362. Fermat's problem and other metrical problems.

by Virgil Nicula, Nov 8, 2012, 9:36 AM

Fermat's problem. Let $ABCD$ be a rectangle and let $w$ be the circle with the diameter $[AB]$ so that $AB=AD\sqrt 2$ . Consider

$M\in w$ such that $AB$ doesn't separate $M$ , $C$ . Let $F\in DM\cap AB$ , $G\in CM\cap AB$ . Prove that $AG^2+BF^2=AB^2$ .


Proof (synthetic).. Suppose w.l.o.g. that $AB=\sqrt 2$ and $AD=1$ . Denote the projection $N$ of $M$ on $BC$ and $NA=u$ , $NB=v$ . Observe that $u+v=\sqrt 2$ and $MN=\sqrt {uv}$ .

Thus, $MN\parallel AD\implies$ $\left\{\begin{array}{ccc}
\frac {FA}{AD}=\frac {FN}{MN}=\frac {NA}{AD-MN} & \implies & FA=ku\\\\
\frac {GB}{BC}=\frac {GN}{MN}=\frac {NB}{BC-MN} & \implies & GB=kv\end{array}\right|$ , where $k=\frac {1}{1-\sqrt{uv}}$ . Therefore, $AG^2+BF^2=\left(\sqrt 2-GB\right)^2+\left(FA-\sqrt 2\right)^2=$

$4+FA^2+GB^2-2\sqrt 2(GB+FA)=$ $4+k^2\left(u^2+v^2\right)-2\sqrt 2k(u+v)=$ $4+2k^2(1-uv)-4k=$ $4+\frac {2(1-uv)}{\left(1-\sqrt{uv}\right)^2}$

$-\frac {4}{1-\sqrt {uv}}=$ $4+\frac {2(1+\sqrt{uv})}{1-\sqrt{uv}}-\frac {4}{1-\sqrt {uv}}=$ $4-\frac {2\left(1-\sqrt{uv}\right)}{1-\sqrt{uv}}=2\implies$ $AG^2+BF^2=AB^2$



An easy extension of the Fermat's problem. Let a rectangle $ABCD$ and the circle $w$ with the diameter $[AB]$ . Let $M\in w$ for which $N\in [AB]\ ,\ MN\perp AB$ and $AB$ doesn't

separate $M$ and $C$ . Denote $F\in DM\cap AB$ , $G\in CM\cap AB$ and $\left\{\begin{array}{c}
AB=a\ ;\ BC=b\\\\
MA=x\ ;\ MB=y\end{array}\right\|$ . Prove that $AG^2+BF^2=AB^2+\left(a^2-2b^2\right)\cdot \left(\frac {xy}{ab-xy}\right)^2$ .


Proof (metric). $x^2+y^2=a^2$ , $MN=\frac {xy}{a}$ and $NA=\frac {x^2}{a}$ , $NB=\frac {y^2}{a}$ and $MN\parallel AD\implies$ $\left\{\begin{array}{ccc}
\frac {FA}{AD}=\frac {FN}{MN}=\frac {NA}{AD-MN} & \implies & FA=\frac {bx^2}{ab-xy}\\\\
\frac {GB}{BC}=\frac {GN}{MN}=\frac {NB}{BC-MN} & \implies & GB=\frac {by^2}{ab-xy}\end{array}\right|\implies$ $\left\{\begin{array}{c}
FA=kx^2\\\
GB=ky^2\end{array}\right|$ ,

where $k=\frac {b}{ab-xy}$ . Hence $AG^2+BF^2=$ $(a-GB)^2+(FA-a)^2=$ $2a^2-2a(GB+FA)+GB^2+FA^2=$ $2a^2-2ka\left(x^2+y^2\right)+k^2\left(x^4+y^4\right)=$

$2a^2-\frac {2a^3b}{ab-xy}+\frac {b^2\left(a^4-2x^2y^2\right)}{(ab-xy)^2}=$ $a^2+\frac { a^2(ab-xy)^2-2a^3b(ab-xy)+b^2\left(a^4-2x^2y^2\right) }{ (ab-xy)^2 }$ $\implies$ $AG^2+BF^2=a^2+\left(a^2-2b^2\right)\cdot \left(\frac {xy}{ab-xy}\right)^2$ .



PP1. Let $w=C(O,r)$ be a circle with the diameter $[AB]$ and let $ABCD$ be a rectangle with $AD\ne r$ . The tangent

to $w$ from $C$ cut $AB$ in $E\not\equiv B$ . Denote $M\in CE\cap w$ , $F\in MD\cap AB$ , $G\in CE\cap AD$ . Prove that :

$1\blacktriangleright\ A$ is the midpoint of the segment $[EF]$ and $|AF-BE|=AB$ .

