102. Characterization of a metrical relation in a triangle.

by Virgil Nicula, Sep 7, 2010, 4:49 PM

PP1. Prove that in any triangle $ABC$ there is the equivalence

$IO\perp IA\iff b+c=2a\iff\cos\frac {B-C}{2}=\sqrt {\frac {2r}{R}}$ $\iff\cos\frac A2=\sqrt{\frac {2R-r}{2R}}\iff$ $\sin\frac A2=\sqrt{\frac r{2R}}\iff  a=2\sqrt {r(2R-r)}$ .
==============================================================================================================================


Proof. $\boxed{\ \cos\frac {B-C}{2}=\sqrt {\frac {2r}{R}}\ }\iff 2\sin\frac {B+C}{2}\cos\frac{B-c}{2}=2\cos \frac A2\cdot\sqrt {\frac {2r}{R}}$ $\iff$ $\sin B+\sin C=\sqrt \frac {8rp(p-a)}{Rbc}$ $\iff$

$b+c=\sqrt{\frac {32Rrp(p-a)}{bc}}$ $\iff$ $b+c=\sqrt {8a(p-a)}$ $\iff$ $(b+c)^2=4a(b+c-a)$ $\iff$ $[(b+c-a)+a]^2=4a(b+c-a)$ $\iff$ $[(b+c-a)-a]^2=0$ $\iff$ $\boxed{\ b+c=2a\ }$ . I used the relations $\cos\frac A2=\sqrt {\frac {p(p-a)}{bc}}$ and $4Rpr=abc$ . Remark that $\boxed{\ \cos\frac {B-C}{2}\ \ge\ \sqrt {\frac {2r}{R}}\ }$ .

Denote the point $D$ where $A$-bisector meet again the circumcircle $w=C(O,R)$ of $\triangle ABC$ and the diameter $[SN]$ of $w$ . Observe that

$\left|\begin{array}{ccc}
\cos\frac {B-C}{2}=\frac {AS}{SN}& \implies & \cos\frac {B-C}{2}=\frac {1}{R}\cdot \frac {IA+IS}{2}\\\\
\sqrt {\frac {2r}{R}}=\frac 1R\cdot \sqrt{-p_w(I)}& \implies & \sqrt {\frac {2r}{R}}=\frac 1R\cdot \sqrt {IA\cdot IS}\end{array}\right|$ , where $p_w(I)$ is the power of $I$ w.r.t. $w$ . Thus, $\boxed {\ \cos\frac {B-C}{2}=\sqrt {\frac {2r}{R}}\ }$ $\iff$

$ \frac {IA+IS}{2}=\sqrt {IA\cdot IS}=$ $\iff$ $IA=IS$ $\iff$ $\boxed{\ IO\perp IA\ }$ $\iff$ $IA^2=2Rr$ $\iff$ $\frac {bc(p-a)}{p}=2Rr$ $\iff$ $bc(b+c-a)=abc$ $\iff$

$\boxed {\ b+c=2a\ }$ $\iff$ $a=2(p-a)$ . Therefore $\boxed{\ b+c=2a\ }$ $\iff$ $IO\perp IA$ $\iff$ $IA^2+IO^2=OA^2$ $\iff$ $r^2+(p-a)^2+R^2-2Rr=R^2$ $\iff$

$p-a=\sqrt{2Rr-r^2}$ $\iff$ $\boxed{\ a=2\sqrt {2Rr-r^2}\ }$ . I used the relation $2Rh_a=bc$ and $IA^2=r^2+(p-a)^2=\frac {bc(p-a)}{p}=bc-4Rr$ .

Otherwise. Prove easily that $\boxed{\ (a+b-c)(b+c-a)(c+a-b)=\sum a^2(b+c)-2abc-\sum a^3\ }$ . Thus, $\boxed {\ a=2\sqrt {r(2R-r)}\ }$ $\iff$

$a^2=4r(2R-r)$ $\iff$ $a^2(a+b+c)=4abc-8pr^2$ $\iff$ $a^3+a^2(b+c)=4abc-\prod (b+c-a)$ $\iff$

$a^3+a^2(b+c)=6abc+a^3+b^3+c^3-a^2(b+c)-b^2(a+c)-c^2(a+b)$ $\iff$

$2(b+c)\cdot \underline a^2+a\left(b^2+c^2-6bc\right)\cdot \underline a-(b+c)(b-c)^2=0$ $\iff$ $[2\underline a-(b+c)]\cdot\left[(b+c)\cdot \underline a+(b-c)^2\right]=0$ $\iff$ $\boxed {\ b+c=2a\ }$ .

