389. Some geometric properties in a triangle I.

by Virgil Nicula, Nov 9, 2013, 9:19 AM

PP1. Let a $B$-rightangled $\triangle ABC$ with $AB=3$ and $BC=4$ . For a mobile $M\in [AC]$ define $P\in [BC]$ so that $m\left(\widehat{BMP}\right)=120^{\circ}$ . Finf the range of $BP$ .

Proof. Denote $BM=r$ and $m\left(\widehat {MBP}\right)=x$ . Prove easily that $\frac{r\cos x}{4}+\frac {r\sin x}{3}=1\iff$ $\boxed{r=\frac {12}{3\cos x+4\sin x}}\ (*)$ . Apply the theorem of Sines in $\triangle BMP\ :$

$\frac {BP}{\sin 120^{\circ}}=$ $\frac {BM}{\sin \left(120^{\circ}+x\right)}\iff$ $BP=\frac {r\sqrt 3}{2\cos \left(30^{\circ}+x\right)}\stackrel{(*)}{\iff}$ $\boxed{BP=\frac {6\sqrt 3}{\cos\left(30^{\circ}+x\right)(3\cos x+4\sin x)}}\ (1)$ . Thus, $\cos\left(30^{\circ}+x\right)(3\cos x+4\sin x)=$

$\frac 32\left[\cos \left(2x+30^{\circ}\right)+\cos 30^{\circ}\right]+$ $2\left[\sin\left (2x+30^{\circ} \right)-\sin 30^{\circ}\right]=$ $\left(\frac {3\sqrt 3}{4}-1\right)+\frac 12\left[3\cos \left(2x+30^{\circ}\right)+4\sin \left(2x+30^{\circ}\right)\right]\le$ $\left(\frac {3\sqrt 3}{4}-1\right)+\frac 52\implies$

$\boxed{\cos\left(30^{\circ}+x\right)(3\cos x+4\sin x)\le \frac {3\sqrt 3+6}{4}}$ . Thus, $BP\stackrel{(1)}{\ge} \frac {6\sqrt 3}{\frac {3\sqrt 3+6}{4}}=$ $8\left(2\sqrt 3-3\right)\implies$ $8\left(2\sqrt 3-3\right)\le BP$ with equality iff $\tan\left(2x+30^{\circ}\right)=\frac 43\iff$

$x_m=\frac 12\left(\arctan\frac 43-30^{\circ}\right)$ . In conclusion, $\boxed{8\left(2\sqrt 3-3\right)\le BP\le 4}$ .

Remark. I used only the inequality $|a\sin x+b\cos x|\le\sqrt {a^2+b^2}$ with equality iff $\tan x=\frac ab$ .



PP2. Let an acute $\triangle ABC$ with the orthic $\triangle DEF$ , where $D\in BC$ , $E\in CA$ , $F\in AB$ . Let the midpoint $M$ of $[BC]$ , the projection $P$ of

the orthocenter $H$ on $AM$ and the $A$-bisector $AL$ of $\triangle ABC$ , where $L\in BC$ . Prove that $\widehat{LPB}\equiv\widehat{LPC}$ and $\left\{\begin{array}{c}
m\left(\widehat{MPC}\right)=C\\\\
m\left(\widehat{MPB}\right)=B\end{array}\right\|$ .


Proof.

$\blacktriangleright\ \left\{\begin{array}{ccc}
DHPM\ \mathrm{cyclic} & \implies & \widehat{AHP}\equiv\widehat{AMD}\\\\
AHPE\ \mathrm{cyclic} & \implies & \widehat{AHP}\equiv\widehat{PEC}\end{array}\right|\implies$ $\widehat{AMD}\equiv\widehat{PEC}\implies$ $CMPE\ \mathrm{cyclic}\implies$ $\widehat{MPC}\equiv\widehat{MEC}=C\implies$ $m\left(\widehat{MPC}\right)=C$ .

$\blacktriangleright\ \left\{\begin{array}{ccc}
DHPM\ \mathrm{cyclic} & \implies & \widehat{AHP}\equiv\widehat{AMD}\\\\
AHPF\ \mathrm{cyclic} & \implies & \widehat{AHP}\equiv\widehat{PFA}\end{array}\right|\implies$ $\widehat{AMD}\equiv\widehat{PFA}\implies$ $BMPF\ \mathrm{cyclic}\implies$ $\widehat{MPB}\equiv\widehat{MFB}=B\implies$ $m\left(\widehat{MPB}\right)=B$ .

Thus, $1=\frac {MB}{MC}=$ $\frac {PB}{PC}\cdot\frac {\sin\widehat{MPB}}{\sin\widehat{MPC}}=$ $\frac {PB}{PC}\cdot\frac {\sin B}{\sin C}=$ $\frac {PB}{PC}\cdot\frac bc\implies$ $\frac {PB}{PC}=\frac cb=\frac {LB}{LC}\implies$ $\frac {PB}{PC}=\frac {LB}{LC}$ , i.e. $PL$ is the $P$-bisector of $\triangle BPC$ .



PP3. $(\forall )\  \triangle ABC$ and $(\forall )\ x\in\mathbb R$ exists relation $\boxed{4R\sin\frac {A+x}{2}\sin\frac {B+x}{2}\sin\frac {C+x}{2}=2R\sin x\sin\frac x2+r\cos\frac x2+s\sin\frac x2}$ . Find $x\in (0,\pi )$ where $\boxed{s=2R\sin x+r\cot\frac x2}$

Proof. $\left\{\begin{array}{ccc}
\sum \sin A=\frac sR\\\\
\sum\cos A=1+\frac rR\end{array}\right\|\implies$ $2R\sin x\sin\frac x2+r\cos\frac x2+s\sin\frac x2=$ $R\left[2\sin x\sin\frac x2+\cos\frac x2\left(\sum\cos A-1\right)+\sin\frac x2\cdot\sum\sin A\right]=$

$R\left[2\sin x\sin\frac x2-\cos \frac x2+\cos \left(A-\frac x2\right)+\cos\left(B-\frac x2\right)+\cos\left(C-\frac x2\right)\right]=$ $R\left(-\cos \frac {3x}2+\cos\frac {2A-x}{2}+\cos\frac {2B-x}{2}+\cos\frac {2C-x}{2}\right)=$

$2R\left(\sin\frac {A+x}{2}\sin\frac {2x-A}{2}+\cos\frac {B+C-x}{2}\cos\frac {B-C}{2}\right)=$ $2R\sin\frac {A+x}{2}\left(\sin\frac {2x-A}{2}+\sin\frac {\pi -B+C}{2}\right)=$ $4R\sin\frac {A+x}{2}\sin\frac {C+x}{2}\sin\frac {B+x}{2}$ .