$2\blacktriangleright\ O\equiv F\iff AD=r\sqrt 3$ and $B\equiv F\iff AD=r\sqrt 2\iff GA=GD$ (Fermat's problem).


Proof.


PP2. Solve the system $ \left\{\begin{array}{c}
x^{2}+xy+y^{2}=2\\\\
 y^{2}+yz+z^{2}=3\\\\
z^{2}+zx+x^{2}=5\end{array}\right\|$, where $ \{x,y,z\}\subset (0,\infty )$ and show that $ xy+yz+zx=2\sqrt 2$ .

Proof (algebraic). Prove easily that $ x\ne y\ne z\ne x$. Our system $\iff \left\{\begin{array}{c}x^{3}-y^{3}=2(x-y)\\\ y^{3}-z^{3}=3(y-z)\\\ z^{3}-x^{3}=5(z-x)\end{array}\right\|$ $ \implies$ $ \boxed{y=3x-2z}\ \ (1)$ $ \implies$ $ \left\{\begin{array}{c}x^{2}+x(3x-2z)+(3x-2z)^{2}=2\\\ x^{2}+xz+z^{2}=5\end{array}\right\|$ $ \implies$

$ \left\{\begin{array}{c}13x^{2}-14xz+4z^{2}=2\\\ x^{2}+xz+z^{2}=5\end{array}\right\|$ and $ x=tz$ $ \implies$ $ \frac{13t^{2}-14t+4}{t^{2}+t+1}=\frac{2}{5}$ $ \implies$ $ 7t^{2}-8t+2=0$. But $ 0=7t^{2}-8t+2=7(t^{2}+t+1)-5(3t+1)$, Therefore,

$ z^{2}=\frac{5}{t^{2}+t+1}=\frac{7}{3t+1}$ and $ x^{2}=t^{2}z^{2}=\frac{7t^{2}}{3t+1}$ $ \implies$ $ z^{2}=\frac{7}{3t+1}$ and $ x^{2}=\frac{8t-2}{3t+1}$ . $ t=\frac{4\pm\sqrt2}{7}$ $ \implies$ $ \boxed{ x^{2}=\frac{6\pm 2\sqrt 2}{7}}$ , $ \boxed{z^{2}=\frac{19\mp 3\sqrt 2}{7}}$ , $xz=\frac{10\pm\sqrt 2}{7}$

and from the relation $ (1)$ obtaim that $ y^{2}=9x^{2}+4z^{2}-12xz$ $ \implies$ $ \boxed{y^{2}=\frac{10\mp 6\sqrt 2}{7}}$ . Add the equations of the initial system : $ 2(x^{2}+y^{2}+z^{2})+(xy+yz+zx)=10$.

Therefore, $ xy+yz+zx=10-2\sum x^{2}$ $ \implies$ $ \sum xy=10-2(5\mp\sqrt 2)$. In conclusion, $ t=\frac{4+\sqrt 2}{7}$ and $ \boxed{xy+yz+zx=2\sqrt 2}$ .

Proof 2 (geometric). Take a triangle $\Delta ABC$ of sides $AB=\sqrt{2}, AC=\sqrt{3}, BC=\sqrt{5}$ where $\sqrt 5<\sqrt 3+\sqrt 2$ . Let the point $P$ inside it so that $PA=y$ , $PC=z$ , $PB=x$

and $\angle APB=\angle BPC=\angle APC=120^\circ$ (Fermat point). See that $\Delta ABC$ is right-angled at $A$ and consequently has area $S=\sqrt{\frac{3}{2}}$ . But its area $S=S_{ABP}+S_{APC}+S_{PBC}=$

$\frac 12\cdot\sin\ 120^\circ\cdot(xy+yz+xz)\implies$ $\sqrt{\frac 32}=\frac {\sqrt 3}{4}\cdot(xy+yz+xz)\implies$ $xy+yz+zx=2\sqrt 2$ . Equalizing the two area relations we get the desired $xy+yz+xz=2\sqrt{2}$ .



PP3. Let $ABC$ be an isosceles $A$-right triangle. For a given point $D\in (AB)$ denote $E\in (BC)$ so that $AE\perp CD$ and $\left\{\begin{array}{c}
\left(\widehat{ADC}\right)=x\\\\
\left(\widehat{BDE}\right)=y\end{array}\right|$ . Prove that $\left(2+\tan 2x\right)\left(1+\tan y\right)=2$ .

