2\ (2)$ .

In conclusion, $ab+bc+ca=bc+a(b+c)=$ $bc+s^2-(s-a)^2\stackrel{(2)}{=}$ $bc+s^2-\left(IA^2-r^2\right)=$ $s^2+r^2+\left(bc-IA^2\right)\stackrel{(1)}{=}$

$s^2+r^2+\left(AI\cdot AI_a-IA^2\right)=$ $s^2+r^2+AI\cdot\left (AI_a-AI\right)=$ $s^2+r^2+2\cdot IA\cdot IA^{\prime}=$ $s^2+r^2+4Rr$ .

Commentary. Without of the relations $(1)$ si $(2)$ I used and the relation $IA\cdot IA^{\prime}=2Rr$ - the power of $I$ w.r.t. the circumcircle $w$ of $\triangle ABC$ ,

where $\{A,A^{\prime}\}=AI\cap w$ . Can use (see the following proof) and well-known identity $s(s-a)+(s-b)(s-c)=bc$ a.s.o.

Proof 3. $\sum bc=\sum [s(s-a)+(s-b)(s-c)]\implies$ $\boxed{\sum bc=s^2+\sum (s-b)(s-c)}$ and $4Rsr=abc=\prod [s-(s-a)]=$

$s^3-s^3+s\cdot \sum (s-b)(s-c)-\prod (s-a)=$ $s\cdot\sum (s-b)(s-c)-sr^2\implies$ $\boxed{\sum (s-b)(s-c)=r^2+4Rr}$ .

Remark. $\sum bc=s^2+r^2+4Rr\iff$ $\sum (s-b)(s-c)=$ $r\sum r_a=$ $r(4R+r)\iff$ $\sum a(s-a)=2r(4R+r)$ .



$\blacktriangleright$ PP2. $\triangle ABC\ \implies\ \boxed{4S\sqrt 3\le a^2+b^2+c^2}\le 9R^2$ .

Proof. Using the well-known inequality $3(xy+yz+zx)\le (x+y+z)^2$ and the identity $16S^2=$ $\sum\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)$

obtain for $\left\{\begin{array}{c}
x:=b^2+c^2-a^2\\\
y:=c^2+a^2-b^2\\\
z:=a^2+b^2-c^2\end{array}\right\|$ that $3\cdot 16S^2=3\sum yz\le (x+y+z)^2=\left(a^2+b^2+c^2\right)^2$ $\implies$ $4S\sqrt 3\le a^2+b^2+c^2\le 9R^2$ .

Remark. $12r(2R-r)\le a^2+b^2+c^2\le 8R^2+4r^2$ .


$\blacktriangleright$ PP3. $\triangle ABC\ ,\ A\le 90^{\circ}\ \implies\ \boxed{\cos (B-C)\le\frac {2bc}{b^2+c^2}}\le 1$ .

Proof 1 (Mudok). $a^2=\left(b\cos C+c\cos B\right)^2\le \left(b^2+c^2\right)\left(\cos ^2B+\cos^2C\right)\iff$ $2a^2\le \left(b^2+c^2\right)\left(2+\cos 2A+\cos 2B\right)\iff$

$a^2\le \left(b^2+c^2\right)\left[1-\cos A\cos (B-C)\right]\iff$ $\left(b^2+c^2\right)\cos A\cos (B-C)\le b^2+c^2-a^2=2bc\cos A\iff$ $\cos (B-C)\le\frac {2bc}{b^2+c^2}$ .

Proof 2 (own). $(b-c)^2\cdot\cos A\ge 0\iff$ $\left(b^2+c^2\right)\cos A\ge 2bc\cdot\cos A\iff$ $\cos A\ge\frac {b^2+c^2-a^2}{b^2+c^2}\iff$ $1-\cos A\le\frac {a^2}{b^2+c^2}\iff$

$2\sin^2\frac A2\le\frac {a^2}{b^2+c^2}\iff$ $\boxed{\sin\frac A2\le\frac {a}{\sqrt{2\left(b^2+c^2\right)}}}\le 1$ . Using the well-known identity $\boxed{\ \cos\frac {B-C}{2}=\frac {b+c}{a}\cdot\sin\frac A2\ }$ obtain that

$\boxed{\cos\frac {B-C}{2}\le \frac {b+c}{\sqrt {2\left(b^2+c^2\right)}}}\le 1\iff$ $2\cos^2\frac {B-C}{2}\le\frac {(b+c)^2}{b^2+c^2}\iff$ $1+\cos (B-C)\le\frac {(b+c)^2}{b^2+c^2}\iff$ $\cos (B-C)\le\frac {2bc}{b^2+c^2}$ .

Proof 3 (metric - own). $\cos (B-C)=\cos B\cos C+\sin B\sin C=$ $\frac {a^2+c^2-b^2}{2ac}\cdot\frac {a^2+b^2-c^2}{2ab}+\frac {2S}{ac}\cdot\frac {2S}{ab}=$

$\frac {\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+16S^2}{4a^2bc}=$ $\frac {2\left[a^4-\left(b^2-c^2\right)^2\right]+2a^2\left(b^2+c^2-a^2\right)}{4a^2bc}\implies$ $\boxed{\cos (B-C)=\frac {a^2\left(b^2+c^2\right)-\left(b^2-c^2\right)^2}{2a^2bc}}$ .

In conclusion, $\cos (B-C)\le\frac {2bc}{b^2+c^2}\iff$ $\frac {a^2\left(b^2+c^2\right)-\left(b^2-c^2\right)^2}{2a^2bc}\le\frac {2bc}{b^2+c^2}\iff$ $a^2\left(b^2+c^2\right)^2-\left(b^2+c^2\right)\left(b^2-c^2\right)^2\le 4a^2b^2c^2\iff$

$a^2\left[\left(b^2+c^2\right)^2-4b^2c^2\right]\le\left(b^2+c^2\right)\left(b^2-c^2\right)^2\iff$ $a^2\left(b^2-c^2\right)^2\le\left(b^2+c^2\right)\left(b^2-c^2\right)^2\iff$ $\left(b^2-c^2\right)^2\left(b^2+c^2-a^2\right)\ge 0$ , what is truly.

Proof 4 (trigonometric - own). $\cos (B-C)\le\frac {2bc}{b^2+c^2}\iff$ $\cos (B-C)\le\frac {2\sin B\sin C}{\sin^2B+\sin^2C}\iff$

$\cos (B-C)\left(\sin^2B+\sin^2C\right)\le\cos (B-C)+\cos A\iff$ $\cos (B-C)(\cos 2B+\cos 2C)+2\cos A\ge 0\iff$

$\cos (B-C)\cos (B+C)\cos (B-C)+\cos A\ge 0\iff$ $\cos A\left[1-\cos^2(B-C)\right]\ge 0$ , what is truly.

Proof 5 (own). Add $ 1$ left/right to the required relation $\cos (B - C)\le \frac {2bc}{b^2 + c^2}$ and I"ll use the relation $ 1 + \cos x = 2\cos^2\frac x2$ $\implies$ $\left\|\ 2\cos^2\frac {B - C}2\le \frac {(b + c)^2}{b^2 + c^2}\ \right\|$ .

