395. Metrical relations in a quadrilateral.

by Virgil Nicula, Apr 15, 2014, 2:04 AM

Euler's relation. Let tetrahedron $ABCD$ and the midpoints $E\ ,\ F$ of $[AC]$ , $[BD]$ . Prove that $\boxed{AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4\cdot EF^2}\ (*)$ .

Proof 1. Let $\left\{\begin{array}{ccc}
AB=a\ ; & BC=b\ ; & AC=e\\\\
CD=c\ ; & DA=d\ ; & BD=f\end{array}\right\|$ and the midpoints $M$ , $N$ , $P$ , $Q$ of $[AB]$ , $[BC]$ , $[CD]$ , $[DA]$ respectively.

Apply the theorem of median in $:$ $\left\{\begin{array}{cccc}
\triangle ABC\ : & 4\cdot BE^2=2\left(BA^2+BC^2\right)-AC^2 & \iff & 4\cdot BE^2=2\left(a^2+b^2\right)-e^2\\\\
\triangle ADC\ : & 4\cdot DE^2=2\left(DA^2+DC^2\right)-AC^2 & \iff & 4\cdot DE^2=2\left(c^2+d^2\right)-e^2\\\\
\triangle BED\ : & 4\cdot EF^2=2\left(EB^2+ED^2\right)-BD^2 & \iff & 4\cdot EF^2=2\left(EB^2+ED^2\right)-f^2\end{array}\right|$ $\left|\begin{array}{ccc}
 & \odot & 1\\\\
 & \odot & 1\\\\
 & \odot & 2\end{array}\right\|\bigoplus\implies$

$8\cdot EF^2=2\left(a^2+b^2+c^2+d^2\right)-2\left(e^2+f^2\right)\implies$ $\boxed{a^2+b^2+c^2+d^2=e^2+f^2+4\cdot EF^2}$ .

Proof 2 (complex number). Let $ABCD$ with $A(x)$ , $B(y)$ , $C(z)$ , $D(t)$ , where denoted $A\equiv A(x)$ with affix $a$. Using $\boxed{A(x)\ ,\ B(y)\ \Longrightarrow\ AB^2=|x-y|^2}$

and $\boxed{|z|^2=z\cdot\overline z}$ prove easily that $(*)\ \iff\ |x-y|^2+|y-z|^2+|z-t|^2+|t-x|^2=|x-z|^2+|y-t|^2+|(x+z)-(y+t)|^2$ what is truly .

Particular case. If $D$ belongs to the plane $(ABC)$ (at limit !), then get Euler's relations in the quadrilateral $ABCD\ :$

$\left\{\begin{array}{ccccc}
\blacktriangleright & AC^2+BD^2+4\cdot EF^2 & = & AB^2+AD^2+CB^2+CD^2 & (1)\\\\
\blacktriangleright  & AB^2+CD^2+4\cdot MP^2 & = & AC^2+AD^2+BC^2+BD^2 & (2)\\\\
\blacktriangleright & AD^2+BC^2+4\cdot NQ^2 & = & AB^2+AC^2+DB^2+DC^2 & (3)\end{array}\right\|$ $\bigoplus\implies$ $4\cdot\left(EF^2+MP^2+NQ^2\right)=AB^2+BC^2+CD^2+DA^2+AC^2+BD^2$ .

If $ABCD$ is a trapezoid with $AB\parallel CD$ , then $4\cdot EF^2=(a-c)^2$ and $\boxed{e^2+f^2=b^2+d^2+2ac}$ . If $ABCD$ is a parallelogram, then $\boxed{e^2+f^2=2\left(a^2+b^2\right)}$ .


Application. Prove that $\boxed{b^2+d^2=a^2+c^2-2ef\cos \phi}$ , where $I\in AC\cap BD$ and $m\left(\widehat{BIC}\right)=\phi$ .

Proof 1. Let $\left\{\begin{array}{ccc}
IA=x & ; & IB=y\\\\
IC=z & ; & ID=t\\\\
x+z=e & ; & y+t=f\end{array}\right\|$ . Apply the generalized Pythagoras' $:\ \left\{\begin{array}{cccc}
\triangle AIB\ : & a^2=x^2+y^2-2xy\cos\phi\\\\
\triangle CID\ : & c^2= z^2+t^2-2zt\cos\phi\end{array}\right|$ $\left|\begin{array}{cc}
\triangle BIC\ : & b^2= y^2+z^2+2yz\cos\phi\\\\
\triangle DIA\ : & d^2=x^2+t^2+2xt\cos\phi\end{array}\right\|$ .

Thus, $\left(b^2+d^2\right)-\left(a^2+c^2\right)=$ $2(xt+yz+xy+zt)\cos\phi =$ $2(y+t)(x+z)\cos\phi =$ $2ef\cos\phi\implies$ $\boxed{b^2+d^2=a^2+c^2-2ef\cos \phi}\ (1)$ . Let midpoints $(U,V)$ of $[AC]$ ,

$[BD]\implies e^2+f^2+4UV^2=a^2+b^2+c^2+$ $d^2\ \stackrel{(1)}{=}\ 
\left(a^2+c^2\right)+\left(a^2+c^2-2ef\cos\phi \right)=$ $2\left(a^2+c^2-ef\cos\phi\right)\implies$ $\boxed{e^2+f^2=2\left(a^2+c^2-ef\cos\phi\right)-4\cdot UV^2}$

Proof 2. Let the projections $X$ , $Y$ of $B$ , $D$ on $AC$ respectively and $AX=m$ , $CY=n$ and $XY=p\implies$ $e=m+n+p$ and $\left\{\begin{array}{ccc}
p & = & -f\cos\phi\\\\
CX & = & p+n\\\\
AY & = & p+m\end{array}\right\|$ . Apply the generalized

Pythagoras
' in $:\ \left\{\begin{array}{cccc} 
\triangle ABC\ : & a^2=b^2+e^2-2e\cdot CX & \implies & a^2=b^2-e(p+n-m)\\\\
\triangle ADC\ : & c^2=d^2+e^2-2e\cdot AY & \implies & c^2=d^2-e(p+m-n)\end{array}\right\|$ $\bigoplus\implies$ $b^2+d^2=a^2+c^2+2pe\implies$ $\boxed{b^2+d^2=a^2+c^2-2ef\cos \phi}$



PP1. Let a square $ABCD$ and $P$ so that $PA\perp PD$ and $AD$ separates $P$ , $B$ . Let $\left\{\begin{array}{ccc}
PA=a &  ; & PD=b\\\\
E\in PB\cap AD &  ; & AE=m\\\\
F\in PC\cap AD &  ; &DF=n\end{array}\right\|$ and $EF=x$ . Prove that $\frac mn=\left(\frac ab\right)^2$ and $x^2=mn$

Proof. Let $M\in AB\ ,\ N\in CD$ so that $P\in MN\ ,\ MN\parallel AD$ and $\left\{\begin{array}{ccc}
AB=l & ; & AM=c\\\\
PM=u & ; & PN=v\end{array}\right\|$ . Thus, $m+n+x=l$ and $\boxed{\frac mu=\frac {l}{l+c}=\frac nv}\ (*)$ and

$\triangle PAM\sim\triangle DPN \implies$ $\frac {PA}{DP}=\frac {PM}{DN}=\frac {AM}{PN}\implies$ $ \frac ab=\frac uc=\frac cv\implies$ $\boxed{uv=c^2 \ \wedge\ \frac uv=\left(\frac ab\right)^2}\ (1)$ . Therefore, $\frac mn\ \stackrel{(*)}{=}\ \frac uv\stackrel{(1)}{\implies}$ $\boxed{\frac mn=\left(\frac ab\right)^2}$ and

$\frac {m+n}l=\frac ml+\frac nl\ \stackrel{(*)}{=}\ \frac u{l+c}+\frac v{l+c}=$ $\frac {u+v}{l+c}=\frac l{l+c}\implies$ $m+n=\frac {l^2}{l+c}\implies$ $l-x=\frac {l^2}{l+c}\implies$ $\boxed{x=\frac {lc}{l+c}}\ (2)$ , i.e. $\frac 1l+\frac 1c=\frac 1x$ .

