432. Geometry problems with perpendicularities II.

by Virgil Nicula, Nov 16, 2015, 8:41 AM

PP1. Let a rectangle $ABCD$ . Let the midpoint $P$ of $[AB]$ P and $Q\in PD$ so that $CQ\perp PD $ . Prove that $\triangle BQC$ is isosceles. An easy extension. Let $ABCD$ be a

trapezoid so that $AD\parallel BC$ and $AB\perp AD$ . Denote the points $I\in AC\cap BD$ , $P\in AB$ so that $IP\parallel AD$ and $Q\in PD$ so that $CQ\perp PD$ . Prove that $BQ=BC$ .


Proof. Prove easily that $\frac {BP}{AP}=\frac {BC}{AD}$ . Observe that $BCQP$ is a cyclical quadrilateral and $\triangle BCP\sim\triangle ADP\implies$ $\widehat {BPC}\equiv\widehat{APD}\implies$ $\widehat {BQC}\equiv\widehat{BCQ}\implies$ $BQ=BC$ .

Generalization. Let $\{A,B,M,N\}$ be collinear points so that $M\in (AB)$ , $B\in (MN)$ and $\frac {MA}{MB}=\frac{NA}{NB}$ , i.e. the division $(A,B;M,N)$

is harmonically. For $P\not\in AB$ so that $PM\perp PN$ let the projections $R$ , $S$ of $B$ on the lines $PA$ , $PN$ respectively. Prove that $SR=SB$ .


Application. Let a circle $w=C(O,R)$ and $P$ so that $PO>R$ . Consider the tangent $PT$ to $w$ , where $T\in w$ and $\{A,B\}\subset w$ so that

$P\in AB$ . Let $\odot$ $\begin{array}{ccccc}
\nearrow & M\in AB & ; & TM\perp OP & \searrow\\\\
\searrow & N\in PT & ; & MN\perp PT & \nearrow\end{array}$ $\odot$ and the projections $R$ , $S$ of $B$ on $NA$ , $PT$ respectively. Prove that $SR=SB$ .



PP2. Let $\triangle ABC$ with circumcircle $w=C(O)$ , $D$ so that $\triangle DAB\sim\triangle DCA$ , $S\in AD\cap BC$

and $\{A,E\}=\{A,D\}\cap w$ . Prove that the ray $[AS$ is the $A$-symmedian of $\triangle ABC$ and $DA=DE$ .


Proof 1. $\triangle DAB\sim\triangle DCA$ $\iff$ $\frac {DA}{DC}=$ $\frac {AB}{CA}=$ $\frac {BD}{AD}$ $\iff$ $\left\{\begin{array}{c}
DB=\frac cb\cdot DA\\\\
DC=\frac bc\cdot DA\end{array}\right|$ $\implies$ $\boxed{\frac {DB}{DC}=\left(\frac cb\right)^2}\ (*)$ . Since $\widehat{SDB}\equiv$ $\widehat{SDC}\equiv$ $\widehat{BAC}$ obtain that

$\frac {SB}{SC}=$ $\frac {DB}{DC}$ $\stackrel{(*)}{\iff}$ $\frac {SB}{SC}=$ $\left(\frac cb\right)^2$ i.e. the ray $[AS$ is the $A$-symmedian of $\triangle ABC$ . Denote $T\in BB\cap CC$ , where denoted $XX$ - the tangent line to the circle

$w$ , where $X\in w$ . Thus, $m\left(\widehat{BDC}\right)=$ $m\left(\widehat{BOC}\right)=$ $2A\implies$ the point $D$ belongs to the circle with the diameter $[OT]$ , i.e. $DA\perp DO$ $\iff$ $DA=DE$ .

Proof 2 (Sunken rock). From $\angle BAD=\angle ACD$ and $\angle DAC=\angle BDA$ we get $\angle BDE=\angle CDE=\angle BAC\ (\ 1\ )$ and obviously, $\Delta BAD\sim\Delta ACD\ (\ 2\ )$ which implies

$AD^2=BD\cdot CD\ (\ 3\ )$ . If we prove $\frac{BD}{AD}=\frac{AB}{AC}\ (\ *\ )$ we are done. From $(2)$ we easily get $\frac{AB^2}{AC^2}=\frac{BD}{CD}$; with $(3)$ we get $\frac{AB^2}{AC^2}=\frac{BD^2}{AD^2}\iff\frac{AB}{AC}=\frac{BD}{AD}\ (\ 4\ )$ .