Multiply by $ 2\sin ^2\frac {B + C}{2} = 2\cos^2\frac A2 > 0$ and I"ll use the relations $ 2\sin\frac {B + C}{2}\cos\frac {B - C}{2} = \sin B + \sin C$ and $ \cos^2\frac A2 = \frac {s(s-a)}{bc}$ $\implies$

$ (\sin B + \sin C)^2\le \frac {(b + c)^2}{b^2 + c^2}\cdot\frac {2s(s - a)}{bc}$ . But $ \sin B = \frac {b}{2R}$ , $ \sin C = \frac {c}{2R}$ $ \Longleftrightarrow\ \left\|\ bc\left(b^2 + c^2\right)\le 4R^2\cdot 2s(s - a)\ \right\|$ . Multiply by $ r$ and use

the relation $ 4Rsr = abc$ $ \Longleftrightarrow\ \left\|\ rbc\left(b^2 + c^2\right)\le R\cdot abc\cdot 2(s - a)\ \right\|$ . Simplify by $ bc > 0$ and $ 2(s - a) = b + c - a$ $ \Longleftrightarrow\ \boxed {\frac rR\le\frac {a(b + c - a)}{b^2 + c^2}\ }$

$\Longleftrightarrow\ \frac {4(s - a)(s - b)(s - c)}{abc}\le \frac {2a(s - a)}{b^2 + c^2}$ $ \Longleftrightarrow\ 2\left(b^2 + c^2\right)(s - b)(s - c)\le a^2bc$ $ \Longleftrightarrow\ \left(b^2 + c^2\right)\left[a^2 - (b - c)^2\right]\le 2a^2bc$

$ \Longleftrightarrow\ a^2\left[\left(b^2 + c^2\right) - 2bc\right]\le\left(b^2 + c^2\right)(b - c)^2$ $ \Longleftrightarrow\ a^2(b - c)^2\le \left(b^2 + c^2\right)(b - c)^2$ $ \Longleftrightarrow\ \boxed {\ B = C\ \ \vee\ \ A\ \le\ 90^{\circ}\ }$ .

Remark. For the last one on right side : $ \boxed {\ \frac {2a(s - b)(s - c)}{s\left(b^2 + c^2\right)}\ \le\ \frac rR\ }\Longleftrightarrow$ $ \frac {2a(s - b)(s - c)}{s\left(b^2 + c^2\right)}\le\frac {4(s - a)(s - b)(s - c)}{abc}\Longleftrightarrow$

$ 2a^2bc\le 4s(s - a)(b^2 + c^2)\Longleftrightarrow$ $ 2a^2bc\le \left[(b + c)^2 - a^2\right](b^2 + c^2)$ $ \Longleftrightarrow a^2(b + c)^2\le (b + c)^2(b^2 + c^2)\Longleftrightarrow a^2\le b^2 + c^2$ $ \Longleftrightarrow \boxed {\ A\le 90^{\circ}\ }$ .

Proof 6 (Tiger100). Show easily that $ \cos (B-C)=\frac {b\cdot\cos B+c\cdot\cos C}{a}$ . Therefore, $\cos (B-C)\le\frac {2bc}{b^2+c^2}$ $\Longleftrightarrow$

$ \frac {b^2\cdot 2ac\cdot\cos B+c^2\cdot 2ab\cdot\cos C}{2a^2bc}\le \frac {2bc}{b^2+c^2}$ $ \Longleftrightarrow (b^2+c^2)\left[b^2(a^2+c^2-b^2)+c^2(a^2+b^2-c^2)\right]\le 4a^2b^2c^2$ .

Denote $\left\{\begin{array}{c}
 a^2=x\\\
b^2=y\\\
c^2=z\end{array}\right\|$ . Thus, $ (y+z)\left[x(y+z)-(y-z)^2\right]\le 4xyz\Longleftrightarrow$ $x\left[(y+z)^2-4yz\right]\le (y+z)(y-z)^2$ $ \Longleftrightarrow$

$ x(y-z)^2\le (y+z)(y-z)^2\Longleftrightarrow y=z\ \vee\ x\le y+z$ $ \Longleftrightarrow b=c\ \vee\ a^2\le b^2+c^2\Longleftrightarrow \boxed {\ B=C\ \vee\ A\le 90^{\circ}\ }$ .

Proof 7 (trigonometric - own). $\cos (B-C)\le\frac {2bc}{b^2+c^2}\iff$ $2\cos^2\frac {B-C}{2}\le$ $\frac {(b+c)^2}{b^2+c^2}\iff$ $(\sin B+\sin C)^2\le $ $\frac {(b+c)^2}{b^2+c^2}\cdot (1+\cos A)\iff$

$b^2+c^2\le 4R^2(1+\cos A)\iff$ $\sin^2B+\sin^2C\le $ $1+\cos A\iff$ $\cos 2B+\cos 2C+2\cos A\ge 0\iff$ $2\cos A [1-\cos (B-C)]\ge 0$ .

Proof 8 (synthetic - own). Denote the second intersection $S$ of the $A$-bisector with the circumcircle $w$ of $\triangle ABC$ and $SB=SC=l$ , $AS=L$ .

Suppose w.l.o.g. $b\ne c$ . Apply the Ptolemy's theorem to $ABSC$ and obtain that $l(b+c)=aL\ (*)$ . Denote the reflection $A'$ of $A$ w.r.t. the diameter $[NS]$ of $w$ .

Thus, $NS=\frac {|b^2-c^2|}{a}$ and $NS^2=2L^2\left[1-\cos (B-C)\right]$ . Therefore, $\cos (B-C)\le\frac {2bc}{b^2+c^2}\iff$ $\frac {\left(b^2-c^2\right)^2}{2(aL)^2}\ge$ $ 1-\frac {2bc}{b^2+c^3}\iff$

$(b-c)^2(b+c)^2\left(b^2+c^2\right)\ge$ $ 2a^2L^2(b-c)^2\stackrel{(*)}{\iff}$ $(b+c)^2\left(b^2+c^2\right)\ge$ $ 2l^2(a+b)^2\iff$ $b^2+c^2\ge$ $ 2l^2$ ,

what is truly because $A\le 90^{\circ}\le$ $ m\left(\widehat{BSC}\right)\iff$ $2l^2\le a^2\le b^2+c^2\implies$ $ b^2+c^2\ge 2l^2$ .

Remark. Prove that if in $\triangle ABC$ we have $A\le 90^{\circ}$ and $a\not\in (b,c)\cup (c,b)$ , then $\boxed{\frac bc+\frac cb\le\frac {a^2}{2rr_a}\le\frac Rr}$ (see PP5).

Indeed, $\frac bc+\frac cb\le\frac {a^2}{2rr_a}\iff$ $2\cdot\frac {S^2}{s(s-a)}\cdot\left(b^2+c^2\right)\le a^2bc\iff$ $4(s-b)(s-c)\left(b^2+c^2\right)\le 2a^2bc\iff$

$\left[a^2-(b-c)^2\right]\left(b^2+c^2\right)\le 2a^2bc\iff$ $a^2(b-c)^2\le (b-c)^2\left(b^2+c^2\right)\iff$ $(b-c)^2\left(b^2+c^2-a^2\right)\ge 0\iff$ $\boxed{(b-c)^2\cdot\cos A\ge 0}$ .