Remark. $\left\{\begin{array}{ccc}
x:=0 & \implies & \sin\frac A2\sin\frac B2\sin\frac C2=\frac r{4R}\\\\
x:=\pi & \implies & \cos\frac A2\cos\frac B2\cos\frac C2=\frac s{4R}\end{array}\right\|$ . For $x:=-x$ obtain $4R\sin\frac {A-x}{2}\sin\frac {B-x}{2}\sin\frac {C-x}{2}=\sin\frac x2\left(2R\sin x+r\cot\frac x2-s\right)\ ,\ x\in\mathbb R$ .

$2R\sin x+r\cot\frac x2=s\iff \sin\frac {A-x}{2}\sin\frac {B-x}{2}\sin\frac {C-x}{2}=0$ , i.e. $x\in\{A,B,C\}$ . Example. $r=(s-a)\tan\frac A2\iff$ $s=a+r\cot\frac A2\iff$ $s=2R\sin A+r\cot\frac A2$


PP4. Solve the equation $\boxed{\sum\sqrt{\left(x-\frac {h_b}{b}\right)\left(x-\frac {h_c}{c}\right)}=x}$ in $\triangle ABC$ . See here

PP5. Let $\triangle ABC$ , $\mathbb C(I,r)$ with $D\in BC\cap w$ , circle $w$ which is interior tangent to $\mathbb C(O,R)$ in $T$ and $\left\{\begin{array}{c}
F\in AB\cap w\\\
E\in AC\cap w\end{array}\right\|$ . Prove that $\left\{\begin{array}{c}
m\left(\widehat{DTB}\right)=B\\\\
m\left(\widehat{DTC}\right)=C\end{array}\right\|$ .

Proof. From an well-known property obtain that the rays $[TF$ and $[TE$ are $T$-bisectors of $\triangle ATB$ and $\triangle ATC$ respectively. Thus, $AE=AF$ and $\left\{\begin{array}{c}
\frac {TB}{TA}=\frac {FB}{FA}\\\\
\frac {TC}{TA}=\frac {EC}{EA}\end{array}\right\|\implies$

$\frac {TB}{TC}=\frac {TB}{TA}\cdot\frac {TA}{TC}=$ $\frac {FB}{FA}\cdot\frac {EA}{EC}=$ $\frac {FB}{EC}=$ $\frac {FB}{IF}\cdot \frac {IE}{EC}=$ $\frac {\sin\frac C2}{\sin\frac B2}\cdot\frac {\sin\frac C2}{\sin\frac B2}=$ $\left(\frac {\sin\frac C2}{\sin\frac B2}\right)^2=$ $\frac {(s-a)(s-b)}{ab}\cdot\frac {ac}{9s-a)(s-c)}=$ $\frac {c(s-b)}{b(s-c)}\implies$ $\boxed{\frac {TB}{TC}=\frac {c(s-b)}{b(s-c)}}\ (*)$ .

Let $x=m\left(\widehat{DTB}\right)$ , i.e. $m\left(\widehat{DTC}\right)=180^{\circ}-A-x$ . Therefore, $\frac {DB}{DC}=\frac {TB}{TC}\cdot\frac {\sin x}{\sin(A+x)}$ $\stackrel{(*)}{\implies}$ $\frac {s-b}{s-c}=\frac {c(s-b)}{b(s-c)}\cdot\frac {\sin x}{\sin(A+x)}\implies$ $\frac {\sin x}{\sin(A+x)}=\frac bc\implies$

$\frac {\tan x}{\sin A+\cos A\tan x}=\frac bc\implies$ $\tan x=\frac {b\sin A}{c-b\cos A}=$ $\frac {a\sin B}{a\cos B}\implies$ $\tan x=\tan B\implies$ $x=B\implies$ $\left\{\begin{array}{c}
m\left(\widehat{DTB}\right)=B\\\\
m\left(\widehat{DTC}\right)=C\end{array}\right\|$ ,

Remark. Observe that $CEIT$ and $BFIT$ are cyclically. Thus, $\widehat{ITB}\equiv\widehat{AFI}\equiv\widehat{AEI}\equiv\widehat{ITC}\implies$ $\widehat{ITB}\equiv \widehat{ITC}$ , i.e. the ray $[TI$ is the bisector of $\widehat{BTC}$ (Julio Orihuela's proof).



PP6. Let $\triangle ABC$ with incenter $w=C(I,r)$ which touches the $\triangle ABC$ at $D\in BC$ , $E\in CA$ , $F\in AB$ . Let the midpoint $M$ of $[BC]$ . Prove that $EF\cap DI\cap AM\ne\emptyset$ .

Proof. $X\in DI\cap EF\implies$ $\frac {XF}{XE}=\frac {DF}{DE}\cdot\frac {\sin\widehat{XDF}}{\sin\widehat{XDE}}=$ $\frac {2(s-b)\sin\frac B2}{2(s-c)\sin\frac C2}\cdot \frac {\sin\frac B2}{\sin\frac C2}=$ $\frac {s-b}{s-c}\cdot\frac {(s-a)(s-c)}{ac}\cdot\frac {ab}{(s-a)(s-b)}=\frac bc$

and $Y\in AM\cap EF\implies$ $\frac {YF}{YE}=\frac {MB}{MC}\cdot\frac {AF}{AE}\cdot\frac {AC}{AB}=\frac bc$ . In conclusion, $\frac {XF}{XE}=$ $\frac {YF}{YE}=$ $\frac bc$ $ \implies$ $E\equiv F\implies EF\cap DI\cap AM\ne\emptyset$ .