But with $(1)$ we have $\Delta BDE\sim\Delta BAC\implies\frac{BD}{AB}=\frac{DE}{AC}$ ; with $(4)$ we got the wanted $AD=DE$ , $BD$ symmedian, meaning $ABEC$ is an harmonic quadrilateral.

Remark. The division $(A,E;S,T)$ is a harmonical division and $DA^2=DS\cdot DT$ .



PP3. Let $XYZ$ be a right triangle for which $XY\perp XZ$. Denote the projections $U$, $V$ of the points $Y$, $Z$ respectively to a mobile

line $d$ for which $X\in d$. Define the point $W$ for which $WU\perp XY$ and $WV\perp XZ$. Ascertain the geometrical locus of the point $W$.


Proof. Denote the projections $A$ , $B$ of $U$ , $V$ on $XY$ , $XZ$ respectively and $M\in UA\cap YZ$ , $N\in VB\cap YZ$ . Thus,

$\triangle UXY\sim\triangle VZX\implies$ $\frac{MY}{YZ}=$ $\frac {AY}{XY}=$ $\frac {BZ}{XZ}=$ $\frac {NZ}{YZ}\implies$ $MY=NZ\implies$ $M\equiv N\equiv W\implies$ $W\in BC$ .



PP4. In $\triangle ABC$ altitude, angle bisector and median drawn from $A$ cut angle $A$ into four equal angles. Compute the angles of the triangle.

Proof 1. Let the midpoint $M$ of $[BC]$ , $\left\{\begin{array}{ccc}
D\in BC & ; & AD\perp BC\\\\
L\in BC & ; & \widehat{LAB}\equiv\widehat{LAC}\end{array}\right\|$ , the circumcircle $w$ of $\triangle ABC$ and $\{A,S\}=\{A,S\}\cap w$ . Thus, $BD\parallel MS\implies$ $\triangle AMS$ is

$M$-isosceles $\implies$ $M$ belongs to the bisectors of $[AS]$ and $[AC]$ , i.e. $M\equiv O$ - the circumcenter of $\triangle ASC\implies$ $\triangle AOC$ is $O$-isosceles $\implies A=\frac {\pi}{2}$ , $C=\frac {\pi}{8}$ and $B=\frac {3\pi}{8}$ .

Proof 2. Denote $\left\{\begin{array}{ccc}
A & = & 4x\\\\
B & = & 90^{\circ}-x\\\\
C & = & 90^{\circ}-3x\end{array}\right|$ . Thus, $AB=AL=c$ , $DB=DL=\frac 12\cdot LB=$ $\frac {ac}{2(b+c)}$ and $ML=\frac {a(b-c)}{2(b+c)}$ . Therefore, $\frac cb=$ $\frac {AL}{AC}=$ $\frac {ML}{MC}=$ $\frac {b-c}{b+c}\implies$

$b^2-2bc-c^2=0$ $\implies$ $\boxed{\frac bc=1+\sqrt 2}\ (*)$ . In conclusion, $\cos\frac A2=\cos \widehat{DAM}=$ $\frac {AD}{AM}=$ $\frac {LD}{LM}=$ $\frac {c}{b-c}\stackrel{(*)}{\implies}$ $\cos \frac A2=\frac {\sqrt 2}{2}\implies$ $A=\frac {\pi}{2}$ , $C=\frac {\pi}{8}$ and $B=\frac {3\pi}{8}$ .



PP5. Let $A$-right $\triangle ABC$ . Let the rectangle $MNPQ$ , where $\{M,N\}\subset (BC)$ , $P\in (AC)$ and $Q\in (AB)$ and $E\in BP\cap MQ$ and $F\in CQ\cap NP$ . Prove that $\widehat {BAE}\equiv\widehat {CAF}$ .