Proof. $\left\{\begin{array}{cc}
\triangle BDC\ : & \frac {EB}{EC}=\frac {DB}{DC}\cdot \frac {\sin\widehat{EDB}}{\sin\widehat{EDC}}=\frac {\sin\left(x-45^{\circ}\right)}{\sin 45^{\circ}}\cdot\frac {\sin y}{\sin (x+y)}\\\\
\triangle BAC\ : & \frac {EB}{EC}=\frac {AB}{AC}\cdot\frac {\sin\widehat{EAB}}{\sin\widehat{EAC}}=\frac {\cos x}{\sin x}=\cot x\end{array}\right|\implies$ $\frac {\sin\left(x-45^{\circ}\right)}{\sin 45^{\circ}}\cdot\frac {\sin y}{\sin (x+y)}=\cot x\iff$ $\tan x\tan y(\tan x-1)=\tan x+\tan y\iff$

$\tan y=\frac {\tan x}{\tan^2x-\tan x-1}\iff$ $1+\tan y=\frac {\left(1-\tan^2x\right)}{\tan x+\left(1-\tan^2x\right)}\iff$ $1+\tan y=\frac {\frac {2\tan x}{\tan 2x}}{\tan x+\frac {2\tan x}{\tan 2x}}\iff$ $1+\tan y=\frac {\frac {2}{\tan 2x}}{1+\frac {2}{\tan 2x}}\iff$ $1+\tan y=\frac {2}{1+\tan 2x}$ .

Remark. An interesting particular case is when $\widehat{CAD}\equiv\widehat{EDB}$ . Therefore, $x=y\iff(2+\tan 2x)(1+\tan x)=2\iff$ $\left(2+\frac {2\tan x}{1-\tan^2x}\right)(1+\tan x)=2\iff$

$\left(1+\frac {\tan x}{1-\tan^2x}\right)(1+\tan x)=1\iff$ $\left(1+\tan x-\tan^2x\right)=1-\tan x\iff$ $2\tan x=\tan^2x\iff$ $\tan x=2\iff$ the point $D$ is the midpoint of $[AB]$ .


PP4. Let $ABC$ be an $A$-right triangle and let $M$ be a point of $[BC]$ . Denote $\left\{\begin{array}{cc}
E\in (AB)\ ; & \widehat{EMA}\equiv\widehat{EMB}\\\\
F\in (AC)\ ; & \widehat{FMA}\equiv\widehat{FMC}\end{array}\right\|$ . Prove that $\left\{\begin{array}{c}
\frac {c^2}{AM+MB}+\frac {b^2}{AM+MC}=a\\\\
c\cdot AE+b\cdot AF=a\cdot AM\\\\
c^2\cdot MC^2+b^2\cdot MB^2=a^2\cdot AM^2\end{array}\right\|$ .

Proof 1 (metric). Denote $AM=l\ ,\ MB=x\ ,\ MC=y$ . Apply the Stewart's relation to the cevian $AM$ in $\triangle ABC\ :\ \boxed{al^2+axy=c^2y+b^2x}\ (*)$ .

Thus, $\frac {c^2}{AM+MB}+\frac {b^2}{AM+MC}=a\iff$ $\boxed{\frac {c^2}{l+x}+\frac {b^2}{l+y}=a}\ (1)\iff$ $c^2(l+y)+b^2(l+x)=a(l+x)(l+y)\iff$ $l\left(c^2+b^2\right)+c^2y+b^2x=$

$al^2+al(x+y)+axy\iff$ $a^2l+c^2y+b^2x=al^2+a^2l+axy\iff$ $c^2y+b^2x=al^2+axy$ , what is the relation $(*)$ . Observe that

$\left\{\begin{array}{c}
AE=\frac {cl}{l+x}\\\\
AF=\frac {bl}{l+y}\end{array}\right\|\implies$ $c\cdot AE+b\cdot AF=\frac {c^2l}{l+x}+\frac {b^2l}{l+y}=$ $l\left(\frac {c^2}{l+x}+\frac {b^2}{l+y}\right)\stackrel{(1)}{=}la\implies$ $c\cdot AE+b\cdot AF=a\cdot AM$ .

Proof 2 (trigonometric). Denote $\left\{\begin{array}{cc}
m\left(\widehat{EMA}\right)=m\left(\widehat{EMB}\right)=\alpha \\\\
m\left(\widehat{FMA}\right)=\left(\widehat{FMC}\right)=\beta\end{array}\right\|$ and apply Sinus' theorem in $\left\{\begin{array}{cc}
\triangle AME\ : & \frac {AE}{AM}=\frac {\sin\alpha}{\sin (B+\alpha )}\\\\
\triangle AMF\ : & \frac {AF}{AM}=\frac {\sin\beta}{\sin (C+\beta)}\end{array}\right\|$ , where $\alpha +\beta =B+C=90^{\circ}$ ,

i.e. $\tan\alpha \cdot\tan\beta =\tan B\cdot\tan C=1$ . Therefore, $c\cdot AE+b\cdot AF=a\cdot AM$ $\iff$ $\frac ca\cdot\frac {AE}{AM}+\frac ba\cdot\frac {AF}{AM}=1$ $\iff$ $\frac {\cos B\cdot \sin \alpha}{\sin(B+\alpha )}+\frac {\cos C\cdot \sin \beta}{\sin(C+\beta)}=1$ $\iff$