Remark. $\cos\frac A2=\sqrt{\frac {2R-r}{2R}}\iff\sin\frac A2=$ $\sqrt{\frac {r}{2R}}\iff (p-b)(p-c)\cdot 2R=bc\cdot r\iff$ $pr^2\cdot 2R=bc\cdot r(p-a)\iff$

$ 4Rpr=2bc(p-a)$ $\iff$ $ a=2(p-a)\iff b+c=2a$ . Therefore, $\boxed {\ b+c=2a\ }\iff R(\sin B+\sin C)=a\iff$

$2R\cos \frac A2\cos\frac {B-C}{2}=a$ $\iff 2R\sqrt {\frac {2R-r}{2R}\cdot\frac {2r}{R}}=a$ $\iff \boxed {\ a=2\sqrt{r(2R-r)}\ }$ .



PP2. Prove that in a $\triangle ABC$ there is the equivalence $a+b=2(R+r)\iff C=90^{\circ}\ \vee\ \tan\frac A2+\tan\frac B2=1+3\tan\frac A2\tan\frac B2$ .

Proof 1. $a+b=2(R+r)\iff$ $\sin A+\sin B=1+\frac rR\iff$ $\sin A+\sin B=\cos A+\cos B+\cos C\iff$ $(\sin A-\cos A)+(\sin B-\cos B)=\cos C\iff$

$\sqrt 2\left[\sin \left(A-45^{\circ}\right)+\sin\left(B-45^{\circ}\right)\right]=\sin \left(90^{\circ}-C\right)\iff$ $2\sqrt 2\sin\left(\frac {A+B}{2}-45^{\circ}\right)\cos\frac {A-B}{2}=\sin\left(90^{\circ}-C\right)\iff$ $\sqrt 2\sin\left(45^{\circ}-\frac {C}{2}\right)\cos\frac {A-B}{2}=$

$\sin\left(45^{\circ}-\frac {C}{2}\right)\cos\left(45^{\circ}-\frac {C}{2}\right)\iff$ $\boxed{C=90^{\circ}}\ \vee\ \sqrt 2\cos\frac {A-B}{2}=\cos\left(45^{\circ}-\frac {C}{2}\right)$ . Observe that $\sqrt 2\cos\frac {A-B}{2}=\cos\left(45^{\circ}-\frac {C}{2}\right)\iff$

$2\cos\frac {A-B}{2}=\sin\frac {A+B}{2}+\cos\frac {A+B}{2}\iff$ $2\left(1+\tan\frac A2\tan\frac B2\right)=\tan\frac A2+\tan\frac B2+1-\tan\frac A2\tan\frac B2\iff$ $\boxed{\tan\frac A2+\tan\frac B2=1+3\tan\frac A2\tan\frac B2}\ (*)$ .

Proof 2. $a+b=2(R+r)\iff$ $a+b-c-2r=2R-c\iff$ $2(s-c)-2(s-c)\tan\frac C2=2R(1-\sin C)\iff$ $2(s-c)\left(\cos\frac C2-\sin\frac C2\right)=$

$2R\cos\frac C2\left(\cos\frac C2-\sin\frac C2\right)^2\iff$ $\boxed{C=90^{\circ}}\ \vee\ 2(s-c)=2R\cos\frac C2\left(\cos\frac C2-\sin\frac C2\right)$ . Observe that $2(s-c)=2R\cos\frac C2\left(\cos\frac C2-\sin\frac C2\right)\iff$

$\sin A+\sin B-\sin C=\cos^2\frac C2-\cos\frac C2\sin\frac C2\iff$ $2\left(\cos\frac {A-B}{2}-\cos\frac {A+B}{2}\right)=\cos\frac C2-\sin\frac C2\iff$ $2\left(\cos\frac {A-B}{2}-\sin\frac {C}{2}\right)=\cos\frac C2-\sin\frac C2\iff$

$2\cos\frac {A-B}{2}=\cos\frac C2+\sin\frac C2\iff$ $2\cos\frac {A-B}{2}=\sin\frac {A+B}{2}+\cos\frac {A+B}{2}\iff$ $2\left(1+\tan\frac A2\tan\frac B2\right)=\tan\frac A2+\tan\frac B2+1-\tan\frac A2\tan\frac B2\iff (*)$ .
This post has been edited 50 times. Last edited by Virgil Nicula, Nov 23, 2015, 8:26 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a