PP7. Let $\triangle ABC$ and for $M\in (AC)$ , $N\in (AB)$ denote $P\in BM\cap CN$ . Prove that $AMPN$ is tangential $\implies\left\{\begin{array}{ccc}
NB+NC & = & MB+MC\ .\\\\
AB-AC & = & PB-PC\ .\end{array}\right\|$

Proof. Let the incircle $w$ of $AMPN$ and $\left\{\begin{array}{ccc}
X\in AB\cap w & ; & Y\in AC\cap w\\\\
U\in CN\cap w & ; & V\in BM\cap w\end{array}\right|$ . Thus, $NB+NC=$ $(BX-\underline{NX})+(\underline{NU}+UC)=$ $BX+UC=$ $BV+YC=$

$(BM-\underline{MV})+(\underline{YM}+MC)=$ $MB+MC$ and $AB-AC=$ $(\underline{AX}+XB)-(\underline{AY}+YC)=$ $XB-YC=$ $VB-UC=$ $(\underline{VP}+PB)-(\underline{PU}+PC)=PB-PC$ .


PP8. Let a convex $ABCD$ for which $P\in AC\cap BD$ , $Q\in AD\cap BC$ and exists circle $w$ what is tangent to $AD$ , $BC$ , $AC$ , $BD$ . Prove that $\left\{\begin{array}{ccc}
AC+AD & = & BC+BD\\\\
PD-PC & = & QC-QD\end{array}\right\|$ .

Proof. Let $\left\{\begin{array}{ccc}
X\in AD\cap w & ; & Y\in BC\cap w\\\\
U\in AC\cap w & ; & V\in BD\cap w\end{array}\right\|$ . Thus, $AC+AD=$ $(\underline{AU}+UC)+(DX-\underline{AX})=$ $CU+DX=$ $CY+DV=$ $(CB+\underline{BY})+$

$(DB-\underline{BV})=$ $BC+BD$ and $PD-PC=$ $(VD-\underline{VP})-(CU-\underline{PU})=$ $VD-CU=$ $XD-CY=$ $(QD-\underline{QX})-(QC-\underline{QY})=$ $QD-QC$ .



PP9. Let $\triangle ABC$ with $\left\{\begin{array}{cc}
B\in (MC)\ ,\  MA=MC\ ; & D\in (AB)\ ,\ DA=DC\\\\
C\in (BN)\ ,\ NA=NB\ ; & E\in (AC)\ ,\ EA=EB\end{array}\right\|$ . Prove that $[BDM]=[CEN]\iff AB=AC$ .

Proof. Is evidently that $AB=AC\implies [BDM]=[CEN]$ . Suppose $[BDM]=[CEN]=x$ and let $\left\{\begin{array}{ccc}
MB=m & ; & NC=n\\\\
\mathrm{area}(AMD)=u & ; & \mathrm{area}(ANE)=v\end{array}\right\|$ .

From $\frac {x+u}{x+v}=\frac {[ABM]}{[ACN]}=\frac {BM}{CN}=\frac mn$ obtain $\boxed{\frac {x+u}{x+v}=\frac mn}\ (*)$ and $\left\{\begin{array}{ccccc}
MA=m+a & \implies & \frac xu=\frac {DB}{DA}=\frac {MB}{MA}=\frac m{m+a} & \implies & \frac x{x+u}=\frac m{2m+a}\\\\
NA=n+a & \implies & \frac xv=\frac {EC}{EA}=\frac {NC}{NA}=\frac n{n+a} & \implies & \frac x{x+v}=\frac n{2n+a}\end{array}\right\|$ $\implies$

$\frac {x+u}{x+v}=\frac {n(2m+a)}{m(2n+a)}\ \stackrel{(*)}{\implies}\ \frac mn=$ $\frac {n(2m+a)}{m(2n+a)}\implies$ $(m-n)[2mn+a(m+n)]=0\implies$ $m=n$ .



PP10. Let $\triangle ABC$ with $\left\{\begin{array}{c}
GH=4\\\
GI=3\\\
HI=2\end{array}\right|$ . Find $\{R,r\}$ and ascertain $\cos A+\cos B+\cos C$ (standard notations).

Proof 1. I"ll use some remarkable properties of $\{O,G,H,I,N\}$ , where $N$ is the Nagel's point w.r.t. $ABC$ . Is well-known that $G\in HO\cap IN$ with $\frac {GH}{GO}=\frac {GN}{GI}=2$ , i.e. $OIHN$ is a trapezoid and $\left\{\begin{array}{c}
GO=2\\\
GN=6\end{array}\right\|\ ,$ $HN\parallel OI$ and $\left\{\begin{array}{ccc}
OI^2 & = & R(R-2r)\\\\
ON & = & R-2r\end{array}\right\|\ (*)$ . Let $x=m\left(\widehat{IGH}\right)=m\left(\widehat{OGN}\right)$ , where $m\left(\widehat{OGN}\right)+m\left(\widehat{OGI}\right)=180^{\circ}$ and apply

the generalized Pythagoras' theorem to the mentioned corresponding sides/triangles $:$

$\left\{\begin{array}{cccccc}
IH/\triangle IGH\ : & IH^2=GI^2+GH^2-2\cdot GI\cdot GH\cdot\cos\widehat{IGH} & \implies & 4=9+16-24\cdot \cos x & \implies & \boxed{\cos x\stackrel{(1)}{=}\frac 78}\\\\
ON/\triangle OGN\ : & ON^2=GO^2+GN^2-2\cdot GO\cdot GN\cdot\cos\widehat{OGN} & \stackrel{(1)}{\implies} & ON^2=4+36-24\cdot\frac 78 & \implies & ON=\sqrt{19}\\\\
OI/\triangle OGI\ : & OI^2=GO^2+GI^2-2\cdot GO\cdot GI\cdot\cos\widehat{OGI} &\stackrel{(1)}{\implies}  & OI^2=4+9+12\cdot\frac 78 & \implies & OI^2=\frac {47}{2}\end{array}\right\|$ $\stackrel{(*)}{\implies}$ $\left\{\begin{array}{ccc}
R(R-2r) & = & \frac {47}{2}\\\\
R-2r & = & \sqrt{19}\end{array}\right\|\implies$

$\boxed{\frac {R}{47}=\frac {2r}{9}=\frac 1{2\sqrt{19}}}$ . Remark that $\frac rR=\frac 9{94}$ and $\cos A+\cos B+\cos C=1+\frac rR=1+\frac 9{94}\implies \boxed{\cos A+\cos B+\cos C=\frac {103}{94}}$ .