Proof. $MQAC$ and $NPAB$ are cyclically$\implies$ $\left\{\begin{array}{ccc}
BM\cdot BC=BQ\cdot BA\\\
CN\cdot CB=CP\cdot CA\end{array}\right|\ (\div )\ \implies$ $\frac {BM}{CN}=$ $\frac {BQ}{CP}\cdot \frac {AB}{AC}$ $\implies$ $\boxed{\frac {BM}{CN}=\frac {AQ}{AP}\cdot \frac {AB}{AC}}\ (*)$ . Let $\left\{\begin{array}{c}
m\left(\widehat{EAB}\right)=x\\\\
m\left(\widehat{FAC}\right)=y\end{array}\right|$ .

Thus, $\left\{\begin{array}{ccc}
\frac {EB}{EP}=\frac {AB}{AP}\cdot\frac {\sin\widehat{EAB}}{\sin\widehat{EAP}} & \implies & \frac {MB}{MN}=\frac {AB}{AP}\cdot\tan x\\\\
\frac {FC}{FQ}=\frac {AC}{AQ}\cdot\frac {\sin\widehat{FAC}}{\sin\widehat{FAQ}} & \implies & \frac {NC}{NM}=\frac {AC}{AQ}\cdot\tan y\end{array}\right|\ (\div )\ \implies$ $\frac {MB}{NC}=$ $\frac {AQ}{AP}\cdot\frac {AB}{AC}\cdot \frac {\tan x}{\tan y}$ $\stackrel{(*)}{\implies}$ $\tan x=\tan y\implies$ $x=y\implies$ $\widehat {BAE}\equiv\widehat {CAF}$ .



PP6. Let $ABC$ be an acute triangle with the circumcenter $O$ . Denote $K\in AO\cap BC$ and $L\in (AB)$ , $M\in (AC)$ so that $KL=KB$ , $KM=KC$ . Prove that $LM\parallel BC$ .

Proof 1. $\frac {KB}{KC}=\frac {AB}{AC}\cdot\frac {\sin \widehat{KAB}}{\sin \widehat{KAC}}=$ $\frac cb\cdot \frac {\cos C}{\cos B}=\frac {2R\sin C\cos C}{2R\sin B\cos B}\implies$ $\boxed{\frac {KB}{KC}=\frac {\sin 2C}{\sin 2B}}\ (*)$ . Denote the distance $\delta_d(X)$

of the point $X$ to the line $d$ . Thus, $\left\{\begin{array}{c}
\delta_{BC}(L)=KB\cdot \sin 2B\\\\
\delta_{BC}(M)=KC\sin 2C\end{array}\right|\stackrel{(*)}{\implies}$ $\delta_{BC}(L)=\delta_{BC}(M)\implies ML\parallel BC$ .

Proof 2. Denote $D\in BC$ so that $AD\perp BC$ and the midpoints $U$ , $V$ of $[BL]$ , $[CM]$ respectively. Therefore,

$\left\{\begin{array}{ccccc}
\triangle AKV\sim\triangle ABD & \implies & \frac {AK}{AB}=\frac {AV}{AD} & \implies & \frac {AV}{AC}=\frac {AK\cdot AD}{AB\cdot AC}\\\\
\triangle AKU\sim\triangle ACD & \implies & \frac {AK}{AC}=\frac {AU}{AD} & \implies & \frac {AU}{AB}=\frac {AK\cdot AD}{AB\cdot AC}\end{array}\right|\implies$ $\frac {AV}{AC}=\frac {AU}{AB}\implies UV\parallel BC\implies LM\parallel BC$ .



PP7 (extension of China TST 1986). Let $ ABCD$ be a quadrilateral for which $ AB=AD\ ,\ CB=CD$ and $ B=D=90^{\circ}$ (a right deltoid).

Let $ P\in (AB)\ ,\ Q\in (AD)$ be two points so that $ PQ=PB+QD$ and $ m(\widehat{PAQ})=2\phi$ . Show that $ m(\widehat{PCQ})=90^{\circ}-\phi$ .


Proof. Observe that the semiperimeter of the triangle $ APQ$ is equal to $ AB\ ,\ CB\perp AP$ and $ C$ belongs to the bisector of the angle $ \widehat{PAQ}$ . Therefore,

the point $ C$ is the $ A$- exincenter of $\triangle APQ$ . Generally, $ m(\widehat{PCQ})=\frac{1}{2}\cdot \left(m(\widehat{APQ})+m(\widehat{AQP})\right)$ , i.e. $ \boxed{m(\widehat{PCQ})=90^{\circ}-\phi}$ .