In conclusion, $mn\ \stackrel{(*)}{=}\ \frac {lu}{l+c}$ $\cdot\frac {lv}{l+c}=uv\cdot\left(\frac l{l+c}\right)^2\ \stackrel{(1)}{=}\ \left(\frac {lc}{l+c}\right)^2\ \stackrel{(2)}{\implies}\ \boxed{mn=x^2}$ . Remark that $\boxed{ab=lc}$ .



PP2. Let the square $ABCD$ and $\left\{\begin{array}{ccc}
P\in BD & ; & \frac {PD}{PB}=p\\\\
E\in CD & ; & \frac {ED}{EC}=s\end{array}\right\|$ . Prove that $PA\perp PE \iff 2s+1=p$ .

Proof. Suppose w.l.o.g. that $AB=1$ . Let $\left\{\begin{array}{c}
\frac {PD}{p}=\frac {PB}{1}=\frac {\sqrt 2}{p+1}\\\\
\frac {ED}{s}=\frac {EC}{1}=\frac {1}{s+1}\end{array}\right\|$ and $\left\{\begin{array}{c}
m\left(\widehat{AED}\right)=\alpha\\\\
m\left(\widehat{APD}\right)=\beta\end{array}\right\|$ . Hence $\tan\alpha =\frac {DA}{DE}=\frac 1{\frac s{s+1}}=$ $\frac {s+1}{s}=1+\frac 1s\implies$ $\boxed{\tan\alpha =1+\frac 1s}\ (1)$ .

Apply theorem of Sines in $\triangle ADP\ :\ \frac {PD}{\sin\widehat{DAP}}=\frac {AD}{\sin\widehat{APD}}\implies$ $\frac {\frac {p\sqrt 2}{p+1}}{\sin \left(45^{\circ}+\beta\right)}=\frac {1}{\sin\beta}\implies$ $\frac {\frac {p\sqrt 2}{p+1}}{\frac {\sqrt 2}{2}\cdot\left(\sin \beta+\cos\beta\right)}=\frac {1}{\sin\beta}\implies$ $\frac {2p}{p+1}=\frac {\sin\beta +\cos\beta}{\sin\beta}\implies$

$\frac {2p}{p+1}=1+\frac 1{\tan\beta}\implies$ $\boxed{\tan\beta =\frac {p+1}{p-1}}\ (2)$ . In conclusion, from $(1)\ \wedge\ (2)$ obtain that $PA\perp PD\iff$ $ADEP$ is a cyclical quadrilateral $\implies$

$ \widehat{AED}\equiv\widehat{APD}\iff$ $\alpha =\beta\iff$ $\tan\alpha =\tan\beta\iff$ $1+\frac 1s=1+\frac 2{p-1}\iff$ $2s+1=p$ .

Particular case. If $O$ is the center of the square, $P$ is the midpoint of $[OB]$ and $E$ is the midpoint of $[CD]$ , then $p=3$ , $s=1$ and $2s+1=3=p$ , i.e. $PA\perp PE$ .



PP3 Let equilaterals $\triangle APB\ ,\ \triangle ADQ\ ,\ \triangle BCR$ be outside of parallelogram $ABCD$

and let $M$ , $N$ be the centers of $ADQ$ , $BCR$ respectively. Prove that $MPN$ is equilateral.


Proof 1. Let $m\left(\widehat{ADC}\right)=\phi <90^{\circ}$ , $O\in AC\cap BD$ , $AB=a$ , $AD=b$ and the midpoints $U$ , $V$ of $[AD]$ , $[BC]$ respectively. Observe that

$O\in UV\cap MN$ , i.e. $OM=ON$ and $MUNV$ is a parallelogram $\implies MU=NV=\frac {b\sqrt 3}{6}$ and $MO^2=MU^2+UO^2-2\cdot MU\cdot UO\cdot \cos\widehat{MUO}=$

$\frac {b^2}{12}+\frac {a^2}{4}-\frac {ab\sqrt 3}{6}\cdot \cos\left(90^{\circ}+\phi \right)\iff$ $3\cdot MN^2=12\cdot MO^2=b^2+3a^2+2ab\sqrt 3\sin\phi$ . Thus, $\left\{\begin{array}{c}
MA=BN=\frac {b\sqrt 3}{3}\ ;\ PA=PB=a\\\\
m\left(\widehat{PAM}\right)=m\left(\widehat{PBN}\right)=90^{\circ}+\phi\end{array}\right\|$ $\implies$

$\odot\left\|\begin{array}{cccc}
\nearrow & PM^2=AM^2+AP^2-2\cdot AM\cdot AP\cdot\cos\widehat{PAM} & \iff & 3\cdot PM^2=b^2+3a^2+2ab\sqrt 3\sin\phi\\\\
\searrow & PN^2=BN^2+BP^2-2\cdot BN\cdot BP\cdot\cos\widehat{PBN} & \iff & 3\cdot PN^2=b^2+3a^2+2ab\sqrt 3\sin\phi\end{array}\right\|$ $\implies PM=PN=MN$ .

Proof 2. $O\in MN\ ,\ OM = ON\ ,\ MN=OM+ON$ , $\left\{\begin{array}{ccc}
MOU \equiv NOV & \implies  & OM = ON\\\\
MOU\sim MPA & \implies & MP = 2\cdot MO\\\\
NOV\sim NBP & \implies & NP = 2\cdot NO\end{array}\right\|$ $\implies PM = PN = MN$ , i.e. $MPN$ is equilateral.

Proof 3. Choose $O$ the origin of the complex numbers and $A(a)\ ,\ B(b)$ . Denote $w=\cos\frac {\pi}{3}+I\sin\frac {\pi}3$ . Thus, $w^3=-1\ ,\ w^2=w-1$ and $(2-w)(1+w)=3$ .

Then $C(-a)\ ,\ D(-b)$ and $M(m)\ ,\ N(n)\ ,\ P(p)$ , where $m+n=0\ ,\ m=\frac {a+bw^2}{1-w^2}$ and $p=\frac {b-aw}{1-w}$ . Hence $MPN$ is equilateral $\iff$ $m^2+n^2+p^2=$

$mn+p(m+n)\iff$ $3m^2+p^2=0\iff$ $3\left(a+bw^2\right)^2+(1+w)^2(b-aw)^2=0\iff$ $3\left(a^2+2abw^2-b^2w\right)+3w\left(b^2-2abw+a^2w^2\right)=0\iff$

$a^2\left(1+w^3\right)+b^2\left(-w+w\right)+2ab\left(w^2-w^2\right)=0$ , what is true.