Proof 2 (Israel Diaz, Peru). Denote the Euler's circle $w=C\left(E,\frac R2\right)$ w.r.t. $\triangle ABC$ and $\left\{\begin{array}{c}
IE=x\\\
IO=y\end{array}\right\|$ . From the Euler's relation $OI^2=R(R-2r)$ obtain that

$\boxed{y^2=R(R-2r)}\ (1)$ . Thus, $HE=3$ and $EG=1$ . From the Feuerbach's theorem (the incircle is interior tangent to the Euler's circle) obtain that $IE=\frac R2-r$ , i.e.

$\boxed{2x=R-2r}\ (2)$ . Hence the relations $(1)\ \wedge\ (2)\ \implies\ \frac {R-2r}{R}=$ $\frac {(R-2r)^2}{R(R-2r)}=\frac {4x^2}{y^2}\implies$ $\boxed{\frac {2r}{R}=1-\frac {4x^2}{y^2}}\ (3)$ . Apply the Stewart's relation to :

$\blacktriangleright\ IE/\triangle HIG\ :\ IH^2\cdot EG+$ $IG^2\cdot HE=IE^2\cdot HG+HG\cdot HE\cdot EG\ \implies\ 4\cdot 1+$ $9\cdot 3=x^2\cdot 4+4\cdot 3\cdot 1\ \implies\ 4x^2=19\ .$

$\blacktriangleright\ IG/\triangle HIO\ :\ IH^2\cdot GO+IO^2\cdot HG=$ $IG^2\cdot HO+HO\cdot HG\cdot GO\ \implies\ 4\cdot 2+$ $y^2\cdot 4=9\cdot 6+6\cdot 4\cdot 2\ \implies\ 2y^2=47\ .$

Using the relation $(3)$ obtain that $\frac {2r}R=1-\frac {38}{47}\implies$ $\frac rR=\frac 9{94}\implies$ $\cos A+\cos B+\cos C=1+\frac rR=\frac {103}{94}$ .



PP11. The incircle $w$ of $\triangle ABC$ touches it at $D\in (BC)$ , $E\in (CA)$ , $F\in (AB)$ . Suppose that circumcenter of $\triangle DEF$ belongs to circumcircle of $\triangle ABC$ . Prove $AB\perp AC$

Proof. Denote the circumcenter $S$ of $\triangle DEF$ and suppose w.l.o.g. $b\ne c$ , $AC$ separates $S$ , $B$ and $\boxed{SD=SE=SF=d}$ . Is well-known that $\left\{\begin{array}{c}
BF=CE=s-a\\\
CD=AF=s-b\\\
AE=BD=s-c\end{array}\right\|$ .

Prove easily that $\triangle BFS\sim\triangle CES$ (s.s.a. - obtuse) , i.e. $\boxed{SB=SC=l}$ and $\widehat{BSF}\equiv\widehat{CSE}\implies$ $\widehat{BAC}\equiv\widehat{BSC}\equiv\widehat{ESF}$ . Apply Stewart's relation

to $\left\{\begin{array}{cc}
SE/\triangle SAC\ : & b\cdot d^2+b(s-a)(s-c)=(s-a)\cdot SA^2+(s-c)\cdot l^2\\\\
SF/\triangle SAB\ : & c\cdot d^2+c(s-a)(s-b)=(s-a)\cdot SA^2+(s-b)\cdot l^2\end{array}\right\|\ominus\Downarrow$ $\implies$ $d^2(b-c)+s(s-a)(b-c)=l^2(b-c)\stackrel{(b\ne c)}{\implies}$ $\boxed{l^2-d^2=s(s-a)}\ (1)$ .

Apply the Stewart's relation to $SD$ in $\triangle BSC\ :\ a\cdot SD^2+a(s-b)(s-c)=(s-b)\cdot SB^2+(s-c)\cdot SC^2\implies$ $ad^2+a(s-b)(s-c)=l^2[(s-b)+(s-c)]\implies$

$d^2+(s-b)(s-c)=l^2\implies$ $\boxed{l^2-d^2=(s-b)(s-c)}\ (2)$ . From $(1)\wedge(2)$ get $(s-b)(s-c)=s(s-a)\iff$ $b^2+c^2=a^2$ , i.e. $A=90^{\circ}$ .



PP12 (Julio Orihuela, Peru). Let $\triangle ABC$ with the circumcircle $w=C(O,R)$ . Consider $D\in (BC)$ and $E\in CA\ ,\ F\in AB$ so that $B\in (AF)\ ,\ C\in (AE)\ ,$

$AE=AF$ and $\frac {DB}{DC}=\frac {BF}{CE}$ . Let $M\in w$ so that $MB=MC$ and $BC$ doesn't separate $A$ , $M\ ;\ G\in MD\cap w$ and $H\in AG\cap EF$ . Prove that $DH\perp EF$ .


Proof. $\frac {FB}{EC}=\frac {DB}{DC}\ \stackrel{(MB=MC)}{=}\ \frac {\sin\widehat{DMB}}{\sin\widehat{DMC}}=$ $\frac {\sin\widehat{GMB}}{\sin\widehat{GMC}}=$ $\frac {\sin\widehat{GAB}}{\sin\widehat{GAC}}=$ $\frac {\sin\widehat{HAF}}{\sin\widehat{HAE}}\ \stackrel{(AE=AF)}{=}\ \frac {HF}{HE}\implies$ $\left\{\begin{array}{c}
\frac {FB}{EC}=\frac {HF}{HE}\\\\
\widehat{BFH}\equiv\widehat{CEH}\end{array}\right\|\implies$ $\triangle BFH\ \stackrel{s.a.s.}{\sim}\ \triangle CEH\implies$

$\boxed{\widehat{BHF}\equiv\widehat{CHE}}\ (1)$ and $\frac {DB}{DC}=\frac {BF}{CE}=\frac {HB}{HC}\implies$ $\boxed{\frac {DB}{DC}=\frac {HB}{HC}}\ (2)$ . Hence from $(1)\ \wedge\ (2)$ obtain that $[HD$ is $H$-bisector of $\triangle BHC$ and $DH\perp EF$ .