PP8. Let $ABC$ be an acute triangle with the circumcircle $w=C(O)$ and $AH\perp BC$ , where $H\in BC$ . Denote the projections $K$ and

$L$ of $H$ on $AB$ and $AC$ respectively. Define $\{P,Q\}=KL\cap w$ and $\{A,T\}=AH\cap w$ . Prove that $H$ is the incenter of $\triangle PQT$ .


Proof. $APHL$ is cyclically $\implies$ $\widehat{AKL}\equiv\widehat{AHL}\equiv$ $\widehat{ACH}\equiv\widehat{ACB}$ $\implies$ $\widehat{AKL}\equiv\widehat{ACB}$ $\implies$ $BKLC$ is cyclically. Thus, the line $d\equiv \overline{PKLQ}$ (in this order) is an antiparallel

to $BC$ in $\triangle ABC$ $\implies $ $AO\perp d$ $\implies $ $AP=AQ$ $\implies$ $\widehat{ABP}\equiv$ $\widehat {AQP}\equiv$ $\widehat{APQ}\equiv$ $\widehat{ACQ}$ . Therefore, $\left\{\begin{array}{ccc}
\widehat{ABP}\equiv\widehat{APQ} & \implies & AP^2=AK\cdot AB=AH^2\\\\
\widehat{ACQ}\equiv\widehat{AQP} & \implies & AQ^2=AL\cdot AC=AH^2\end{array}\right|$ $\implies$

$AP=AH=AQ=\rho$ $\iff H$ belongs to the intersection of the circle $C(A,\rho )$ with the bisector of $\widehat{PTQ}\iff$ $H$ is the incenter of $\triangle PQT$ .


Extension. Let $ABC$ be an acute triangle with the circumcircle $w=C(O)$ and $D\in (BC)\ ,\ L\in (CA)\ .\ K\in (AB)$

so that $\left\{\begin{array}{c}
m\left(\widehat {ADK}\right)=B\\\\
 m\left(\widehat {ADL}\right)=C\end{array}\right|$ . Denote $\{P,Q\}=KL\cap w$ and $\{A,T\}=AD\cap w$ . Prove that $D$ is the incenter of $\triangle PQT$ .


Proof. $\left\{\begin{array}{ccc}
m\left(\widehat {ADK}\right)=B & \implies & AK\cdot AB=AD^2\\\\
 m\left(\widehat {ADL}\right)=C & \implies & AL\cdot AC=AD^2\end{array}\right|$ $\implies$ $AK\cdot AB=AL\cdot AC\implies$ $BCLK$ is a cyclic $\implies$ the line $d\equiv \overline{PKLQ}$ (in this order) is an antiparallel

to $BC$ in $\triangle ABC$ $\implies $ $AO\perp d$ $\implies $ $AP=AQ$ $\implies$ $\widehat{ABP}\equiv$ $\widehat {AQP}\equiv$ $\widehat{APQ}\equiv$ $\widehat{ACQ}$ . Therefore, $\left\{\begin{array}{ccc}
\widehat{ABP}\equiv\widehat{APQ} & \implies & AP^2=AK\cdot AB=AD^2\\\\
\widehat{ACQ}\equiv\widehat{AQP} & \implies & AQ^2=AL\cdot AC=AD^2\end{array}\right|$ $\implies$

$AP=AD=AQ=\rho$ $\iff D$ belongs to the intersection of the circle $C(A,\rho )$ with the bisector of $\widehat{PTQ}\iff$ $D$ is the incenter of $\triangle PQT$ .
[/color]


PP9. Let $w=C(O)$ with diameter $[AB]$ , $Q\in w$ , $H\in AB$ for which $QH\perp AB\ ,\ \{C,D\}=w_1\cap w$ , where $w_1=C(Q,QH)$ and $M\in QH\cap CD$ . Prove that $MQ=MH$ .

Proof 1. Denote $N\in OQ\cap CD$ and the diameter $[QE]$ of $w$ . Then $OHMN$ is cyclically and $QH^2=QC^2=QN\cdot QE=$ $2\cdot QO\cdot QN=2\cdot QM\cdot QH\implies$ $QH=2\cdot QM$ .