PP4. Let $d$ be a vertical line and $\{B,G,C,J\}\subset d$ in this order so that $\left\{\begin{array}{c}
BC=2a\ ;\ CJ=2d\\\\
BG=2b\ ;\  GJ=2c\end{array}\right\|$ and $\boxed{a+d=b+c}\ (*)$ . Construct the left squares $ABCD\ ,$

$LCJK$ with the centers $N\ ,\ M$ respectively and the right squares $BEFG\ ,\ GHIJ$ with the centers $P\ ,\ Q$ respectively. Prove that $PM\perp QN$ and $PM=QN$ .


Proof. $\left\{\begin{array}{cc}
X\ :\ XN\perp AB\ ,\ XQ\perp AD\\\\
Y\ :\ YP\perp AB\ ,\ YM\perp AD\end{array}\right\|\implies$ $\left\{\begin{array}{cc}
MY=b+d\ ; & NX=a+2d-c\\\\
QX=a+c\ ; & PY=b+2c-d\end{array}\right\|\stackrel{(*)}{\implies}$ $\left\{\begin{array}{c}
NX=MY\\\\
QX=PY\end{array}\right\|\implies$ $\triangle NXQ\equiv\triangle MYP\implies$ $\left|\begin{array}{c}
PM\perp QN\\\\
PM=QN\end{array}\right|$

An easy extension. Let $d$ be a vertical line and $\{B,G,C,J\}\subset d$ in this order so that $\left\{\begin{array}{c}
BC=2a\ ;\ CJ=2d\\\\
BG=2b\ ;\  GJ=2c\end{array}\right\|$ . Observe that $\boxed{a+d=b+c}$ .

Construct on the left side the rectangles $\left\{\begin{array}{cc}
ABCD\ ; & AB=2n\\\\
LCJK\ ; & LC=2m\end{array}\right\|$ with the centers $N\ ,\ M$ respectively and on the right side the rectangles

$\left\{\begin{array}{cc}
BEFG\ ; & BE=2p\\\\
GHIJ\ ; & GH=2q\end{array}\right\|$ with the centers $P\ ,\ Q$ respectively. Suppose that $\left\{\begin{array}{c}
m+p=b+d\\\\
n+q=a+c\end{array}\right\|\ (*)$ . Prove that $PM\perp QN$ and $PM=QN$ .


Proof. $\left\{\begin{array}{cc}
X\ :\ XN\perp AB\ ,\ XQ\perp AD\\\\
Y\ :\ YP\perp AB\ ,\ YM\perp AD\end{array}\right\|\implies$ $\left\{\begin{array}{cc}
MY=m+p\ ; & NX=a+2d-c=b+c+d-c=b+d\\\\
QX=n+q\ ; & PY=b+2c-d=a+d+c-d=a+c\end{array}\right\|\stackrel{(*)}{\implies}$

$\left\{\begin{array}{c}
NX=MY\\\\
QX=PY\end{array}\right\|\implies$ $NXQ\equiv MYP\implies$ $\begin{array}{cc}
\nearrow & PM\perp QN\\\\
\searrow & PM=QN\end{array}$



PP5. Let $ABCD$ be a parallelogram and let $\left\{\begin{array}{c}
M\in (AB)\ ,\ P\in (BC)\\\\
N\in (CD)\ ,\ Q\in (DA)\end{array}\right\|$ be four points so that $S\in BD\cap MN\cap PQ$ . Denote $\left\{\begin{array}{c}
R\in BD\cap MP\\\\
T\in BD\cap NQ\end{array}\right\|$ . Prove that $\frac {RB}{RS}=\frac {TD}{TS}$ .

Proof. Denote $\left\{\begin{array}{c}
X\in AD\cap MN\\\
Y\in BC\cap MN\end{array}\right\|$ . Since $\triangle MBY\sim\triangle NDX$ and $\left\{\begin{array}{c}
P\in (BY)\\\
Q\in (DX)\end{array}\right\|$ so that $\frac {PB}{PY}=\frac {QD}{QX}\implies$ $P\sim Q$ (are homologously). Thus,

$\left\{\begin{array}{c}
P\sim Q\\\
M\sim N\end{array}\right\|\implies PM\sim QN$ . Therefore, $\left\{\begin{array}{c}
PM\sim QN\\\
BS\sim DS\end{array}\right\|$ and $\left\{\begin{array}{c}
R\in PM\cap BS\\\
T\in QN\cap DS\end{array}\right\|\implies$ $R\sim T$ . In conclusion, $\left\{\begin{array}{c}
R\sim T\\\
B\sim D\\\
S\sim S\end{array}\right\|\implies $ $\frac {RB}{RS}=\frac {TD}{TS}$ .



PP6. Let an equilateral $ABC$ and $E\in (AC)$ . The circle which pass through $A$ and is tangent to $AC$ at $E$ meet $BA,BC$ in $F,D$ respectively. Prove that $EF+ED=EB$ .

Proof. $\left\{\begin{array}{ccc}
\triangle AFE\sim\triangle AEB & \implies & \frac {FE}{EB}=\frac {AE}{AB}\\\\
\triangle CDE\sim\triangle CEB & \implies & \frac {DE}{EB}=\frac {CE}{CB}\end{array}\right\|\bigoplus\implies$ $\frac {FE}{EB}+\frac {DE}{EB}=\frac {AE}{AB}+\frac {CE}{CB}\implies$ $\frac {EF+ED}{EB}=\frac {EA+EC}{BC}=\frac {AC}{BC}=1\implies$ $EF+ED=EB$ .

Extension. Let a $B$-isosceles $\triangle ABC$ and $E\in (AC)$ . The circle which pass through $A$ and is tangent to $AC$ at $E$ meet $BA,BC$ in $F,D$ respective $\implies a\cdot (EF+ED)=b\cdot EB$


PP7. Let $ABCD$ be a trapezoid with $\left|\begin{array}{c}
AD\parallel BC\\\\
P\in AC\cap BD\end{array}\right|$ . Prove that the inradii of $\triangle APB$ and $\triangle DPC$ are equally iff $AB=CD$ , i.e. $ABCD$ is an isosceles trapezoid.

Proof. Denote $\left\{\begin{array}{ccc}
AD=a\ ; & BC=b\ ; & AB=c\\\\
CD=d\ ; & AC=e\ ; & BD=f\end{array}\right\|$ . Suppose w.l.o.g. that $a>b$ and define $\{X,Y\}\subset (AD)$ so that $AX=DY=b$ . Hence $\left\{\begin{array}{c}
DX=AY=a-b\\\\
CX=c\ ,\ BY=d\end{array}\right\|$ . Apply

Stewart's to the cevians $:\ \odot\begin{array}{c}
\nearrow\\\\
\searrow\end{array}$ $\begin{array}{ccccc}
CX/\triangle ACD\ : & CA^2\cdot XD+CD^2\cdot XA=CX^2\cdot AD+XA\cdot XD\cdot AD & \implies & e^2(a-b)+d^2b=c^2a+ab(a-b) & \searrow\\\\
BY/\triangle ABD\ : & BA^2\cdot YD+BD^2\cdot YA=BY^2\cdot AD+YA\cdot YD\cdot AD & \implies & f^2(a-b)+c^2b=d^2a+ab(a-b) & \nearrow\end{array}$ $(-)\implies$

$\left(e^2-f^2\right)(a-b)+b\left(d^2-c^2\right)=a\left(c^2-d^2\right)\implies$ $(a-b)\left(e^2-f^2\right)=(a+b)\left(c^2-d^2\right)\implies$ $\boxed{\ (a-b)(e-f)\ .s.s.\ (c-d)\ }\ (1)$ , where