PP13. Let $\triangle ABC$ with the orthocenter $H$ . Denote $\left\{\begin{array}{ccc}
M\in (BC) & ; & MB=MC\\\\
K\in (BC) & ; & \widehat{KAB}\equiv\widehat{KAC}\end{array}\right\|\ ,\ \left\{\begin{array}{ccc}
U\in AB & ; & KU\perp AB\\\\
V\in AC & ; & KV\perp AC\end{array}\right\|$ and $L\in UV\cap BC$ . Prove that $HL\perp AM$ .

Proof.

$1\blacktriangleright$ Denote the orthic triangle $DEF$ , where $D\in BC$ , $E\in CA$ and $F\in AB$ . Observe that $AU=AV$ and $\frac {KB}{KC}=\frac cb$ . Apply the Menelaus' theorem to the transversal $\overline {LUV}$

and $\triangle ABC\ :\ \frac {LB}{LC}\cdot \frac {VC}{VA}\cdot\frac {UA}{UB}=1\iff$ $\frac {LB}{LC}=\frac {UB}{VC}=$ $\frac {KB\cos B}{KC\cos C}=$ $\frac {c\cdot\cos B}{b\cdot\cos C}\implies$ $\boxed{\frac {LB}{LC}=\frac {DB}{DC}}$ , i.e. the division $(B,C;D,L)$ is harmonically and $L\in EF$ .

$1\blacktriangleright$ Denote $P\in LH\cap AM$ . Apply a well-known property (or you can prove easily it) of a harmonical division $\frac {LB}{LC}=\frac {DB}{DC}\iff$ $DB\cdot DC=DL\cdot DM$ . Therefore,

$DH\cdot DA=DL\cdot DM\iff$ $\frac {DA}{DL}=\frac {DM}{DH}\iff$ $\triangle ADM\sim\triangle LDH\iff$ $\widehat{DAM}\equiv\widehat{DLH}\iff ALDP$ is a cyclical quadrilateral $\iff$ $LH\perp AM$ . See PP1 from
here.


PP14. Prove that $AM\cdot CN=m^2+n^2$ (Carlos Olivera & Ruben Auqui, PERU).

http://i944.photobucket.com/albums/ad288/GemenLeu/27227abe-97fc-4f69-a113-0ee4f9727955_zps9e42fb34.jpg
Proof. Denote $:\ D\in (AC)$ so that $BD\perp AC\ ;$ the incircle $w=C(I,r)$ of $\triangle ABC\ ;\ \left\{\begin{array}{ccc}
E\in BC\cap AI & ; & CE=\frac {ba}{b+c}\\\\
F\in BA\cap CI & ; & AF=\frac {bc}{b+a}\\\\
X\in BC\cap w & ; & Z\in BA\cap w\end{array}\right\|$ . Observe that $BX=BZ=s-b$ and

$XZ^2=BX^2+BZ^2=$ $2(s-b)^2=$ $\frac 12\cdot (a+c-b)^2=$ $b^2-b(a+c)+ac\implies$ $\boxed{XZ^2=(b-a)(b-c)}\ (*)$ . Therefore, $\left\{\begin{array}{ccc}
ABD\sim ACB & \implies & \frac cb=\frac {AM}{AF}=\frac m{BZ}\\\\
CBD\sim CAB & \implies & \frac ab=\frac {CN}{CE}=\frac n{BX}\end{array}\right\|$ .

Hence $AM\cdot CN=\frac {ac}{b^2}\cdot AF\cdot CE=$ $\frac {ac}{b^2}\cdot \frac {bc}{b+a}\cdot \frac {ba}{b+c}\implies$ $\boxed{AM\cdot CN=\frac {a^2c^2}{(b+a)(b+c)}}\ (1)$ . On other hand $m^2+n^2=\left(\frac cb\cdot BZ\right)^2+$ $\left(\frac ab\cdot BX\right)^2\ \stackrel{(BX=BZ)}{=}$

$\frac {2\left(a^2+c^2\right)(s-b)^2}{b^2}$ $\implies$ $m^2+n^2=2(s-b)^2=XZ^2\ \stackrel{(*)}{\implies}$ $\boxed{m^2+n^2=(b-a)(b-c)}\ (2)$ . Using the relations $(1)$ and $(2)$ obtain easily that $AM\cdot CN=m^2+n^2\iff$

$\frac {a^2c^2}{(b+c)(b+a)}=(b-c)(b-a)\iff$ $a^2c^2=\left(b^2-a^2\right)\left(b^2-c^2\right)$ , what is truly.



PP15 (Stan Fulger's lemma). Let the circle $w$ and $\{B,C\}\subset w$ so that $A\in BB\cap CC$ . For a point $P\in w$ so that $BC$ doesn't

separate $P$ and $A$ denote its projections $(X,Y,Z)$ on $BC$ , $AC$ , $AB$ respectively. Prove that $PX^2=PY\cdot PZ$ .


Proof. Thus, $\left\{\begin{array}{ccc}
BXPZ\ \mathrm{and}\ CXPY &  \mathrm{are} & \mathrm{cyclic}\\\\ 
\widehat{PZX}\equiv\widehat{PBX}\equiv\widehat {PCY}\equiv\widehat{PXY} & \implies & \widehat{PZX}\equiv\widehat{PXY}\\\\
\widehat{PYX}\equiv\widehat{PCX}\equiv\widehat {PBZ}\equiv\widehat{PXZ} & \implies & \widehat{PXZ}\equiv\widehat{PYX}\end{array}\right\|$ $\implies$ $\triangle PZX\sim\triangle PXY\implies$ $\frac {PZ}{PX}=\frac {PX}{PY}\implies$ $\boxed{PX^2=PY\cdot PZ}$ .

Application 1. $A$-excircle $w_a$ touches $\triangle ABC$ at $(M,N,P)$, where $M\in BC$ . Let the distance $\delta_{NP}(M)=x$ . Define analogously the distancies $y$ and $z$ . Prove that $xyz=\frac {s^2r^3}{2R^2}$ .