$\frac {a^2}{2rr_a}\le\frac Rr\iff$ $a^2\le 2Rr_a\iff$ $2a^2(s-a)\le 4RS\iff$ $2a(s-a)\le bc\iff$ $a(b+c-a)\le bc\iff$ $\boxed{(a-b)(a-c)\ge 0}$ .



$\blacktriangleright$ PP4. $\triangle ABC\ :\ 1\ge \boxed{\cos\frac {B-C}{2}\ge\sqrt {\frac {2r}{R}}}$ .

Proof 1 (trigonometric). $\cos\frac {B-C}{2}\ge \sqrt{\frac {2r}{R}}\iff$ $2\sin\frac {B+C}{2}\cos\frac {B-C}{2}\ge 2\cos\frac A2\cdot\sqrt {\frac {2r}{R}}\iff$ $\sin B+\sin C\ge2\cdot\sqrt {\frac {2r}{R}\cdot\frac {s(s-a)}{bc}}\iff$

$b+c\ge 4R\cdot\sqrt {\frac {2r}{R}\cdot\frac {as(s-a)}{abc}}\iff$ $b+c\ge \sqrt {16R^2\cdot \frac {2r}{R}\cdot\frac {as(s-a)}{4Rsr}}\iff$ $(b+c)^2\ge 4a(b+c-a)\iff$

$(b+c)^2-4a(b+c)+4a^2\ge 0\iff$ $(b+c-2a)^2\ge 0$ , what is truly.

Proof 2 (synthetic). Denote the second intersection $S$ of the (interior) $A$-bisector with the circumcircle of $\triangle ABC$ . Thus, $2R\cos\frac {B-C}{2}=$

$AS=IA+IS\ge 2\sqrt {IA\cdot IS}=$ $2\sqrt {2Rr}\implies$ $\cos\frac {B-C}{2}\ge\sqrt {\frac {2r}{R}}$ . In conclusion, $\boxed{\sqrt {\frac {2r}{R}}\le \cos\frac {B-C}{2}\stackrel{\left(A\le 90^{\circ}\right)}{\ \le\ }\frac {b+c}{\sqrt {2(b^2+c^2)}}}\le 1\ (*)$ .


$\blacktriangleright$ PP5. $\triangle ABC\ :\ 2\le \boxed{\frac cb+\frac bc\le\frac Rr}$ (Viorel Bandila).

Proof 1. $l^2_a=$ $\frac {4bcs(s-a)}{(b+c)^2}\le s(s-a)$ a.s.o.$\implies$ $h^2_a\le s(s-a)$ a.s.o. $\implies$ $h^2_b+h^2_c\le$ $ s(s-b)+s(s-c)=as$ $\implies$

$4S^2\left(\frac {1}{b^2}+\frac {1}{c^2}\right)\le as\implies$ $4S^2\left(\frac cb+\frac bc\right)\le sabc=4sRS\implies$ $sr\left(\frac cb+\frac bc\right)\le sR\implies$ $\frac cb+\frac bc\le\frac Rr$ .

Proof 2 (algebraic). If $\{x,y.z\}\subset (0,\infty )$ , then $\left\{\begin{array}{ccc}
\frac {1}{x+y}\le\frac {x+y}{4xy} & \iff & \frac {x+z}{x+y}\le\frac {(x+y)(x+z)}{4xy}\cdot\frac zz\\\\
\frac {1}{x+z}\le\frac {x+z}{4xz} & \iff & \frac {x+y}{x+z}\le\frac {(x+z)(x+y)}{4xz}\cdot\frac yy\end{array}\right\|\ \bigoplus\ \implies$

$\frac {x+z}{x+y}+\frac {x+y}{x+z}\le$ $\frac {(x+y)(x+z)(y+z)}{4xyz}\stackrel{(\mathrm{Ravi})}{\implies}\frac bc+\frac cb\le \frac {abc}{4(s-a)(s-b)(s-c)}=\frac {4Rsr}{4sr^2}\implies$ $\frac bc+\frac cb\le\frac Rr$ .


An easy extension (own). $\boxed{\frac cb+\frac bc\le\frac cb\cdot\frac {2\left(a^2+c^2\right)}{(a+c)^2}+\frac bc\cdot\frac {2\left(a^2+b^2\right)}{(a+b)^2}\stackrel{\mathrm{(ABC\ -\ acute)}}{\le} \frac {c}{b\cdot\cos^2\frac {A-C}{2}}+\frac {b}{c\cdot\cos^2\frac {A-B}{2}}\le\frac Rr}$ .

Proof. $l^2_a=$ $\frac {4bcs(s-a)}{(b+c)^2}\le s(s-a)$ a.s.o.$\implies$ $l^2_b+l^2_c\le$ $ s(s-b)+s(s-c)=as$ $\implies$

$4S^2\left[\frac {1}{b^2\cdot\sin^2\left(A+\frac B2\right)}+\frac {1}{c^2\cdot\sin^2\left(B+\frac C2\right)}\right]\le as\implies$ $4S^2\left(\frac {c}{b\cdot\cos^2\frac {A-C}{2}}+\frac {b}{c\cdot\cos^2\frac {A-B}{2}}\right)\le sabc=4sRS\implies$

$\boxed{\frac {c}{b\cdot\cos^2\frac {A-C}{2}}+\frac {b}{c\cdot\cos^2\frac {A-B}{2}}\le\frac Rr}$ . Using the chain of inegalities from $(*)$ obtain easily the required chain,


$\blacktriangleright$ PP6. $\triangle ABC\ ,\ A=90^{\circ}\ :\ \boxed{h_a+\max\{b,c\}\le\frac {3a\sqrt 3}{4}}$ (Virgil Nicula).

Proof 1 (synthetic). Denote the second intersection $D$ of the circumcircle $C(O,R)$ with the $A$-altitude of $\triangle ABC$ .

Apply in $\triangle ABC$ the remarkable inequality $2s\le 3R\sqrt 3$ , where $s=h_a+b$ and $a=2R\ \ :\ \ h_a+b\le \frac {3a\sqrt 3}{4}$ .

Proof 2 (by extremum). Suppose w.l.o.g. that $c\le b$ and $a$ is constant. Thus $b^2+c^2=a^2$ (constant) and $\left(h_a+b\right)\ -\ \max\ \iff$

$\left(\frac {bc}{a}+b\right)\ -\ \max\ \iff$ $b(a+c)\ -\ \max\ \iff$ $b^2(a+c)^2\ -\ \max\ \iff$ $(a-c)(a+c)^3\ -\ \max\ \iff$

$(a-c)=\frac {a+c}{3}=\frac a2$ because $(a-c)+3\cdot\frac {a+c}{3}=2a$ (constant). Thus, $c=\frac a2$ , $b=\frac {a\sqrt 3}{2}$ , $h_a=\frac {a\sqrt 3}{4}$ and $h_a+b=\frac {3a\sqrt 3}{4}$ .



$\blacktriangleright$ PP7. Prove that $\boxed{\frac{m_{a}}{h_{a}}\ge\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)}$ , where $m_{a}$ , $h_{a}$ are the lengths of the $A$-median and the $A$-altitude respectively of the given $\triangle ABC$ .

Remark.This inequality is well-known and is equivalently with $\boxed{\frac {b^{2}+c^{2}}{4R}\le m_a}\stackrel{(\mathrm{acute})}{\ \le\ }\frac {a(s-a)}{2r}$ .