$x\ .s.s.\ y \ \stackrel{\mathrm{def}}{\iff}\ x=y=0\ \vee\ xy>0$ , i.e. the real numbers $x\ ,\ y$ have same signature. Observe that $[APB]=[DPC]$ (two equal areas) and

$\frac {PA}{ae}=\frac {PB}{bf}=\frac {PC}{be}=\frac {PD}{af}=\frac 1{a+b}$ . Therefore, the inradii of the triangles $APB$ and $DPC$ are equally $\iff$ the semiperimeters of $\triangle APB$ and $\triangle DPC$

are equally $\iff$ $AB+PB+PA=CD+PD+PC\iff$ $c(a+b)+bf+ae=d(a+b)+af+be\iff$ $(a-b)(e-f)=(a+b)(d-c)\iff$

$\boxed{\ (a-b)(e-f)\ .s.s.\ (d-c)\ }\ (2)$ . From the relations $(1)$ and $(2)$ obtain that $(c-d)\ .s.s.\ (d-c)$ , what means $d=c$ , i.e. $ABCD$ is an isosceles trapezoid.



PP8. Let a parallelogram $ABCD$ and two points $M\in [AB$ (ray) and $N\in [CB$ (ray) for which define $L\in AN\cap CM$ . Prove that $AM=CN\iff \widehat{LDA}\equiv\widehat{LDC}$ .

Proof. Denote $X\in DA\cap CM$ . Therefore, $\left\{\begin{array}{c}
\frac {AM}{AX}=\frac {DC}{DX}\\\\
\frac {CN}{AX}=\frac {LC}{LX}\end{array}\right\|$ . In conclusion, $AM=CN\iff$ $\frac {AM}{AX}=\frac {CN}{AX}\iff$ $\frac {LC}{LX}=\frac {DC}{DX}\iff$ $\widehat{LDA}\equiv\widehat{LDC}$ .

Remark. Let $O$ , $S$ be the midpoints of $[AC]$ , $[MN]$ respectively. Then the locus of $S$ is a line which pass through $O$ and which is parallelly with the bisector of $\widehat{ABC}$ .



PP9 (clasa a VII - a). Fiind dat un paralelogram ABCD consideram punctul mobil M pe semidreapta [AB si punctul mobil N pe semidreapta

[CB astfel incat AM=CN . Notam mijlocul O al diagonalei [AC], mijlocul S al segmentului [MN] si intersectia L a dreptelor AN si CM .

Sa se arate :

1. Locul geometric al punctului S este o dreapta care trece prin O si este paralela cu bisectoarea unghiului <ABC .

2. Locul geometric al punctului L este bisectoarea unghiului <ADC .



PP10. Let $[AB]$ be a diameter of the semicircle $w$ and $\{M,N\}\subset w$ be two points for which denote $\left\{\begin{array}{ccccc}
 P\in MN &  , & AP\perp MN & ; & AP=x\\\\
 R\in AB & , & MR\perp AB & ; & RA=a\\\\
S\in AB & , & NS\perp AB & ; & \left|\begin{array}{c}
SB=b\\\\
SN=y\end{array}\right|\end{array}\right|$ . Prove that $\frac {x^2}{y^2}=\frac ab$ .

Proof. Denote $w=C(O,r)$ and $AM=m\ ,\ BN=n$ . Thus, $\left\{\begin{array}{ccc}
MA^2=AR\cdot AB & \implies & m^2=2ar\\\\
NB^2=BS\cdot BA & \implies & n^2=2br\end{array}\right\|\implies$

$\boxed{\left(\frac mn\right)^2=\frac ab}\ (*)$ . Observe that $\widehat{AMP}\equiv \widehat {NBA}\implies$ $\triangle AMP\sim\triangle NBS\implies$ $\frac {AM}{NB}=\frac {AP}{NS}\implies$ $\frac mn=$ $\frac xy\ \stackrel{(*)}{\implies}\ \frac {x^2}{y^2}=\frac ab$ .



PP11. Let $ABCDC$ be a parallelogram and let $\{E,F,G\}$ be three points so that $E\in (CD)\ ,\ D\in (AG)$ and $DEFG$ is a parallelogram.

Denote the midpoints $M\ ,\ N$ of the segments $[BC]\ ,\ [FG]$ respectively. Prove that $4[BMFN]=[ABCD]+[DEFG]$ .


Proof. Denote the intersection $X\in BC\cap GF$ . Therefore, $2\cdot [BMFN]=2\cdot\left([BXN]-[MXF]\right)=$ $\left([BXF]+[BXG]\right)-\left([BXF]+[CXF]\right)=$

$[BXG]-[CXF]\implies$ $4\cdot [BMFN]=[ABXG]-[CEFX]=[ABCD]-[DEFG]$ . In conclusion, $4[BMFN]=[ABCD]+[DEFG]$ .



PP12. Let a rectangle $ABCD$ and the point $M\in (AC)$ so that $BM\perp AC$ . prove that $\tan\widehat{ADM}=\tan^3\widehat{ABM}\ .$

Proof. Let $\left|\begin{array}{c}
AB=b\ ;\ m\left(\widehat{ABM}\right)=x\\\\
AD=a\ ;\ m\left(\widehat{ADM}\right)=y\end{array}\right|$ . So $\boxed{\tan x=\frac ba}\ (*)$ and $\left(\frac {BA}{BC}\right)^2=\frac {MA}{MC}=$ $\frac {DA}{DC}\cdot\frac {\sin\widehat{MDA}}{\sin\widehat{MDC}}$ $\iff$ $\tan y=\left(\frac ba\right)^3\ \stackrel{(*)}{\iff}\ \tan y=\tan^3x$


PP13. Let $ABCD$ be a square with $AB=1$ and $\odot\begin{array}{ccc}
\nearrow & E\in (BC)\implies BE=u\ ;\ M\in BD\cap AE & \searrow\\\\
\searrow & F\in (CD)\implies DF=v\ ;\ N\in BD\cap AF & \nearrow\end{array}\odot$

where $u\ne v$ . Prove that $m\left(\widehat{EAF}\right)=45^{\circ}\iff EMNF$ is cyclic $\iff (u+1)(v+1)=2$ .


Proof. $\left\{\begin{array}{ccccccc}
AE=\sqrt{u^2+1} & ; & \frac {AM}1=\frac {ME}u=\frac {AE}{u+1} & \implies & AM=\frac {\sqrt{u^2+1}}{u+1} & \implies & AM\cdot AE=\frac {u^2+1}{u+1}\\\\
AF=\sqrt{v^2+1} & ; & \frac {AN}1=\frac {NF}v=\frac {AF}{v+1} & \implies & AN=\frac {\sqrt{v^2+1}}{v+1} &\implies & AN\cdot AF=\frac {v^2+1}{v+1}\end{array}\right\|$ . Therefore, $EMNF$ is cyclic $\iff$ $AM\cdot AE=AN\cdot AF\iff$

$\frac {u^2+1}{u+1}=\frac {v^2+1}{v+1}\iff$ $\left(u^2+1\right)(v+1)=\left(v^2+1\right)(u+1)\ \stackrel{(u\ne v)}{\iff}\ uv+u+v=$ $1\iff (u+1)(v+1)=2$ . Denote $\left\{\begin{array}{ccc}
m\left(\widehat{BAE}\right)=x & \implies & \tan x=u\\\\
m\left(\widehat{DAF}\right)=y & \implies & \tan y=v\end{array}\right\|$ .