Proof 1. Appy the upper lemma and obtain that $x^2=\delta_{AB}(M)\cdot\delta_{AC}(M)=$ $MB\sin B\cdot MC\sin C=$ $(s-c)\sin B\cdot (s-b)\sin C\implies$

$\boxed{x^2=(s-b)(s-c)\sin B\sin C}$ . In conclusion, $xyz=\prod (s-a)\cdot \prod \sin A=$ $sr^2\cdot\prod\frac a{2R}=$ $sr^2\cdot \frac {abc}{8R^3}=$ $sr^2\cdot \frac {4RS}{8R^3}=$ $sr^2\cdot \frac S{2R^2}\implies$ $xyz=\frac {s^2r^3}{2R^2}$ .

Proof 2. Suppose w.l.o.g. that $N\in AC$ and $P\in AB$ . Prove easily that $NP=2s\sin\frac A2$ and $\left\{\begin{array}{ccc}
MP & = & 2(s-c)\cos\frac B2\\\\
MN & = & 2(s-b)\cos \frac C2\end{array}\right\|$ . Thus

$m\left(\widehat{PMN}\right)=90^{\circ}+\frac A2$ and $x\cdot PN = MP\cdot MN\cdot\sin\widehat{PMN}\implies$ $\sin\widehat{PMN}=\cos\frac A2$ and $x =\frac {4(s-b)(s-c)\prod\cos\frac A2}{2s\sin\frac A2}=$

$\frac {(s-b)(s-c)}{2R\sin\frac A2}$ a.s.o. Obtain quickly that $xyz=\frac {s^2r^3}{2R^2}$ using the well-known identities $4RS=abc$ and $\left\{\begin{array}{ccc}
(s-a)(s-b)(s-c) & = & sr^2\\\\
\cos\frac A2\cos\frac B2\cos\frac C2 & = & \frac s{4R}\\\\
\sin\frac A2\sin\frac B2\sin\frac C2 & = & \frac r{4R}\end{array}\right\|\ (*)$ .


Application 2. Let $ABC$ be a triangle with the incircle $w=\mathbb C(I,r)$ and the $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)$ . The circle $w$ touches $ABC$ at $D\in BC\ ,\ E\in CA\ ,$

$F\in AB$ and the $A$-excircle touches $ABC$ at $D'\in BC\ ,\ E'\in CA\ ,\ F'\in AB$ . Denote the areas $S=[DEF]$ and $S'=[D'E'F']$ . Prove that $\frac {S'}S=\frac {r_a}r$ .


Proof 1. Prove easily that $\left\{\begin{array}{ccc}
DF & = & 2(s-b)\sin\frac B2\\\\
m\left(\widehat{EDF}\right) & = & 90^{\circ}-\frac A2\\\\
DE & = & 2(s-c)\sin\frac C2\end{array}\right\|$ and $\left\{\begin{array}{ccc}
D'E' & = & 2(s-b)\cos\frac C2\\\\
m\left(\widehat{E'D'F'}\right) & = & 90^{\circ}+\frac A2\\\\
D'F' & = & 2(s-c)\cos\frac B2\end{array}\right\|$ . Therefore, using the identities from $(*)$ obtain that

$\left\{\begin{array}{ccc}
2S=DE\cdot DF\cdot\sin\widehat{EDF}=4(s-b)(s-c)\sin\frac B2\sin\frac C2\cos\frac A2=\frac {4rs(s-a)(s-b)(s-c)}{abc} & \implies & S=\frac {(s-a)(s-b)(s-c)}{2R}\\\\
2S'=D'E'\cdot D'F'\cdot \sin\widehat{E'D'F'}=4(s-b)(s-c)\cos\frac A2\cos\frac B2\cos\frac C2=\frac {4s^2r(s-b)(s-c)}{abc} & \implies & S'=\frac {s(s-b)(s-c)}{2R}\end{array}\right\|$ $\implies \frac {S'}S=\frac s{s-a}=\frac {r_a}r$ .

Remark. Can use the Stan Fulger's lemma. Denote the projections $X$ , $Y$ and $Z$ of $D'$ on $E'F'$ , $AC$ and $AB$ respectively. Thus, $D'X^2=D'Y\cdot D'Z=$ $(s-b)\sin C\cdot (s-b)\sin C$

and $E'F'=2s\sin\frac A2\implies$ $S'=[E'D'F']=s\sin\frac A2\cdot\sqrt{(s-b)(s-c)\sin B\sin C}=$ $s\sqrt{\frac {(s-b)(s-c)}{bc}\cdot (s-b)(s-c)\cdot\frac {bc}{4R^2}}\implies$ $S'=\frac {s(s-b)(s-c)}{2R}$ .

Otherwise. Denote the diameter $[DS]$ of $w$ . Is well-known $S\in AD'$ and prove easily that $EF\parallel E'F'$ , $D'F'\parallel SF$ , $D'E'\parallel SE$ , i.e.

the triangles $SEF$ and $D'E'F'$ are homothetically with the vertex $A$ and the ratio $\frac {s-a}{s}$ . Therefore, $S'=\left(\frac s{s-a}\right)^2\cdot [SEF]$ , where

$[SEF]=2r^2\sin\frac C2\sin\frac B2\cos\frac A2=$ $2r^2\sqrt{\frac {(s-a)(s-b)}{ab}\cdot\frac {(s-a)(s-c)}{ac}\cdot\frac {s(s-a)}{bc}}=$ $\frac {2r^2(s-a)sr}{abc}=\frac {r^2(s-a)}{2R}$ a.s.o.