Proof 1. Let diameters $[AA']$ , $[BB']$ in circumcircle $C(O,R)$ of $\triangle ABC$ . Apply theorem of median in $\triangle AMA'$ to $A$-median, i.e. $B'C^2=4\cdot MO^{2}=$

$2\left(m^{2}_a+A'M^{2}\right)-4R^{2}$ $\Longleftrightarrow$ $4R^{2}-a^{2}=2\cdot\left(m_a^{2}+A'M^{2}\right)-4R^{2}$ $\Longleftrightarrow$ $\boxed{2\left(AM^{2}+A'M^{2}\right)=8R^{2}-a^{2}}\ (*)$. But $AM+A'M\ge 2R$

with equality iff $b=c$ or $A=90^{\circ}\iff AM+A'M\ge 2R$ $\Longleftrightarrow$ $2\cdot \left(AM^{2}+A'M^{2}\right)+4\cdot AM\cdot A'M\ge 8R^{2}$ $\stackrel{(*)}{\Longleftrightarrow}$ $\boxed{4\cdot AM\cdot A'M\ge a^{2}}\ (1)$ .

Observe that $\left\{\begin{array}{c}A'B^{2}=4R^{2}-c^{2}\\\\ A'C^{2}=4R^{2}-b^{2}\end{array}\right\|$ and $bc=2Rh_{a}$ . Apply theorem of median to $A$-median in $\triangle ABC$ and to $A'$-median in $\triangle A'BC$ :

$\left\{\begin{array}{c}4\cdot AM^{2}=2\left(b^{2}+c^{2}\right)-a^{2}\\\\ 4\cdot A'M^{2}=2\left(8R^{2}-b^{2}-c^{2}\right)-a^{2}\end{array}\right\|\ \stackrel{(1)}{\implies}$ $\left[2\left(b^{2}+c^{2}\right)-a^{2}\right]\cdot\left[2\left(8R^{2}-b^{2}-c^{2}\right)-a^{2}\right]\ge a^{4}$ $\Longleftrightarrow$

$\left(b^{2}+c^{2}\right)\left(8R^{2}-b^{2}-c^{2}\right)\ge 4a^{2}R^{2}$ $\Longleftrightarrow$ $4R^{2}\left[2\left(b^{2}+c^{2}\right)-a^{2}\right]\ge \left(b^{2}+c^{2}\right)^{2}$ $\Longleftrightarrow$ $\boxed{\ 4Rm_{a}\ge b^{2}+c^{2}\ }$ $\Longleftrightarrow$

$2\cdot 2Rh_{a}\cdot m_{a}\ge h_{a}\left(b^{2}+c^{2}\right)$ $\Longleftrightarrow$ $2\cdot bc\cdot m_{a}\ge h_{a}\left(b^{2}+c^{2}\right)$ $\Longleftrightarrow$ $\boxed{\ \frac{m_{a}}{h_{a}}\ge \frac{b^{2}+c^{2}}{2bc}\ }$ , with equality if and only if $b=c$ or $A=90^{\circ}$.

Proof 2. Suppose w.l.o.g. $b\ne c$ . Denote $\phi=m\left(\widehat{AMB}\right)$ and $D\in BC$ for which $AD\perp BC$ . Thus, $\left|b^2-c^2\right|=\left|DB^2-DC^2\right|=$ $a|DB-DC|=$

$2a\cdot MD\implies$ $\boxed{MD=\frac {\left|b^2-c^2\right|}{2a}}$ and $\cot\phi =\frac {DM}{DA}=$ $\frac {\left|b^2-c^2\right|}{2ah_a}\implies$ $\boxed{\cot\phi =\frac {\left|b^2-c^2\right|}{4S}}$ . Thus, $bc\ge 2S\iff$ $\frac {\left|b^2-c^2\right|}{2S}\ge \frac {\left|b^2-c^2\right|}{bc}\iff$

$2\cot\phi\ge\left|\frac bc-\frac cb\right|\iff$ $4\cot^2\phi\ge\left(\frac bc+\frac cb\right)^2-4\iff$ $4\left(1+\cot^2\phi\right)\ge \left(\frac bc+\frac cb\right)^2\iff$ $\frac{2}{\sin\phi}\ge \frac bc+\frac cb\iff$ $\frac {m_a}{h_a}\ge\frac 12\cdot\left(\frac bc+\frac cb\right)$ .

Remark. The proposed inequality can write $\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)\le \frac{m_{a}}{h_{a}}$. It is well-known Bandila's inequality $\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)\le \frac{R}{2r}$, with equality iff $b=c$.

From $m_a\le R+OM$ (in an acute triangle) obtain that $m_a\le R(1+\cos A)\iff$ $m_a\le2R\cos^2\frac A2\iff$ $2rm_a\le4Rr\cos^2\frac A2=$

$4R(s-a)\tan\frac A2\cos^2\frac A2=$ $4R(s-a)\sin\frac A2\cos\frac A2=$ $2R(s-a)\sin A=a(s-a)\implies$ $\boxed{m_a\le\frac {a(s-a)}{2r}}$ .

Observe that $2r\cdot \sum m_a\le\sum a(s-a)=2r(4R+r)\implies$ $\sum m_a\le 4R+r\implies$ $\boxed{m_a+m_b+m_c\le r_a+r_b+r_c}$ and

$2R\cdot\sum m_a\ge \sum \frac {b^2+c^2}{2}=\sum a^2\implies$ $\boxed{m_a+m_b+m_c\ge\frac  {a^2+b^2+c^2}{2R}}$ . From $m_a\le R(1+\cos A)$ a.s.o. obtain that

$\sum am_a\le\sum  aR(1+\cos A)=$ $2Rs+R\cdot\sum a\cdot\cos A=2Rs+2R^2\cdot\sum\sin A\cos A=$ $2Rs+R^2\cdot\sum\sin 2A=$ $2Rs+$

$4R^2\cdot \prod\sin A=$ $2Rs+2S=$ $2Rs+2sr$ $\implies$ $6sr\le\boxed{am_a+bm_b+cm_c\le 2s(R+r)}$ . From $4m_a^2=2\left(b^2+c^2\right)-a^2\ge$

$(b+c)^2-a^2=$ $4s(s-a)\implies$ $\boxed{m_a\ge s(s-a)}\ge l_a\ge h_a$ . In conclusion, $\boxed {m_a^2+m_b^2+m_c^2\ge s^2}$ $\ge\sum  l_a^2$ .

$\boxed{\blacktriangleleft\ *\ \blacktriangleright}$ Research theme. Compare the ratios $\frac{m_{a}}{h_{a}}$ and $\frac{R}{2r}$ . See
here


$\blacktriangleright$ PP8. The $A$-bisector of $\triangle ABC$ intersects the circumcircle of $\triangle ABC$ second time at $A'$ . Prove that $A'A^2-A'B^2=bc$ .

Proof 1 (synthetic). Denote incenter $I$ and exincenter $I_a$ of $\triangle ABC$ . Prove easily that $A'B=A'C=A'I=A'I_a$ , i.e. the quadrilateral

$IBI_aC$ is inscribed in a circle $w$ with the center $A'$ and the radius $A'B$ . Observe that $\triangle AIC\sim\triangle ABI_a$ . In conclusion, $\frac {AC}{AI_a}=\frac {AI}{AB}$ ,

i.e. $\boxed{AI\cdot AI_a=bc}\ (*)$ . The power of $A$ w.r.t. $w$ is $p_w(A)=AI\cdot AI_a=A'A^2-A'B^2\stackrel{(*)}{\iff}$ $A'A^2-A'B^2=bc$ .