Thus, $\tan (x+y)=\frac {\tan x+\tan y}{1-\tan x\tan y}\implies$ $\tan (x+y)=\frac {u+v}{1-uv}$ . Therefore, $m\left(\widehat{EAF}\right)=45^{\circ}\iff$ $\tan\widehat{EAF}=1\iff$ $\tan(x+y)=1\iff$ $\frac {u+v}{1-uv}=1\iff$

$u+v=1-uv\iff$ $uv+u+v=1\iff$ $(u+1)(v+1)=2$

Remark. $\triangle AMN\sim\triangle AFE\implies \frac {[AMN]}{[AFE]}=\left(\frac {AM}{AF}\right)^2$ and $[AMN]=[EMNF]\iff$ $2\cdot AM^2=AF^2\iff$ $2\cdot\frac {\left(u^2+1\right)}{(u+1)^2}=v^2+1\iff$ $(u+1)(v+1)=2$ .



PP14. Let $ABCD$ be a rectangle with $AD=2\cdot AB=2$ and the midpoint $O$ of $[AD]$ . Denote the circle $w=C(O,OA)$ , two mobile points $\{X,Y\}\subset w$

so that $B\in XY$ with $X\in (BY)$ and $\left\{\begin{array}{c}
m\left(\widehat{DAX}\right)=\alpha\\\\
m\left(\widehat{ADY}\right)=\beta\end{array}\right\|$ . Find the relation between the variables $\alpha$ and $\beta$ and prove that $\tan\beta =3\iff \tan\alpha =\frac 53$ .


Proof 1. Let $H\in AY\ ,\ BH\perp AY$. Prove easily that $\left\{\begin{array}{ccc}
\triangle DAY\sim\triangle ABH & \implies & \frac {AY}{BH}=\frac {DA}{AB}=2\\\\
m\left(\widehat{HBY}\right)=\alpha & \implies & \tan\alpha =\frac {HY}{HB}\\\\
m\left(\widehat{BAH}\right)=\beta & \implies & \cot\beta =\frac {HA}{HB}\end{array}\right\|\ \bigoplus\ \implies$ $\tan\alpha +\cot\beta =\frac {AY}{BH}\implies$ $\boxed{\tan\alpha +\cot\beta =2}$ .

Proof 2. Suppose $AB=1$ and $T\in BC\cap w$. Since $\triangle BTX\sim \triangle BYT$ get $\frac {TX}{TY}=\frac {BX}{BT}\implies$ $\frac {TX}{TY}=\frac {BX}{BA}\iff$ $\frac {\sin\widehat{TYX}}{\sin\widehat{TXY}}=\frac {\sin\widehat{BAX}}{\sin\widehat{BXA}}\implies$ $\frac {\sin\left(\alpha -45^{\circ}\right)}{\sin\left(\beta -45^{\circ}\right)}=\frac {\cos \alpha}{\sin\beta}\implies$

$\sin\left(\alpha -45^{\circ}\right)\sin\beta=\sin\left(\beta -45^{\circ}\right)\cos \alpha\implies$ $\left(\sin \alpha -\cos\alpha \right)\sin\beta=\left(\sin\beta -\cos \beta \right)\cos\alpha\implies$ $\left(\tan\alpha -1\right)\tan\beta =\tan\beta -1\implies$ $\boxed{\ \tan\alpha +\cot\beta =2\ }$ .

Proof 3. Suppose $AB=1$ and denote $T\in BC\cap w$ . Observe that $m\left(\widehat{XAY}\right)=\left(\alpha +\beta\right)-90^{\circ}$ . Since $\triangle ABX\sim \triangle YBA$ obtain that $\frac {AB}{BY}=\frac {BX}{AB}=\frac {AX}{AY}\iff$

$\frac 1{BY}=\frac {BX}1=\frac {2\cos \alpha}{2\sin \beta}\iff$ $\left\{\begin{array}{c}
BX=\frac {\cos \alpha}{\sin \beta}\\\\
BY=\frac {\sin \beta}{\cos\alpha}\end{array}\right\|$ . Thus, $\boxed{\tan\alpha >1\ \wedge\ \tan\beta >1}\ (*)$ and $BY-BX=XY\iff$ $\frac {\sin \beta}{\cos\alpha}-\frac {\cos \alpha}{\sin \beta}=$ $2\sin\left(\alpha  +\beta -90^{\circ}\right)\iff$

$\sin^2\beta -\cos^2\alpha +2\sin\beta\cos\alpha\cos\left(\alpha +\beta\right)=0\iff$ $\sin^2\beta\left(\sin^2\alpha +\cos^2\alpha \right) -\cos^2\alpha\left(\sin^2\beta +\cos^2\beta\right)$ $ +2\sin\beta\cos\alpha\left(\cos\alpha\cos\beta-\sin\alpha\sin\beta\right)=0\iff$

$\tan^2\beta\left(\tan^2\alpha +1\right) -\left(\tan^2\beta +1\right)$ $ +2\tan\beta\left(1-\tan\alpha\tan\beta\right)=0\iff$ $\tan^2\beta\cdot \underline{\tan^2\alpha} -1-2\tan^2\beta\cdot\underline{\tan\alpha}+\left(2\tan\beta -1\right) =0$ $\implies$

$\tan\alpha =\left\{\begin{array}{ccc}
\frac 1{\tan\beta} & \mathrm{if} &\beta\in\left(0,\frac {\pi}4\right]\\\\
2-\frac 1{\tan\beta} & \mathrm{if} &\beta\in\left(\frac {\pi}4,\frac {\pi}2\right)\end{array}\right|$ $\stackrel{(*)}{\implies}$ $\boxed{\tan\alpha +\cot\beta =2}$ . Remark. In the particular case $\tan\beta =3$ obtain that $\boxed{\ \tan\alpha =\frac 53\ }$ .



PP15 (Borislav Mirchev - Bulgaria). Let a tangential quadrilateral $ABCD$ with the incircle $w$ which touches its sides in $P\in (AB)$ , $Q\in (BC)$ ,

$R\in (CD)$ , $S\in (DA)$ . Denote $\left\{\begin{array}{cc}
\{X,Z\}=AC\cap w\ ; & X\in (AZ)\\\\
\{Y,T\}=BD\cap w\ ; & Y\in (BT)\end{array}\right\|$ . Prove that $\left\{\begin{array}{ccc}
XP\cdot YQ\cdot ZR\cdot TS & = & PY\cdot QZ\cdot RT\cdot SX\\\\
ZP\cdot TQ\cdot XR\cdot YS & = & TP\cdot XQ\cdot YR\cdot ZS\end{array}\right\|\ (\alpha )$ .