Proof 2. I"ll use the relation $:\ \boxed{S=2R^2\sin A\sin B\sin C}$ , where $S$ is the area of $\triangle ABC$ . Thus, $\frac A2+\frac {B+C}2=90^{\circ}$ and $\sin\left(90^{\circ}\pm\frac A2\right)=\cos\frac A2$ . Hence:

$\blacktriangleleft\ \triangle DEF$ $:\ \left\{\begin{array}{ccc}
m\left(\widehat{EDF}\right) & = & \frac {B+C}2\\\\
m\left(\widehat{FED}\right) & = & \frac {C+A}2\\\\
m\left(\widehat{DFE}\right) & = & \frac {A+B}2\end{array}\right|$ $\implies$ $S=2r^2\cos\frac A2\cos\frac B2\cos\frac C2\ \blacktriangleright\ :\ \blacktriangleleft\ \triangle D'E'F'$ $\:\ \left\{\begin{array}{ccc}
m\left(\widehat{E'D'F'}\right) & = & 90^{\circ}+\frac A2\\\\
m\left(\widehat{F'E'D'}\right) & = & \frac B2\\\\
m\left(\widehat{D'F'E'}\right) & = & \frac C2\end{array}\right|\implies$ $S'=2r_a^2\sin\frac B2\sin\frac C2\cos\frac A2\ \blacktriangleright$

In conclusion, $\frac {S'}S=\left(\frac {r_a}r\right)^2\cdot\tan\frac B2\tan\frac C2=$ $\left(\frac s{s-a}\right)^2\cdot\sqrt{\frac {(s-a)(s-c)}{s(s-b)}\cdot\frac {(s-a)(s-b)}{s(s-c)}}=\frac s{s-a}$ .



PP16 (O.M. IberoAm., 2014). Let an acute $\triangle ABC$ with the orthocenter $H$ and the orthic $\triangle DEF$ , where $\left\{\begin{array}{c}
D\in BC\\\
E\in CA\\\
F\in AB\end{array}\right\|$ .

Denote $\left\{\begin{array}{ccc}
M\in BH\ ,\ MB=MH & ; & N\in CH\ ,\ NC=NH\\\
X\in DM\cap AB & ; & \in DN\cap AC\\\
P\in XY\cap BH & ; & Q\in XY\cap CH\end{array}\right\|$ . Prove that $HPDQ$ is cyclically.


Proof. Apply the Menelaus theorem to the mentioned transversals/triangles $:\ \odot\begin{array}{cccccc}
\nearrow & \overline{DMX}/\triangle ABH\ : & \frac {DH}{DA}\cdot\frac {XA}{XB}\cdot\frac {MB}{MH}=1 & \implies & \frac {XA}{XB}=\frac {DA}{DH} & \searrow \\\\
\searrow & \overline{DNY}/\triangle ACH\ : & \frac {DH}{DA}\cdot\frac {YA}{YC}\cdot\frac {NC}{NH}=1 & \implies & \frac {YA}{YC}=\frac {DA}{DH} & \nearrow\end{array}\odot\implies$

$\frac {XA}{XB}=\frac {YA}{YC}\implies$ $XY\parallel BC\implies$ $DBXP$ and $DCYQ$ are isosceles trapezoids because $MB=MD$ and $NC=ND$ respectively. Since

$\left\{\begin{array}{ccc}
\widehat{DQP}\equiv\widehat{DCY} & \implies & m\left(\widehat{DQP}\right)=C\\\\
\widehat{DHP}\equiv\widehat{AHE}  & \implies & m\left(\widehat{DHP}\right)=C\end{array}\right\|$ $\implies \widehat{DQP}\equiv \widehat{DHP}\implies$ $HPDQ$ is cyclically.



PP17. Let $\triangle ABC$ and $D\in (BC)$ and the bisectors $[DE\ ,\ [DF$ of $\widehat{ADB}\ ,\ \widehat{ADC}$ respectively,

where $E\in (AB)\ ,\ F\in (AC)$ . Prove that $AB\perp AC\iff AB\cdot AE+AC\cdot AF=AD\cdot BC$ .


Proof. $\left\{\begin{array}{c}
AD=l\\\
DB=m\\\
DC=n\end{array}\right\|\implies$ $\left\{\begin{array}{cccccc}
\widehat{EDA}\equiv\widehat{EDB} & \iff & \frac {EA}l=\frac {EB}m=\frac c{m+l} & \implies & EA=\frac {cl}{m+l} & (1)\\\\
\widehat{FDA}\equiv\widehat{FDC} & \iff & \frac {FA}l=\frac {FC}n=\frac b{n+l} & \implies & FA=\frac {bl}{n+l} & (2)\end{array}\right\|$ . Apply Stewart's to $AD\ :\ \boxed{c^2n+b^2m=a\left(l^2+mn\right)}\ (3)$ .

Therefore, $AB\cdot AE+AC\cdot AF=AD\cdot BC\ \stackrel{(1\wedge 2)}{\iff}\ c\cdot \frac {cl}{m+l}+b\cdot \frac {bl}{n+l}=al\iff$ $\frac {c^2}{m+l}+\frac {b^2}{n+l}=a\iff$ $c^2(n+l)+b^2(m+l)=a(m+l)(n+l)\iff$

$b^2m+c^2n+l\left(b^2+c^2\right)=a\left(l^2+mn\right)+$ $la(m+n)\ \stackrel{(3)}{\iff}\ l\left(b^2+c^2\right)=$ $la(m+n)\ \stackrel{(m+n=a)}{\iff}\ b^2+c^2=$ $a^2\iff AB\perp AC$ .



PP18. Let parallelogram $ABCD$ with $AC>BD$ and $\left\{\begin{array}{ccc}
E\in AB\ , & CE\perp AB\\\\
F\in AD\ , & CF\perp AD\end{array}\right\|$ . Prove that $\boxed{AB\cdot AE+AD\cdot AF=AC^2}\ (*)$ .

Proof. Let $\left\{\begin{array}{ccccc}
AD & = & BC & = & a\\\\
AB & = & CD & = & b\end{array}\right\|$. Apply the generalized Pytagoras' theorem to $\left\{\begin{array}{cccc}
BC/\triangle ACB\ : & a^2 & = & b^2+AC^2-2\cdot AB\cdot AE\\\\
CD/\triangle ACD\ : & b^2 & = & AC^2+a^2-2\cdot AD\cdot AF\end{array}\right\|$ $\bigoplus\implies$ the relation $(*)$ .


PP19. Let the circle $w$ , $\{A,B\}\subset w$ and the midpoint $M$ of the small arc $\overarc[]{AB}$ . Prove that $(\forall )\ P\in \overarc[]{AB}$ have $PA\cdot PB+PM^2=MA^2$ .