Proof 2 (synthetic). Let $D\in AI\cap BC$ . Prove easily that $\triangle ABD\sim \triangle AA'C$ . So $\frac{AB}{AA'}=\frac{AD}{AC}\Longleftrightarrow \boxed{AD\cdot AA'=bc} \ (1)$ .

Since the line $A'B$ is tangent to the circumcircle of $\triangle  ABD$ obtain that $A'D\cdot A'A=A'B^2\ (2)$ . Adding these two relations

$(1)$ and $(2)$ side by side obtain that $A'A\cdot (AD+A'D)=A'B^2+bc\iff$ $A'A^2-A'B^2=bc$ .

Proof 3 (metric). $A'A^2-A'B^2=$ $A'A^2-A'I^2=$ $IA(A'A+A'I)=$ $ AI\cdot AI_a$ $\implies$ $ \boxed{A'A^2-A'B^2=AI\cdot AI_a}$ .

$\sqrt{\frac {s(s-a)}{bc}}=\cos\frac A2=$ $\frac {s-a}{AI}=\frac {s}{AI_a}=$ $\sqrt{\frac {s(s-a)}{AI\cdot AI_a}}\implies$ $\boxed{AI\cdot AI_a=bc}$ . In conclusion, $A'A^2-A'B^2=bc$ .

Proof 4 (metric). $A'A^2-A'B^2=$ $A'A^2-A'I^2=$ $(A'A-A'I)[(A'I+IA)+A'I]=$ $AI\cdot (AI+2\cdot A'I)=$ $AI^2+$

$2\cdot IA\cdot IA'=$ $\frac {bc(s-a)}{s}+4Rr=$ $bc-\frac {abc}{s}+4Rr=$ $bc-4Rr+4Rr=bc$ . In conclusion, $A'A^2-A'B^2=bc$ .

Proof 5 (trigonometric). $A'A^2-A'B^2=4R^2\cdot\left[\sin^2\left(B+\frac A2\right)-\sin^2\frac A2\right]=$ $4R^2\sin\left(B+\frac A2+\frac A2\right)\sin\left(B+\frac A2-\frac A2\right)=$

$4R^2\sin (B+A)\sin B=$ $4R^2\sin C\sin B=$ $2R\sin B\cdot 2R\sin C=AC\cdot AB\implies$ $A'A^2-A'B^2=bc$ .



Lemma. Let $\{A,C,B,D\}\subset d$ be four points on the line $d$ in this order. Then $\frac {\overline{CA}}{\overline{CB}}=-\frac {\overline{DA}}{\overline{DB}}$ - "harmonical

division
" on $d$ $\iff$ $\boxed{MA^2-MC^2=\overline{AC}\cdot \overline{AD}=\overline{AB}\cdot \overline{AM}}$ , where $M$ is the midpoint of $[CD]$ .


Proof. Define by $X(x)$ , the point $X$ with the affix $x$ . Then $\overline{XY}=y-x$ and $2m=d-c$ . Prove easily that $\frac {\overline{CA}}{\overline{CB}}=-\frac {\overline{DA}}{\overline{DB}}\iff$

$(a+b)(c+d)=2(ab+cd)\iff$ $(c-a)(d-a)=(b-a)\left(\frac {c+d}{2}-a\right)\iff$ $\overline{AC}\cdot \overline{AD}=\overline{AB}\cdot \overline{AM}$ .

Proof 6. Observe that $\frac {DI}{DI_a}=\frac {r}{r_a}=$ $\frac {s-a}{s}=\frac {AI}{AI_a}$ , what means that the points $\{A,I,D,I_a\}$ form an harmonical division

on the $A$-bisector of $\triangle ABC$ , where $A'$ is the midpoint of $[II_a]$ . Using upper lemma obtain that $AI\cdot AI_a=AD\cdot AA'=bc$ .



$\blacktriangleright$ PP9. Let $ABCD$ be a cyclical convex quadrilateral. Denote the midpoints $E$ , $F$ , $G$ , $H$ of corresponding arcs for the chords

$[AB]$ , $[BC]$ , $[CD]$ , $[DA]$ respectively. Suppose that $EG\cdot FH=AC\cdot BD$ . Prove hat $EG\cap FH\cap AC\cap BD\ne\emptyset$ .


Proof. Denote the length $r$ of the circumradius. Observe that

$\left\{\begin{array}{c}
EF\cdot GH=2r\sin \frac D2\cdot 2r\sin \frac B2=4r^2\sin\frac B2\cos\frac B2=2r^2\cdot \sin B=r\cdot AC\\\\
EH\cdot FG=2r\sin \frac C2\cdot 2r\sin \frac A2=4r^2\sin\frac A2\cos\frac A2=2r^2\cdot \sin A=r\cdot BD\end{array}\right\|$ . Apply the Ptolemy's theorem to $EFGH\ :$

$r(AC+BD)=EF\cdot GH+EH\cdot FG=$ $EG\cdot FH=AC\cdot BD$ $\implies$ $AC\cdot BD=r\cdot (AC+BD)\ge$ $2r\sqrt {AC\cdot BD}$

$\implies$ $4r^2\ge AC\cdot BD\ge 4r^2\implies$ $AC\cdot BD=4r^2\implies$ $AC=BD=2r\implies$ $ABCD$ is rectangle $\implies$ $EG\cap FH\cap AC\cap BD\ne\emptyset$ .



PP10. Let $ABC$ be an acute triangle with incenter $I$ , circumcircle $w=C(O,R)$ and

orthocenter $H$ . Let $\{A,A'\}=AI\cap w$ . Prove that $A=60^{\circ}\implies$ $ AA'=HB+HC$ .


Proof 1 (trigonometric). Observe that $AA'=2R\sin\left(B+\frac A2\right)=2R\cos\frac {B-C}{2}$ and $HB+HC=2R(\cos B+\cos C)=$

$4R\cos\frac {B+C}{2}\cos \frac {B-C}{2}=2R\cos\frac {B-C}{2}$ because $B+C=120^{\circ}$ . In conclusion, $HB+HC=AA'$ .

Proof 2 (synthetic). Denote the second intersection $E$ of $BH$ with the circle $w$. Observe that the triangle $HEC$ is equilateral and $ABA^{\prime}E$

is a trapezoid with $AB\parallel A^{\prime}E$ , from where obtain that $AA^{\prime}=BE=BH+HE=BH+HC$ , i.e $AA^{\prime}=HB+HC$ .

Remark. Denote the second intersection $F$ of $CH$ with the circle $w$ . Prove easily that : $BF\parallel AA'\parallel CE$ ; $A'E\parallel AB$ and $A'E=b$ ;

$A'F\parallel AC$ and $A'F=c$ ; $AH=AF=A'C=A'B=AE$ ; $AA'=BE=CF=HB+HC$ ; $\boxed{HA=HA'}$ .


An equivalent enunciation. Let $ABC$ be a triangle with $A=120^\circ$ , the circumcenter $O$ and the orthocenter $H$ . Prove that $OH=AB+AC$ .