Proof. Denote $L\in AC\cap PS$ . The quadrilateral $XPZS$ is harmonically, i.e. $\boxed{\frac {XP}{XS}=\frac {ZP}{ZS}}\ (*)$ . The line $XZ$ is the $X$-symmedian in $\triangle PXS$ and also

it is the $Z$-symmedian in $\triangle PZS$ , i.e. $\left(\frac {XP}{XS}\right)^2=\frac {LP}{LS}=\frac {AP}{AS}\cdot$ $\frac {\sin\widehat{CAB}}{\sin\widehat{CAD}}\ \stackrel{(AP=AS)}{\implies}\ \boxed{\left(\frac {XP}{XS}\right)^2=\frac {\sin\widehat{CAB}}{\sin\widehat{CAD}}}\ (1)$ . Is well-known or prove easily the relation

$\boxed{\frac {\sin\widehat{CAB}}{\sin\widehat{CAD}}\cdot \frac {\sin\widehat{DBC}}{\sin\widehat{DBA}}\cdot \frac {\sin\widehat{ACD}}{\sin\widehat{ACB}}\cdot \frac {\sin\widehat{BDA}}{\sin\widehat{BDC}}=1}\ (2)$ . Obtain analogously $(1)$ and $(*)$ for $\{B,C,D\}\ :$ $\left\{\begin{array}{ccc}
(1) & ; & (*)\\\\
\left(\frac {XP}{XS}\right)^2=\frac {\sin\widehat{CAB}}{\sin\widehat{CAD}} & ; & \frac {XP}{XS}=\frac {ZP}{ZS}\\\\
\left(\frac {YQ}{YP}\right)^2=\frac {\sin\widehat{DBC}}{\sin\widehat{DBA}} & ; & \frac {YQ}{YP}=\frac {TQ}{TP}\\\\
\left(\frac {ZR}{ZQ}\right)^2=\frac {\sin\widehat{ACD}}{\sin\widehat{ACB}} & ; & \frac {ZR}{ZQ}=\frac {XR}{XQ}\\\\
\left(\frac {TS}{TR}\right)^2=\frac {\sin\widehat{BDA}}{\sin\widehat{BDC}} & ; & \frac {TS}{TR}=\frac {YS}{YR}\end{array}\right\|\ \bigodot\stackrel{(2)}{\implies}\ (\alpha )\ .$



PP16. Let $ABCD$ be a square with $AB=1$ and $\left\{\begin{array}{cc}
M\in (BC)\ : & BM=m\\\\
N\in (CD)\ : & DN=n\end{array}\right\|$ with $m\ne n$. Denote $\left\{\begin{array}{c}
X\in AM\cap BD\\\\
Y\in AN\cap BD\end{array}\right\|$ . Prove that : $m\left(\widehat{MAN}\right)=45^{\circ}\iff$

$(m+1)(n+1)=2\iff$ $BM+DN=MN\iff$ $[XAY]=[XMNY]\iff$ $XMNY$ is cyclically $\iff$ the point $A$ is the $C$-excenter of $\triangle MCN$ .


Proof. $\left\{\begin{array}{c}
m\left(\widehat{MAN}\right)=\phi\\\\
m\left(\widehat{BAM}\right)=u\\\\
m\left(\widehat{DAN}\right)=v\end{array}\right\|$ $\implies \left\{\begin{array}{c}
\tan u=\frac {BM}{BA}=m\\\\
\tan v=\frac {DN}{DA}=n\end{array}\right\|$ and $\tan\phi =\cot (u+v)=\frac {1-\tan u\tan v}{\tan u+\tan v}\implies$ $\boxed{\tan\phi =\frac {1-mn}{m+n}}\ (*)$ .

Observe that $\left\{\begin{array}{c}
CM=1-m\ ;\ CN=1-n\\\\
MN^2=(1-m)^2+(1-n)^2\end{array}\right\|$ . Therefore, $\left\{\begin{array}{ccc}
\frac {[XBM]}{[ABM]}=\frac {XM}{AM}=\frac m{m+1} & \implies & [XBM]=\frac {m^2}{2(m+1)}\\\\
\frac {[YDN]}{[ADN]}=\frac {YN}{AN}=\frac n{n+1} & \implies & [YDN]=\frac {n^2}{2(n+1)}\end{array}\right\|\ (1)$ and

$\left\{\begin{array}{ccccc}
\frac {AX}{AM}=\frac 1{m+1} & \implies & AX\cdot AM=\frac {AX}{AM}\cdot AM^2=\frac {m^2+1}{m+1} & \implies & AX\cdot AM=\frac {m^2+1}{m+1}\\\\
\frac {AY}{AN}=\frac 1{n+1} & \implies & AY\cdot AN=\frac {AY}{AN}\cdot AN^2=\frac {n^2+1}{n+1} & \implies & AY\cdot AN=\frac {n^2+1}{n+1}\end{array}\right\|\ (2)$ . In conclusion:

$\blacktriangleright\ \boxed{m\left(\widehat{MAN}\right)=45^{\circ}}\iff$ $\tan\phi =1\ \stackrel{(*)}{\iff}\ \frac {1-mn}{m+n}=1\iff$ $mn+m+n=1\iff$ $mn+m+n+1=2\iff$ $\boxed{\ (m+1)(n+1)=2\ }$ .

$\blacktriangleright\ \boxed{BM+DN=MN}\iff$ $(BM+DN)^2=MN^2\iff$ $(m+n)^2=(m-1)^2+(n-1)^2\iff$ $2mn=2-2m-2n\iff$ $\boxed{\ (m+1)(n+1)=2\ }$ .

$\blacktriangleright\ \boxed{[XAY]=[XMNY]}\iff$ $[MAN]=2\cdot [XAY]\iff$ $\frac {AM}{AX}\cdot\frac {AN}{AY}=2\iff$ $\boxed{(m+1)(n+1)=2}$ .

$\blacktriangleright\ \boxed{XMNY\ \mathrm{is\ cyclically}}\iff$ $AX\cdot AM=AY\cdot AN\ \stackrel{(2)}{\iff}\ \frac {m^2+1}{m+1}=\frac {n^2+1}{n+1}\iff$ $mn(m-n)+(m+n)(m-n)=m-n\stackrel{(m\ne n)}{\iff}$ $\boxed{(m+1)(n+1)=2}$ .


Remark. $O$-center of square, $AP\perp MN\ ,\ P\in MN\ ;\ AO=$ $\frac {\sqrt 2}2\ ;\  XMNY$ is cyclic $\iff 2=\frac {[MAN]}{[XAY]}=$ $\left(\frac {AP}{AO}\right)^2\iff$ $AP=AB\iff$ $A$ is $C$-excenter of $\triangle MCN$ .



PP17. Let a rectangle $MNPA$ and the points $\left\{\begin{array}{cccccc}
B\in (MN)\\\\
C\in (NP)\end{array}\right\|$ for which denote $\left\{\begin{array}{c}
m\left(\widehat{BAC}\right)=A\\\\
m\left(\widehat{ABC}\right)=B\\\\
m\left(\widehat{ACB}\right)=C\end{array}\right\|$ . Prove that $\boxed{\ [CPA]\cdot\cot B +[AMB]\cdot\cot C=[BNC]\cdot\cot A\ }\ (*)$ .

Proof 1. Let $\left\{\begin{array}{cccccc}
BM=v\ ,\ BN=u\ ;\ \boxed{u+v=n}\\\\
CN=x\ ,\ CP=y\ ;\ \boxed{x+y=m}\end{array}\right\|$. Thus, $\left\{\begin{array}{c}
BC=a\ ;\ a^2=u^2+x^2\\\\
CA=b\ ;\ b^2=y^2+n^2\\\\
AB=C\ ;\ c^2=v^2+m^2\end{array}\right\|$ . Is well-known that $\frac {\cot A}{b^2+c^2-a^2}=\frac {\cot B}{c_2+a^2-b^2}=\frac {\cot C}{a^2+b^2-c^2}=\frac 1{4S}$ .