Proof 2. Denote $\{Q,R\}=\{Q,H\}\cap w$ . Thus, $\widehat{QDC}\equiv\widehat{QCD}\equiv\widehat {QRC}\implies$ $QH^2 = QC^2 = QM\cdot QR =$ $ 2\cdot QM\cdot QH\implies$ $QH = 2\cdot QM$ .

Proof 3. Midpoint $S$ of $QH\ ,\ \{Q,R\}=QH\cap w$ and $\{H,P\}=QH\cap w_1\implies$ $SQ\cdot SR=SP\cdot SH\implies$

$p_w(S)=p_{w_1}(S)\implies$ $S\in CD\implies$ $S\equiv M\implies$ $M$ is the midpoint of $[QH]$ .



PP10. Let $AD$ be an altitude of the $\Delta ABC$ , where $D\in BC$ , $M\in\overline {AD}$ with $\frac{DM}{AM}=\frac{BD}{CD}$ and the projection $N$ of $D$ onto $BM$ . Prove that $AN\bot CN$ .

Proof. $\angle AMN=\angle CDN$ and $\frac{ND}{MN}=\frac{BD}{MD}=\frac{CD}{AM}$ implying $\Delta NDC\sim\Delta NMA$, i.e. does

exist a spiral similarity mapping the 2 triangles. Since $MN\bot ND, AM\bot DC$ obtain that $AN\bot CN$ .



PP11. Let a convex $ABCD$ with $\left\{\begin{array}{c}
AB\perp AD\\\\
CB\perp CD\end{array}\right\|$ and for $\left\{\begin{array}{c}
E\in (BA)\\\\
F\in (BC)\end{array}\right\|$ denote $P\in (EF)$ so that $DP\perp EF$ . Prove that $BA^2+PE^2+CF^2=BC^2+PF^2+AE^2$ .

Proof. $\left\{\begin{array}{ccccc}
 AB^2+\underline{AD}^2 & = & BD^2 & = & CB^2+\underline{\underline{CD}}^2\\\\
\underline{\underline{CD}}^2+CF^2 & = & DF^2 & = & \underline{\underline{\underline{PD}}}^2+PF^2\\\\
PE^2+\underline{\underline{\underline{PD}}}^2 & = & DE^2 & = & AE^2+\underline{AD}^2\end{array}\right\|\bigoplus\implies$ $\boxed{BA^2+PE^2+CF^2=\left(DB^2+DE^2+DF^2\right)-\left(\underline{DA}^2+\underline{\underline{DC}}^2+\underline{\underline{\underline{DP}}}^2\right)=BC^2+PF^2+AE^2}\ .$



PP12 (Swiss IMO Selection). Let $\triangle ABC$ be an acute-angled triangle with $AB \ne AC$. Let $H$ be the orthocenter of $\triangle ABC$, and let $M$ be the midpoint of $[BC]$ . Let $D\in (AB)$ and

$E\in (AC)$ such that $AE=AD$ and $H\in DE$ . Prove that the line $HM$ is perpendicular to the common chord of the circumcircle $w$ of $\triangle ABC$ and the circumcircle $\alpha$ of $\triangle ADE$ .


Proof. Denote $:$ the midpoint $F$ of $[AH]$ $;$ the circles $w=\mathbb C(O,R)$ and $\alpha =\mathbb C\left(O_a, R_a\right)$ $;$ the diameter $[AA']$ of $w$ and the midpoint $S$ of the arc $\overarc{BC}$ , where $BC$ separates $A$ , $S\ ;$

the intersections $N\in MH\cap AS$ , $K\in DE\cap AA'$ and $L\in DE\cap AS$ . Observe that $DE\perp AS$ , $L$ is the common midpoint of $[DE]$ and $[HK]$ . Thus, $AH\parallel MS\iff$

$\frac {NA}{NS}=\frac {AH}{MS}=\frac {2R\cos A}{R-R\cos A}=$ $\frac {2\cos A}{1-\cos A}\implies$ $\frac {NA}{AS}=\frac {2\cos A}{1+\cos A}\iff$ $\boxed{NA=\frac {2\cos A}{1+\cos A}\cdot {AS}}\ (1)$ . Therefore, from $\triangle ASA'$ obtain that $AS=AA'\cdot\cos\frac {B-C}2$ , i.e.