Proof (metric). $a=R\sqrt 3\ ,\ a^2=b^2+c^2+bc\ ,\ GO^2=R^2-\frac {a^2+b^2+c^2}{9}$ and $HO=3\cdot GO\implies$ $GO^2=\frac {a^2}{3}-\frac {\sum a^2}{9}=$

$\frac {2a^2-b^2-c^2}{9}=$ $\frac {2(b^2+c^2+bc)-b^2-c^2}{9}=$ $\frac {b^2+c^2+2bc}{9}=$ $\frac {(b+c)^2}{9}\implies$ $GO= \frac {b+c}{3}$ $\implies$ $ HO=b+c$ .



PP11 (Selection Team of BOSNIA-HERTEGOVINA, 2011). Let $ABC$ be a triangle for which $2a=b+c$ . Denote

its incenter $I$ and the midpoints $M$ , $N$ of the sides $[AB]$ , $[AC]$ respectively. Prove that $AMIN$ is a cyclical quadrilateral.


Proof 1. Denote the circumcircle $w=C(O,R)$ for $\triangle ABC\ ,\ \{A,S\}=AI\cap w$ and the diameter $[NS]$ of $w$ . Hence $IA=IS\iff$ $IA^2=IA\cdot IS\iff$

$IA^2=2Rr\iff$ $bc-4Rr=2Rr\iff$ $bc=6Rr\iff$ $2sbc=3\cdot 4Rsr=3abc\iff$ $2s=3a\iff b+c=2a$ . In conclusion,

$2a=b+c\iff$ $I$ is the midpoint of $[AS]\iff IM\parallel SB\ \ \wedge\ \ IN\parallel SC\iff$ $\widehat {MIN}\equiv\widehat{BSC}\iff$ $AMIN$ is a cyclical quadrilateral.

I used the notation $2s=a+b+c$ , an well-known relation $AI^2=\frac {bc(s-a)}{s}=bc-\frac {abc}{s}=bc-4Rr$ and the power of $I$ w.r.t. $w\ : p_w(I)=-2Rr$ .

Remark. $IG\parallel BC\iff h_a=3r\iff ah_a=3ar \iff$ $2sr=3ar\iff 2s=3a\iff b+c=2a$ . In the triangle $ABC$ avem $2a=b+c$ .

Otherwise. Is well-known $AD\cdot AS=bc$ , where $D\in AI\cap BC$ . The incenter $I$ is the midpoint of $AS]\iff$ $bc=AD\cdot AS=2\cdot AD\cdot AI=$

$AD^2\cdot \frac {b+c}{s}\iff$ $bc=\frac {b+c}{s}\cdot \frac {4bcs(s-a)}{(b+c)^2}\iff$ $b+c=4(s-a)\iff b+c=2(b+c-a)\iff b+c=2a$ .



PP12 (France, 1999). Let $\triangle ABC$ , $H$ - its orthocenter, $O$ - its circumcenter, $R$ - its circumradius. Let $A_1$ be the reflection of $A$ across $BC$ .

Let $B_1$ be the reflection of $B$ across $CA$ . Let $C_1$ be the reflection of $C$ across $AB$ . Prove that the points $A_1\in B_1C_1\ \iff\ OH=2R$ .


Proof. Let $ X,Y,Z$ be the projections of the nine-point center $ \mathcal E$ on $ BC,CA,AB$ respectively. If $ M,N,P$ are the midpoints of $ BC,CA,AB$ respectively and $ D,E,F$

are the feet of the perpendiculars from $ A,B,C$ on the opposite sides, then $ X,Y,Z$ are the midpoints of $ MD,NE,PF$ respectively. Use vectors to show that

$XY\parallel A_1B_1$, $ YZ\parallel B_1C_1$ and $ ZX\parallel C_1A_1$. This means that $ A_1,B_1,C_1$ are collinear $ \Longleftrightarrow$ $ X,Y,Z$ are collinear $ \Longleftrightarrow$ the projections of $ \mathcal E$ on the sides of

$\triangle\ ABC$ are collinear $ \Longleftrightarrow \mathcal E$ lies on the circumcircle of $ ABC$ (using reciprocally the Simson's line) $ \Longleftrightarrow$ $ \frac {OH}{2} = R$, i.e. $ OH = 2R$ . I"ll show now only what

is missing from the Grobber's proof, i.e. $ A_1B_1\parallel XY$ . Indeed, since the nine-point center is the middlepoint of the segment $ [OH]$, obtain

$ \left\{\begin{array}{ccccc} 2\cdot\overline {\mathcal EX} & = & \overline {HD} + \overline {OM} & = & \overline {HD} + \frac 12\cdot\overline {AH} \\
 \\
2\cdot \overline {\mathcal EY} & = & \overline {HE} + \overline {ON} & = & \overline {HE} + \frac 12\cdot\overline {BH}\end{array}\right\|$ $ \implies$ $ \frac {\overline {\mathcal EX}}{\overline {\mathcal EY}} =$ $ \frac {\overline {HD} + \left(\overline {AH} + \overline {HD}\right)}{\overline {HE} + \left(\overline {BH} + \overline {HE}\right)} =$ $ \frac {\overline {HD} + \overline {AD}}{\overline {HE} + \overline {BE}} =$ $ \frac {\overline {HD} + \overline {DA_1}}{\overline {HE} + \overline {EB_1}} =$ $ \frac {\overline {HA_1}}{\overline {HB_1}}$ $ \implies$

$ \frac {\overline {\mathcal EX}}{\overline {\mathcal EY}} =$ $ \frac {\overline {HA_1}}{\overline {HB_1}}$, i.e. $ \triangle\ X\mathcal EY\sim\triangle\ A_1HB_1$. In conclusion, $ A_1B_1\parallel XY\ .$
I like very much the Grobber's proof.


PP13. Stronger than Nesbitt's inequality: $\boxed{\ \frac {a}{b+c}+\frac {b}{c+a}+\frac {c}{a+b}\ge\frac 52-\frac {2\cdot\sum bc}{\sum a^2+\sum bc}\ge \frac 52-\sqrt{\frac {\sum bc}{\sum a^2}}\ge \frac 32\ }\ .$

$\blacktriangleright\ \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}$ $+\frac{2(ab+bc+ac)}{a^2+b^2+c^2+ab+bc+ac}=$ $\sum\frac{ a^2}{a(b+c)}+\frac{2\sum ab}{\sum a^2+\sum ab}\ge$

$\frac{(\sum a)^2}{2\sum ab}+\frac{2\sum ab}{\sum a^2+\sum ab}=$ $\frac{1}{2}+\frac{\sum a^2+\sum ab}{2\sum ab}+\frac{2\sum ab}{\sum a^2+\sum ab}\ge $ $\frac{1}{2}+2=\frac{5}{2}\ .$

$\blacktriangleright\ \frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\sqrt{\frac{ab+bc+ca}{a^2+b^2+c^2}}\ge$ $\frac{(\sum a)^2}{2\sum ab}+\sqrt{\frac{\sum ab}{\sum a^2}}=$ $1+\frac{\sum a^2}{2\sum ab}+\sqrt{\frac{\sum ab}{\sum a^2}}=$

$1+\frac{1}{2}\left(\frac{\sum a^2}{\sum ab}+\sqrt{\frac{\sum ab}{\sum a^2}}+\sqrt{\frac{\sum ab}{\sum a^2}}\right)\ge$ $ 1+\frac{3}{2}=\frac{5}{2}\ .$[/color]


PP14. Let $ ABCD $ be a rhombus. Let $ P\in (BC) $ and $Q\in (CD)$ such that $BP = CQ$ . Prove that the centroid of $\triangle APQ$ lies on $ (BD)$ .