$(*)\iff$ $[CPA]\cdot\left(a^2-b^2+c^2\right) +[AMB]\cdot\left(a^2+b^2-c^2\right)=$ $[BNC]\cdot\left(-a^2+b^2+c^2\right)\iff$ $yn\cdot\left(a^2-b^2+c^2\right) +vm\cdot\left(a^2+b^2-c^2\right)=$ $ux\cdot\left(-a^2+b^2+c^2\right)\ (1)$ .

Since $\left\{\begin{array}{ccccccc}
-a^2+b^2+c^2 & = & -\left(u^2+x^2\right)+\left(y^2+n^2\right)+\left(v^2+m^2\right) & = & 2\left(y^2+v^2+uv+xy\right) & = & 2\left(ym+vn\right)\\\\
a^2-b^2+c^2 & = & \left(u^2+x^2\right)-\left(y^2+n^2\right)+\left(v^2+m^2\right) & = & 2\left(x^2-uv+xy\right) & = & 2(xm-uv)\\\\
a^2+b^2-c^2 & = & \left(u^2+x^2\right)+\left(y^2+n^2\right)-\left(v^2+m^2\right) & = & 2\left(u^2+uv-xy\right) & = & 2(un-xy)\end{array}\right\|$ obtain that the relation $(1)$ is equivalently with

$yn\cdot (xm-uv) +vm\cdot (un-xy)=$ $ux\cdot (ym+vn)\iff$ $mn(xy+uv)=uvn(x+y)+xym(v+u)\iff$ $mn(xy+uv)=uvnm+xymn$ , what is truly.

Proof 2. Denote $\left\{\begin{array}{ccc}
m\left(\widehat{NCB}\right) & = & \alpha\\\\
m\left(\widehat{MBA}\right) & = & \beta\\\\
m\left(\widehat{PAC}\right) & = & \gamma\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
A & = & \beta -\gamma\\\\
B & = & 90-(\beta -\alpha )\\\\
C & = & 90-(\alpha - \gamma )\end{array}\right\|$ . I"ll use relations $:\ \left\{\begin{array}{ccc}
A=90^{\circ} & \implies &  4[ABC]=a^2\sin 2B=a^2\sin 2C\\\\
\triangle ABC & \implies & S=[ABC]=\frac {a^2\sin B\sin C}{2\sin A}\end{array}\right\|$ . Therefore,

$[BNC]\cot A=[CPA]\cot B +[AMB]\cot C\iff$ $\frac {[NBC]}{[ABC]}\cdot \cot (\beta -\gamma )=\frac {[APC]}{[ABC]}\cdot \tan (\beta -\alpha )+\frac {[ABM]}{[ABC]}\cdot \tan (\alpha -\gamma ) \iff$ $\frac {\sin 2\alpha\sin (\beta -\gamma )\cot (\beta -\gamma )}{\cos (\beta -\alpha )\cos (\alpha -\gamma )}=$

$\frac {\sin 2\gamma\cos (\beta -\alpha )\tan (\beta -\alpha )}{\cos (\alpha -\gamma )\sin (\beta - \gamma)}+$ $\frac {\sin 2\beta\cos (\alpha - \gamma )\tan (\alpha -\gamma )}{\cos (\beta -\alpha )\sin (\beta - \gamma )}\iff$ $\frac {\sin 2\alpha\cos (\beta -\gamma )}{\cos (\beta -\alpha )\cos (\alpha -\gamma )}=$ $\frac {\sin 2\gamma\sin (\beta -\alpha )}{\cos (\alpha -\gamma )\sin (\beta - \gamma)}+$ $\frac {\sin 2\beta\sin (\alpha - \gamma )}{\cos (\beta -\alpha )\sin (\beta - \gamma )}\iff$

$\sin 2\alpha\sin 2(\beta -\gamma )=\sin 2\gamma\sin 2(\beta -\alpha )+\sin 2\beta \sin 2(\alpha -\gamma )\iff$ $\tan 2\alpha (\underline{\tan 2\beta} -\underline{\underline{\tan 2\gamma}} ) =$ $\tan 2\gamma (\underline{\underline{\underline{\tan 2\beta}}} -\underline{\underline{\tan 2\alpha}} )+$ $\tan 2\beta (\underline{\tan 2\alpha} -\underline{\underline{\underline{\tan 2\gamma}}} )$ , what is truly.



PP18. Let $\square ABCD$ with center $O$ . Let $\{H,G\}=\alpha\cap\beta$ , where $\alpha =C(D,DA)$ , $\beta =C(B,BO)$ and $P\in HG\cap AB$ . Prove that $PB=3\cdot PA$ .

Proof. Suppose w.l.o.g. that $AB=2$ , i.e. $BO=\sqrt 2$ and denote $PA=x$ , i.e. $PB=2-x$ . The point $P$ belongs to the radical axis of the circles $\alpha$ and $\beta\iff$

$PD^2-PB^2=AD^2-BO^2\iff$ $PD^2-AD^2=PB^2-BO^2\iff$ $PA^2=PB^2-BO^2\iff$ $PB^2-PA^2=BO^2\iff$ $(PB+PA)(PB-PA)=BO^2\iff$

$AB(PB-PA)=BO^2\iff$ $2[(2-x)-x]=2\iff$ $2-2x=1\iff$ $x=\frac 12\iff$ $PA=\frac 12\ \wedge\ PB=\frac 32\iff$ $PB=3\cdot PA$ . Remark. The radical axis of the circles

$\left\{\begin{array}{c}
w_1 =\mathbb C\left(O_1,R_1\right)\\\\
w_2 =\mathbb C\left(O_2,R_2\right)\end{array}\right\|$ is the locus of $L$ which has same powers w.r.t. these circles, i.e. $p_{w_1}(L)=p_{w_2}(L)\iff$ $LO_1^2-R_1^2=LO_2^2-R_2^2\iff$ $LO_1^2-LO_2^2=R_1^2-R_2^2$ .


An easy extension. Let $\square ABCD$ with $AB=a$ and $\left\{\begin{array}{c}
\delta =C(D,d)\\\\
\beta =C(B,b)\end{array}\right\|$ with $\{b,d\}\subset (0,a)$ . The radical axis of $\delta$ , $\beta$ cut $AB$ in $P$ . Prove that $\frac {PB}{PA}=\left|\frac {2a^2}{d^2-b^2}-1\right|$ .

Proof (analytic). Let the origin $A(0,0)$ and $B(0,a)$ , $C(a,a)$ , $D(a,0)$ . The equations of the circles are $\ :\ \left\{\begin{array}{cccc}
\delta\ : & (x-a)^2+y^2=d^2 & \implies & x^2+y^2-2ax=d^2-a^2\\\\
\beta \ : & x^2+(y-a)^2=b^2 & \implies & x^2+y^2-2ay=b^2-a^2\end{array}\right\|$ .

The equation of the radical axis of $\delta$ and $\beta$ is $\boxed{f(x,y)=2a(x-y)+d^2-b^2=0}\ (*)$ . In conclusion, $\frac {PB}{PA}=\left|\frac {f(0,a)}{f(0,0)}\right|=$ $\left|\frac {-2a^2+d^2-b^2}{d^2-b^2}\right|\implies$ $\frac {PB}{PA}=\left|\frac {2a^2}{d^2-b^2}-1\right|$ .