$\boxed{AS=2R\cos\frac {B-C}2}\ (*)$ . Hence $AH\cdot\cos\frac {B-C}2=AL=$ $AD\cos\frac A2\iff$ $AD\cdot\cos\frac A2=$ $2R\cos A\cos\frac {B-C}2\ \stackrel{(*)}{\implies}\ \boxed{AD=\frac {AS\cdot\cos A}{\cos \frac A2}}\ (2)\ .$ From the relations

$(1)$ and $(2)$ obtain that $\frac{AD}{NA}=\frac {1+\cos A}{2\cos\frac A2}=\cos\frac A2\implies$ $AD=AN\cdot\cos \frac A2\implies$ $ND\perp AB$ , i.e. $[AN]$ is the diameter of the circle $\alpha$ . Since $O_a\in FO$ and $O_a$ is the midpoint

of $[AN]$ , then get that $FO\parallel MH$ and $O_a\in FO$ $\implies$ $MH\parallel O_aO$ , i.e. the line $HM$ is perpendicular to the common chord of the circles $w$ and $\alpha$ .



PP13 (Bogomolny). Let the trapezoid $ABCD$ with $BC\parallel AD$ and $E\in AB\cap CD\ .$ Denote $F$ so that $CF\perp AC\ ,$ $DF\perp BD\ .$ Prove that $CF=DF\iff EF\perp BC\ .$

Proof 1. Let $\left\{\begin{array}{c}
A(0,0)\ ;\ B(b,h)\\\\
C(c,h)\ ;\ D(d,0)\\\\
h>0\ ;\ 0<b<d<c\end{array}\right\|$ Thus, $E\in AB\cap CD\iff$ $\left\{\begin{array}{cccc}
AB\ : & \frac yh & = & \frac xb\\\\
CD\ : & \frac yh & = & \frac {x-d}{c-d}\end{array}\right\|$ $\implies$ $\frac yh=\frac xb=\frac {x-d}{c-d}=\frac d{b+d-c}$ $\implies$ $\boxed{E\left(\frac {bd}{b+d-c},\frac {hd}{b+d-c}\right)}\ (1)\ .$

I"ll ascertain $F(x,y)\ :$ $\left\{\begin{array}{cc}
CA\perp CF\iff\frac hc\cdot\frac {y-h}{x-c}+1=0\iff cx+hy=c^2+h^2 & (2)\\\\
DB\perp DF\iff\frac h{b-d}\cdot\frac y{x-d}+1=0\iff (d-b)x-hy=d(d-b) & (3)\end{array}\right\|$ $\implies$ $\boxed{x_F=\frac {c^2+d^2+h^2-bd}{c+d-b}}\ (4)\ .$ Therefore $:$

$\blacktriangleright\ \boxed{\ FC=FD\ }\ ,$ where $F(x,y)$ $\iff$ $(x-c)^2+(y-h)^2=(x-d)^2+y^2\iff$ $2(c-d)x+2hy=$ $c^2+h^2-d^2\ \stackrel{(2)}{\iff}$ $2\left(c^2+h^2\right)-2dx=$

$c^2+h^2-d^2\iff$ $2dx=c^2+d^2+h^2\ \stackrel{(4)}{\iff}\ 2d\left(c^2+d^2+h^2-bd\right)=(c+d-b)\left(c^2+d^2+h^2\right)\iff$ $\boxed{(d+b-c)\left(c^2+d^2+h^2\right)=2bd^2}\ (5)\ .$

$\blacktriangleright\ \boxed{\ EF\perp BC\ }\iff$ $x_E=x_F\ \stackrel{1\wedge 4}{\iff}$ $\frac {bd}{b+d-c}=\frac {c^2+d^2+h^2-bd}{c+d-b}\iff$ $bd(c+d-b)=(b+d-c)\left(c^2+d^2+h^2-bd\right)\iff$ $bd\left[(c+d-b)+(b+d-c)\right]=$

$(b+d-c)\left(c^2+d^2+h^2\right)\iff$ $\boxed{(d+b-c)\left(c^2+d^2+h^2\right)=2bd^2}\ (6)\ .$ In conclusion, the last relations $(5)$ and $(6)$ evinces that $\boxed{FC=FD\iff EF\perp BC}\ .$

Proof 2 (synthetically).