Proof 0 (synthetic - Andrei Theodor, very nice !). Denote $X\in AP\cap BD$ and $Y\in AQ\cap BD$ . Observe that $\frac {XP}{XA}+\frac {YQ}{YA}=$

$\frac {BP}{AD}+\frac {DQ}{AB}=$ $\frac {BP}{BC}+\frac {PC}{BC}=1$ . From an well-known property obtain that the centroid $G$ of $\triangle ABC$ belongs to $XY$ , i.e. $G\in BD$ .


Proof 1 (synthetic). Denote $R\in (AD)$ so that $AR=BP=CQ$ , $S\in QR\cap BD$ , the midpoint $T$ of $[AQ]$ and $G\in BD\cap PT$ . Observe that $ACQR$

is an isosceles trapezoid, $TS$ is the $Q$-middle line in $\triangle AQR$ and $TS\parallel BP$ with $\frac {GP}{GT}=\frac {BP}{TS}=\frac {AR}{TS}=2$ , i.e. $G$ is the centroid of the triangle $APQ$ .

Proof 2 (with vectors). Denote $M\in (BD)$ so that $CPMQ$ is a parallelogram. Observe that $BP=PM=CQ$ . Thus,

$\overrightarrow{AP} -\overrightarrow{AM}=$ $\overrightarrow{MP}=$ $ \overrightarrow{QC}=\overrightarrow{AC}-\overrightarrow{AQ}$ , i.e. the triangles $APQ$ and $AMC$ have a common $A$-median $AS$ , where

$S\in PQ\cap CM$ . Hence these triangles have and a common centroid $G$ , where $G\in AS\cap MD$ , i.e. $G\in BD$ .

Proof 3 (analytic). Suppose w.l.o.g. $AB=1\ ,\ m\left(\widehat{BAD}\right)=\phi <90^{\circ}$ and $A(0,0)$ , $B(\cos\phi ,\sin\phi )$ , $C(1+\cos\phi , \sin\phi)$

and $D(1,0)$ . For $BP=CQ=r<1$ obtain easily that $P(1-r+\cos\phi , \sin\phi )$ and $Q(1+r\cos\phi , r\sin\phi )$ .Therefore,

the centroid $G_{APQ}\left(\frac {2-r+(1+r)\cos\phi}{3},\frac {(1+r)\sin\phi}{3}\right)\in (BD)$ $\iff$ $\left|\begin{array}{ccc}
1 & 0 & 1\\\\
\cos\phi & \sin\phi & 1\\\\
2-r+(1+r)\cos\phi & (1+r)\sin\phi & 3\end{array}\right|=0$

$\iff \left|\begin{array}{ccc}
1 & 0 & 1\\\\
\cos\phi & 1 & 1\\\\
2-r+(1+r)\cos\phi & (1+r) & 3\end{array}\right|=0$ $\iff \left|\begin{array}{ccc}
1 & 0 & 1\\\\
0 & 1 & 1\\\\
2-r & 1+r & 3\end{array}\right|+\cos\phi\cdot \left|\begin{array}{ccc}
0 & 0 & 1\\\\
1 & 1 & 1\\\\
1+r & 1+r & 3\end{array}\right|=0$ ,

what is truly because we have in the first determinant $C_3=C_1+C_2$ and in the second determinant $C_1=C_2$ .

Otherwise, prove easily that $G\in BD$ $\iff$ $y_G=\frac {\sin\phi}{\cos\phi -1}\cdot (x_G-1)$ , i.e. $(1+r)\sin\phi=\frac {\sin\phi}{\cos\phi -1}\cdot (\cos\phi -1)(1+r)$ .



PP15 (the extension of RMO2, India). Let $\triangle ABC$ with circumcircle $w$ and incentre $I$ . Let $[AA']$ be a diameter

of $w$ . Denote $D\in BC$ for which $ID\perp BC$ and $\{A,S\}=AI\cap w$ . Show that $A'I$ and $SD$ intersect on $w$ .


Proof. Let $L\in SD\cap A'I$ . Thus $\left\{\begin{array}{c}
 AA'=2R\ ;\ ID=r\\\\
IA\cdot IS\ =\ 2Rr\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
\frac {ID}{AI}=\frac {IS}{AA'}\\\\
\widehat{SID}\equiv\widehat{A'AI}\end{array}\right\|$ $\stackrel{(s.a.s)}{\implies}$

$\triangle ISD\sim$ $\triangle AA'I\ \implies\ \widehat{ISD}$ $\equiv\widehat{AA'I}\implies AA'SL$ is cyclically $\implies\ L\in w$ .



PP16. Solve for all $x\in\mathbb R$ the equation $\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}$ .

Proof 1. Applying the Cauchy-Schwarz's inequality obtain that $\left(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}\right)^2=\left(2\sqrt{2}\cdot \frac{1}{\sqrt{x+1}}+\sqrt{x+1}\cdot \frac{\sqrt{x}}{\sqrt{x+1}}\right)^2$ $ \le\left[\left(2\sqrt{2}\right)^2+x+1\right]\cdot$

$\left(\frac{1}{x+1}+\frac{x}{x+1}\right)=x+9$ $\Longleftrightarrow$ $\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}\leqslant\sqrt{x+9}$ . In conclusion, $\frac {2\sqrt 2}{\frac {1}{\sqrt {x+1}}}=\frac {\sqrt {x+1}}{\frac {\sqrt x}{\sqrt {x+1}}}\iff $ $2\sqrt {2x}=\sqrt {x+1}\iff$ $\boxed{x=\frac{1}{7}}$ .

Proof 2. $\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\iff$ $\frac{2\sqrt{2}}{\sqrt{x+1}}=\sqrt{x+9}-\sqrt x\iff$ $\frac{2\sqrt{2}}{\sqrt{x+1}}=\frac {9}{\sqrt {x+9}+\sqrt x}\iff$

$2\sqrt 2\left(\sqrt {x+9}+\sqrt x\right)=9\sqrt {x+1}\iff$ $8\cdot \left[2x+9+2\sqrt {x(x+9)}\right]=81(x+1)\iff$ $16\cdot\sqrt {x(x+9)}=65x+9\iff$

$256x(x+9)=(65x+9)^2\iff$ $3969x^2-1134x+81=0\iff$ $49x^2-14x+1=0\iff$ $(7x-1)^2=0\iff$ $\boxed{x=\frac 17}$ .

Proof 3. $\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\iff$ $\frac{2\sqrt{2}}{\sqrt{x+1}}=\sqrt{x+9}-\sqrt x\iff$ $\frac{2\sqrt{2}}{\sqrt{x+1}}=\frac {9}{\sqrt {x+9}+\sqrt x}\iff$

$2\sqrt {2(x+9)}=9\sqrt {x+1}-2\sqrt {2x}\iff$ $8(x+9)=81(x+1)+8x-36\sqrt {2x(x+1)}\iff$ $36\sqrt {2x(x+1)}=81x+9\iff$

$4\sqrt {2x(x+1)}=9x+1\iff$ $32x(x+1)^2=81x^2+18x+1\iff$ $49x^2-14x+1=0\iff$ $(7x-1)^2=0\iff$ $\boxed{x=\frac 17}$ .