PP19. Let an equilateral $\triangle ABC$ with the circumcircle $w$ . For $P\in \mathrm{sm}\ \overarc[]{AB}$ denote that $\left\{\begin{array}{ccc}
D\in BC & ; & PD\perp BC\\\\
E\in CA & ; & PE\perp CA\\\\
F\in AB & ; & PF\perp AB\end{array}\right\|$ . Prove that $\frac {AF^2+BD^2+CE^2}{AF\cdot CE-BD\cdot (AF+CE)}=\frac 52$ .

Proof. Let $\left\{\begin{array}{cc}
AB=a\ ; & PA=x\\\\
PB=y\ ; & PC=z\end{array}\right\|$ . Apply $:$ Ptolemy's to $APBC\ : PA\cdot BC+$ $PB\cdot AC=PC\cdot AB\iff$ $\boxed {x+y=z}\ (1)\ ;$ the generalized Pythagoras' to $\triangle APB\ :$

$AB^2=PA^2+PB^2-2\cdot PA\cdot PB\cdot\cos\widehat {APB}\ \iff\ \boxed{a^2=x^2+y^2+xy}\ (2)$ . Now I"ll use a property $:\ \boxed{XY\perp UV\ \iff\ XU^2-XV^2\ =\ YU^2-YV^2}\ (*)\implies$

$\blacktriangleright\ PD\perp BC\iff DC^2-DB^2=PC^2-PB^2\iff$ $DC^2-DB^2=z^2-y^2\ \stackrel{(DC-DB=a)}{\implies}$ $\left|\begin{array}{c}
DC+DB=\frac {z^2-y^2}a\\\\
DB=\frac {z^2-y^2-a^2}{2a}\end{array}\right|$ $\stackrel{(1\wedge 2)}{\iff}\boxed{U\equiv 2a\cdot DB=y(x-y)}$ .

$\blacktriangleright\ PE\perp CA\iff EC^2-EA^2=PC^2-PA^2\iff$ $EC^2-EA^2=z^2-x^2\ \stackrel{(EC+EA=a)}{\implies}$ $\left|\begin{array}{c}
EC-EA=\frac {z^2-x^2}a\\\\
EC=\frac {z^2-x^2+a^2}{2a}\end{array}\right|$ $\stackrel{(1\wedge 2)}{\iff}$ $\boxed{V\equiv 2a\cdot EC=(x+y)(x+2y)}$ .

$\blacktriangleright\ PF\perp AB\iff FA^2-FB^2=PA^2-PB^2\iff$ $FA^2-FB^2=x^2-y^2\ \stackrel{(FA+FB=a)}{\implies}$ $\left|\begin{array}{c}
FA-FB=\frac {x^2-y^2}a\\\\
FA=\frac {x^2-y^2+a^2}{2a}\end{array}\right|$ $\stackrel{(1\wedge 2)}{\iff}\boxed{W\equiv 2a\cdot FA=x(2x+y)}$ .

Thus, $U^2+V^2+W^2=$ $y^2(x-y)^2+\left(x^2+3xy+2y^2\right)^2+x^2(2x+y)^2=$ $\left(x^2y^2+y^4-2xy^3\right)+$ $\left(x^4+9x^2y^2+4y^4+6x^3y+4x^2y^2+12xy^3\right)+$

$\left(4x^4+4x^3y+x^2y^2\right)\implies$ $\boxed{U^2+V^2+W^2=5\left[\left(x^4+y^4\right)+3x^2y^2+2xy\left(x^2+y^2\right)\right]}\ (6)$ . On other hand, $VW-U(V+W)=$ $\left(x^2+3xy+2y^2\right)\left(2x^2+xy\right)-$

$\left(xy-y^2\right)\left(3x^2+4xy+2y^2\right)=$ $\left(2x^4+6x^3y+4x^2y^2+x^3y+3x^2y^2+2xy^3\right)-$ $\left(3x^3y+4x^2y^2+2xy^3-3x^2y^2-4xy^3-2y^4\right)\implies$

$\boxed{VW-U(V+W)=2\left[\left(x^4+y^4\right)+3x^2y^2+2xy\left(x^2+y^2\right)\right]}\ (7)$ . In conclusion, $\frac {AF^2+BD^2+CE^2}{AF\cdot CE-BD\cdot (AF+CE)}=$ $\frac {U^2+V^2+W^2}{VW-U(V+W)}\ \stackrel{(6\wedge 7)}{=}$

$\frac {5\left[\left(x^4+y^4\right)+3x^2y^2+2xy\left(x^2+y^2\right)\right]}{2\left[\left(x^4+y^4\right)+3x^2y^2+2xy\left(x^2+y^2\right)\right]}=\frac {5S}{2S}\implies$ $\frac {AF^2+BD^2+CE^2}{AF\cdot CE-BD\cdot (AF+CE)}=\frac 52$ , where $S\equiv \left(x^4+y^4\right)+3x^2y^2+2xy\left(x^2+y^2\right)=$

$\left(x^4+x^2y^2+y^4\right)+2xy\left(x^2+xy+y^2\right)=$ $\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)+2xy\left(x^2+xy+y^2\right)\implies$ $\boxed{S=\left(x^2+xy+y^2\right)^2=a^4}\ .$

Remark 1. Generalized Pythagoras' to $:\ \left\{\begin{array}{cccccc}
 PC/\triangle PBC\ : & PC^2=PB^2+BC^2+2\cdot BC\cdot DB & \implies & z^2=y^2+a^2+2a\cdot DB & \implies & 2a\cdot DB=z^2-y^2-a^2\\\\
 PA/\triangle APC\ : & PA^2=PC^2+CA^2-2\cdot CA\cdot EC & \implies & x^2=z^2+a^2-2a\cdot EC & \implies & 2a\cdot CE=z^2-x^2+a^2\\\\
 PB/\triangle ABP\ : & PB^2=PA^2+AB^2-2\cdot AB\cdot FA & \implies & y^2=x^2+a^2-2a\cdot FA & \implies & 2a\cdot FA=x^2-y^2+a^2\end{array}\right\|$ .

Remark 2. $AF^2+BD^2+CE^2=\frac 54\cdot a^2$ and $AF\cdot CE-BD\cdot (AF+CE)=\frac 12\cdot a^2$ .



PP20. Let the $A$-excircle $w=C\left(I_a,r_a\right)$ of $\triangle ABC$ and $\left|\begin{array}{c}
D\in w\cap BC\\\\
E\in w\cap CA\\\\
F\in w\cap AB\end{array}\right|$ . For $P\in \overarc[]{EF}$ denote $\left\{\begin{array}{ccc}
X\in BC\ ,\ PX\perp BC & ; & PX=x\\\\
Y\in CA\ ,\ PY\perp CA & ; & PY=y\\\\
Z\in AB\ ,\ PZ\perp AB & ; & PZ=z\end{array}\right\|$ . Prove that

$\odot\begin{array}{ccccccccc}
\nearrow & P\in\overarc[]{DF} & \implies & \sqrt y\cdot\cos\frac B2 & = & \sqrt x\cdot\cos\frac A2 & + & \sqrt z\cdot\cos\frac C2 & \searrow\\\\
\searrow & P\in\overarc[]{DE} & \implies & \sqrt z\cos\frac C2 & = & \sqrt x\cos\frac A2 & + & \sqrt y\cos\frac B2 & \nearrow\end{array}\odot\ .$
Remark. Their proof is similarly with the proof of PP7 from here.
This post has been edited 263 times. Last edited by Virgil Nicula, Jul 10, 2016, 1:42 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404398
  • Total comments: 37
Search Blog
a