Proof. Suppose w.l.o.g. $P\in\overarc[]{MB}$ and let $R\in \overarc[]{MA}$ so that $MR\parallel PA$ . Apply the Ptolemy's theorem to the isosceles trapezoid $APMR\ :$

$RM\cdot AP+RA\cdot MP=PR\cdot AM$ . Since $\left\{\begin{array}{c}
RM=PB\\\
RA=PM\\\
PR=MA\end{array}\right\|$ obtain that $PA\cdot PB+PM^2=MA^2$ .



PP20. Aratati ca in $\triangle ABC$ exista echivalenta $30^{\circ}\in \{A,B,C\}\iff$ $a^2+b^2+c^2-4\sqrt{3}S=2R^2\ .$

Demonstratie 1. $f(x)\equiv p\cdot x^3-(4R+r)\cdot x^2+p\cdot x-r=0$ are solutiile $\left\{\ \tan\frac A2\ ,\ \tan\frac B2\ ,\ \tan\frac C2\ \right\}\ .$ Asadar, $30^{\circ}\ \in\ \{\ A\ ,\ B\ ,\ C\ \}$ $\iff$ $f\left(2-\sqrt 3\right)=0$ $\iff$

$\boxed{p=R+\left(2+\sqrt 3\right)r}\ .$ Intr-adevar, $t\equiv\tan 15^{\circ}=2-\sqrt 3$ si $t^2+1=4t$ si $pt(t^2+1)=4Rt^2+r(t^2+1)$ $\iff$ $4pt^2=4Rt^2+4rt$ $\iff$ $pt=Rt+r$ $\iff$

$p=R+r\left(2+\sqrt 3\right)\ .$ Se arata usor ca $a^2+b^2+c^2-4\sqrt{3}S=2R^2$ $\Longleftrightarrow$ $p^2-2r\sqrt 3\cdot p-(R^2+4Rr+r^2)=0\ .$ Discriminantul in raport cu $p$ este $\Delta^{\prime} =(R+2r)^2$

si singura radacina pozitiva este $p=R+(2+\sqrt 3)r\ .$ Asadar $a^2+b^2+c^2-4\sqrt{3}S=2R^2$ $\Longleftrightarrow$ $p=R+(2+\sqrt 3)\cdot r$ $\Longleftrightarrow$ $30^{\circ}\in \{A,B,C\}\ .$

Demonstratie 2. Si acum o solutie foarte simpla pentru problema propusa la nivelul clasei a VII - a ! $A=30^{\circ}$ $\Longrightarrow$

$\left\{\begin{array}{ccc}
 a=2R\sin A & \Longrightarrow & a=R\\\\
 bc\sin A=2S & \Longrightarrow & bc=4S\\\\
 a^2=b^2+c^2-2bc\cdot\cos A & \Longrightarrow & a^2=b^2+c^2-bc\sqrt 3\end{array}\right\|$ $\Longrightarrow$ $\underline {a^2+b^2+c^2-4S\sqrt 3}=R^2+\left(b^2+c^2-bc\sqrt 3\right)=R^2+a^2=2R^2\ .$ Se observa ca

$A\in\left(\ 0\ ,\ \frac {\pi}{6}\ \right]\ \Longrightarrow\ b^2+c^2\ \ge\ a^2+4S\sqrt 3\ .$ Iata o problema similara $:\ \boxed{60^{\circ}\in\{A,B,C\}\Longleftrightarrow a^2+b^2+c^2-4S\sqrt 3=2(R-2r)(3R+2r)}\ .$ Gasiti

o extindere
pastrand expresia $a^2+b^2+c^2-4S\sqrt 3\ .$ Observatie. $p=(p-a)+a=r\cdot\cot\frac A2+2R\sin A=$ $\frac rx+\frac {4Rx}{1+x^2}\ ,$ unde am notat $x=\tan\frac A2\ .$ Deci,

$p=\frac rx+\frac {4Rx}{1+x^2}$ $\Longleftrightarrow$ $px\left(1+x^2\right)=r\left(1+x^2\right)+4Rx^2$ $\Longleftrightarrow$ $p\cdot x^3-(4R+r)\cdot x^2+p\cdot x-r=0\implies\odot\begin{array}{ccc}
\nearrow & \tan\frac A2 & \searrow\\\\
\rightarrow & \tan\frac B2 & \rightarrow\\\\
\searrow & \tan\frac C2 & \nearrow\end{array}\odot$

Extindere. $A=30^{\circ}\ :\ \boxed{a^2+b^2+c^2-4S\sqrt 3=8R^2\sin^2A+\left(\cos A-\sqrt 3\sin A\right)\left(\frac {4r^2}{1-\cos A}+8Rr\right)}\ .$

Demonstratie. Se observa ca $\left\{\begin{array}{cc}
8R^2\sin^2 A=8R^2\cdot\frac{a^2}{4R^2}=2a^2 & (1)\\\\
\cos A-\sqrt 3\sin A=\frac{b^2+c^2-a^2}{2bc}-\frac{2S\sqrt 3}{bc}=\frac{b^2+c^2-a^2-4S\sqrt 3}{2bc} & (2)\end{array}\right\|\implies$ $\frac{4r^2}{1-\cos A}+8Rr=\frac{4\cdot\frac{S^2}{p^2}}{1-\frac{b^2+c^2-a^2}{2bc}}+8\cdot\frac{abc}{4S}\cdot \frac{S}{p}=$ $\frac{\frac{4(p-a)(p-b)(p-c)}{p}}{\frac{a^2-(b-c)^2}{2bc}}+$

$\frac{2abc}{p}\Longleftrightarrow$ $\frac{4r^2}{1-\cos A}+8Rr=$ $\frac{4(p-a)(p-b)(p-c)}{p}\ \cdot\ \frac{2bc}{4(p-b)(p-c)}+\frac{2abc}{p}=$ $2bc\ (3)\ \stackrel{1\wedge 2\wedge 3}{\iff}\ RHS=2a^2+b^2+c^2-a^2-4S\sqrt 3=LHS\ .$
This post has been edited 349 times. Last edited by Virgil Nicula, May 30, 2016, 10:28 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a