PP17 (bzprules). Prove that $\{a,b,c,d\}\subset\mathbb R^*_+\ \implies\ a^4b+b^4c+c^4d+d^4a\ge a^2bcd+ab^2cd+abc^2d+abcd^2$ .

Proof. Let's have some weights $w_1, w_2, w_3, w_4$ , i.e. $w_k\ge 0\ ,\ k\in\overline{1,4}$ and $w_1+w_2+w_3+w_4=1$ . We also want them such that

$w_1a^4b+w_2b^4c+w_3c^4d+w_4d^4a \geq a^2bcd$ and any cyclic permutation of the weights gives another inequality, for example

$w_2a^4b+w_3b^4c+w_4c^4d+w_1d^4a \geq ab^2cd$ a.s.o. If we look at all the 4 cyclic permutations and add those inequalities we get our inequality.

But how to do this? From the weighted-AM-GM inequality, we have that $w_1a^4b+w_2b^4c+w_3c^4d+w_4d^4a \geq $ $\left(a^4b\right)^{w_1}\left(b^4c\right)^{w_2}\left(c^4d\right)^{w_3}\left(d^4a\right)^{w_4}=$

$a^{4w_1+w_4}b^{4w_2+w_1}c^{4w_3+w_2}d^{4w_1+w_3}$ . If we could get the RHS to be equal to $a^2bcd$ , then that'd be awesome. So then it's just solving the system of equations

$\left\{\begin{array}{ccc}
4w_1+w_4 & = & 2\\\
4w_2+w_1 & = & 1\\\
4w_3+w_2 & = & 1\\\
4w_4+w_3 & = & 1\end{array}\right\|$ . Exist an unique solution to this system and we can clearly see that this quad of weights satisfies everything we want. For the inequality,

solving the system of equations yields $\frac {w_1}{23}=\frac {w_2}{7}=\frac {w_3}{11}=$ $\frac {w_1}{10}=\frac {1}{51}\implies$ $\frac{23a^4d+7b^4c+11c^4d+10d^4a}{51} \geq $ $\sqrt[51]{a^{102}b^{51}c^{51}d^{51}} = a^2bcd$ .

This method can be applied in general using the same ideas.


An easy extension. Prove that for any $n\in\mathbb N$ and $\{a,b,c,d\}\subset\mathbb R^*_+$ we have $\boxed{a^{n+3}b+b^{n+3}c+c^{n+3}d+d^{n+3}a\ \ge\ abcd\left(a^n+b^n+c^n+d^n\right)}$ .

Proof. Prove similarly that $:\ \frac {w_1}{n^3+6n^2+11n+5}=\frac {w_2}{2n+5}=$ $\frac {w_3}{n^2+5n+5}=\frac {w_4}{n^2+4n+5}=\frac {1}{(n+2)(n^2+6n+10)}$ .


PP18. Solve the system of the equations $\left\{\begin{array}{l}\sqrt{x}+\sqrt{y}+\sqrt{z} =4\\\\
xy+yz-xz=1\\\\
x^{2}+y^{2}+z^{2}=18\end{array}\right\|$ , where $\{x,y,z\}\subset\mathbb R_+$ .

Proof. Obseve that $(x-y+z)^2=\left(x^2+y^2+z^2\right)-2(xy+yz-xz)=18-2=16\implies$ $\boxed{\ x-y+z\in\{\pm 4\}\ }$ . Therefore, $\left\{\begin{array}{l}\sqrt{x}+\sqrt{y}+\sqrt{z} =4\\\\
xy+yz-xz=1\\\\
x^{2}+y^{2}+z^{2}=18\end{array}\right\|\iff$

$\left\{\begin{array}{l}\sqrt{x}+\sqrt{z} =4-\sqrt y\\\\
y(x+z)=xz+1\\\\
(x+z)=y\pm 4\end{array}\right\|\iff$ $\left\{\begin{array}{l}\sqrt{x}+\sqrt{z} =4-\sqrt{y}\\\\
x+z=y\pm 4\\\\
xz=y^2\pm 4y-1\end{array}\right\|$ . Denote $\left\{\begin{array}{c}
\boxed{S=x+z}=y\pm 4\\\\
\boxed{P=xz}=y^2\pm 4y-1\end{array}\right\|$ . Thus, $0\le y\le 16$ and $\left(\sqrt{x}+\sqrt{z}\right)^2=\left(4-\sqrt{y}\right)^2\iff$

$S+2\sqrt P=16+y-8\sqrt y\iff$ $y\pm 4+2\sqrt {y^2\pm 4y-1}=16+y-8\sqrt y\iff$ $2\sqrt {y^2\pm 4y-1}=16\mp 4-8\sqrt y$ . Denote finally that $\sqrt y=t\ge 0$ , i.e. $y=t^2$ .

In conclusion, appear two cases : $\left\{\begin{array}{c}
P=t^4+4t^2-1=\left(6-4t\right)^2\\\\
S=t^2+4\ \ ;\ \ 0<t<\frac 32\end{array}\right\| \ \vee\ \ \left\{\begin{array}{c}
P=t^4-4t^2-1=\left(10-4t\right)^2\\\\
S=t^2-4\ \ ;\ \ 0<t<\frac 52\end{array}\right\|$ a.s.o.



PP19. Solve the system of the equations $\left\{\begin{array}{c}
\sqrt{x+1}+\sqrt{x+3}+\sqrt {x+5}=\sqrt {y-1}+\sqrt {y-3}+\sqrt {y-5}\\\\
x+y+x^2+y^2=78\end{array}\right\|$ , where $\{x,y,z\}\subset\mathbb R$ .

Proof. $f(x)=\sqrt{x+1}+\sqrt{x+3}+\sqrt {x+5}\ ,\ x\ge -5$ is strict increasing $\implies$ it is injectively. From first equation obtain $f(x)=f(y-6)\iff$ $x=y-6\iff$ $ \boxed{y=x+6}$ .

Therefore, the initial system becomes $\left\{\begin{array}{c}
y=x+6\\\\
x+y+x^2+y^2=78\end{array}\right\|\implies$ $x^2+7x-18=0\begin{array}{cc}
\nearrow & 2\\\\
\searrow & -9\end{array}$ . In conclusion, its solutions are $(x,y)\in \left\{\ (2,8)\ ,\ (-9,-3)\ \right\}$ .



PP20. Prove that $\{a,b,c,d\}\subset\mathbb R$ and $(a+b)(c+d)\le 2(ac+bd)\implies$ the equation $f(x)=(x+a)(x+d)+(x+b)(x+c)=0$ has real roots.

Proof. Prove esily that $(a+b)(c+d)\le 2(ac+bd)\iff (a-b)(c-d)\ge 0$ and $f(-b)f(-d)=-(b-d)^2(a-b)(c-d)\le 0\implies$ the equation $f(x)=0$ has real roots.
This post has been edited 320 times. Last edited by Virgil Nicula, Feb 24, 2019, 9:02 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a