PP14. Let $\triangle ABC$ with $c<b\ ,$ its circumcircle $w$ and let $X\ ,$ $Y\ ,$ $Z$ be the points where the incircle is tangent to $BC$, $CA$, $AB$ respectively.

Let $U$ the midpoint of the arc $A\in \overarc{BC}\subset w\ .$ The line $UX$ meets $w$ again at $K\ .$ Let $T\in AK\cap YZ\ .$ Prove that $XT\perp YZ\ .$


Proof. Let $L\in YZ \cap BC\ .$ Then $ T \{BC,XL\} $ is harmonic division. So $K\{BC,XL\} $ is harmonic pencil too. By angle chasing, we have $\widehat{TKX}\equiv\widehat{AKU}\equiv\widehat{ACU}\ .$ Therefore,

$m\left(\angle UCB\right)-m\left(\angle ACB \right)= $ $\frac{B-C}{2} $ and also $ m\left(\angle TLX\right) = m\left(\angle ZLB\right) = 180^{\circ} -m\left( \angle LZB\right) -$ $ m\left(\angle LBZ\right) = 180^{\circ} - $ $\left(90^{\circ}-\frac A2\right) - $ $\left(180^{\circ}-B\right) = \frac{B-C}{2}\ .$

Therefore, $ ZLKX $ is cyclic. Since $ KU $ bisects $ \angle BKC $, it follows that $ KL$ is the external angle bisector of $ \angle BKC $ and hence $\widehat{XKL}\equiv\widehat{XTL}\equiv 90^{\circ}\ .$ That is $ XT \perp YZ\ .$



PP15. Let $\triangle ABC$ with the centroid $G\ ,$ the circumcircle $\Omega =\mathbb C(O,R)$ and the incircle $w=\mathbb C(I,r)\ .$ Prove that $:$

$1\ .\blacktriangleright\ \triangle AIO$ is right-angled $\iff$ $\frac {b+c}a\in\left\{2,\frac Rr\right\}\iff$ $h_a\in\left\{3r,R+r\right\}\ .$

$2\ .\blacktriangleright\ \triangle AGO$ is right-angled $\iff$ $\frac {b^2+c^2}{2a^2}\in\left\{1,\left(\frac {R\sqrt 3}{a}\right)^2\right\}\ .$


Proof.

$\boxed{\ \begin{array}{ccccccccccccc}
\boxed{\ IA\perp IO\ } & \iff & IA^2+IO^2=OA^2 & \iff & \left(bc-4Rr\right)+\left(R^2-2Rr\right)=R^2 & \iff & 2Rh_a=6Rr & \iff & \boxed{h_a=3r} & \iff & 2sr=3ar & \iff & \boxed{\frac{b+c}a=2}\\\\
\boxed{\ OA\perp OI\ } & \iff & OA^2+OI^2=IA^2 & \iff & R^2+\left(R^2-2Rr\right)=bc-4Rr & \iff & 2R^2+2Rr=2Rh_a & \iff & \boxed{h_a=R+r} & \iff & r(2s-a)=aR & \iff & \boxed{\frac {b+c}a=\frac Rr}\end{array}\ }$

$\boxed{\ \begin{array}{ccccccccc}
\boxed{\ GA\perp GO\ } & \iff & GA^2+GO^2=OA^2 & \iff & \frac {4m_a^2}9+R^2-\frac {a^2+b^2+c^2}9=R^2 & \iff & \cancel 2\left(b^2+c^2\right)-a^2-\left(a^2+\cancel{b^2+c^2}\right)=0 & \iff & \boxed{b^2+c^2=2a^2}\\\\
\boxed{\ OA\perp OG\ } & \iff & OA^2+OG^2=GA^2 & \iff & R^2+\left(R^2-\frac {a^2+b^2+c^2}9\right)=\frac {2\left(b^2+c^2\right)-a^2}9 & \iff & 18R^2=3\left(b^2+c^2\right) & \iff & \boxed{b^2+c^2=6R^2}\end{array}\ }$
This post has been edited 125 times. Last edited by Virgil Nicula, Nov 22, 2016, 8:40 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a