$\frac {\tan\alpha}{\tan B+\tan\alpha}+\frac {\tan \beta}{\tan C+\tan\beta}=1$ $\iff$ $\frac {\tan\alpha}{\tan B+\tan\alpha}+\frac {\frac 1{\tan\alpha}}{\frac 1{\tan B}+\frac 1{\tan\alpha}}=1$ $\iff$ $\frac {\tan\alpha}{\tan B+\tan\alpha}+\frac {\tan B}{\tan B+\tan\alpha}=1$ , what is truly.

Remark. I"ll apply to the degenerate $ABDC$ an well-known property: if $ABCD$ has $(A+C)\in \left\{90^{\circ},270^{\circ}\right\}$ , then there is the relation $e^2f^2=a^2c^2+b^2d^2$ , where

$\left\{\begin{array}{c}
AB=a\ ;\ BC=b\ ;\ CD=c\\\
DA=d\ ;\ AC=e\ ;\ BD=f\end{array}\right\|$ . Obtain that $l^2a^2=c^2y^2+b^2x^2$ . Otherwise. $c^2y^2+b^2x^2=$ $c^2y(a-x)+b^2x(a-y)=$ $a\left(c^2y+b^2x\right)-xy\left(b^2+c^2\right)=$

$a\left(c^2y+b^2x\right)-xya^2=$ $a\left(c^2y+b^2x-axy\right)\stackrel{(*)}{\implies}$ $c^2y^2+b^2x^2=a^2l^2$ .



PP5. $ABCD$ is a trapezoid with $AB\parallel CD$ and $O\in AC\cap BD$ . Prove that $O$ belongs to the radical axis of the circles $w_1$ , $w_2$ with the diameters $[AD]$ , $[BC]$ respectively.

Proof 1. Denote the midpoints $O_1$ , $O_2$ of $[AD]$ and $[BC]$ respectively and $2R_1=AD$ , $2R_2=BC$ . Define the power $p_w(X)$ of $X$ w.r.t. $w$ . Thus,

$\blacktriangleright\ 4p_{w_1}(O)=4\left(OO_1^2-R_1^2\right)=$ $4OO_1^2-AD^2=$ $2\left(OA^2+OD^2-AD^2\right)=$ $4\cdot OA\cdot OD\cdot\cos\widehat {AOD}\ (1)$ .

$\blacktriangleright\ 4p_{w_2}(O)=4\left(OO_2^2-R_2^2\right)=$ $4OO_2^2-BC^2=$ $2\left(OB^2+OC^2-BC^2\right)=$ $4\cdot OB\cdot OC\cdot\cos\widehat {BOC}\ (2)$ .

Since $\frac {OA}{OC}=\frac {OB}{OD}\iff$ $OA\cdot OD=OB\cdot OC$ and $\widehat {AOD}\equiv\widehat {BOC}$ get $p_{w_1}(O)=p_{w_2}(O)\implies$ $O$ belongs to the radical axis of $w_1$ and $w_2$ .

Proof 2. Denote the projections $\left\{\begin{array}{ccc}
M\in BD\ ,\ AM\perp BD & \implies & M\in w_1\\\\
N\in AC\ ,\ BN\perp AC & \implies & N\in w_2\end{array}\right\|$ . Thus,

$\left\{\begin{array}{c}
[AOD]=[BOC]\implies OD\cdot AM=OC\cdot BN\\\\
\frac {MA}{MO}=\tan\widehat{AOD}=\tan\widehat{BOC}=\frac {NB}{NO}\end{array}\right\|\implies$ $OD\cdot OM=OC\cdot ON\implies$ $p_{w_1}(O)=p_{w_2}(O)$ .



PP6. Let a square $ABCD$ and $P\in (AD)$ for which $R\in BP\cap CD$ and the incircles $C(I,a)$ , $C(J,b)$ of $\triangle ABP$ , $\triangle BCR$ respectively. Find $IJ=f(a,b)$ .

Proof 1 (trigonometric). Let $m(<ABI)=x$ , $m(<CBJ)=y$ and $\left|pr_{AB}IJ\right|=c$ . Thus, $x+y=45^{\circ}$ , $IJ=c\sqrt 2$ and $a(1+\cot x)=b(1+\cot y)=a+b+c$ , i.e.

$\tan x=\frac a{c+b}$ , $\tan y=\frac b{c+a}$ . Therefore, $x+y=45^{\circ}\implies$ $\tan (x+y)=1\implies$ $\tan x+\tan y+\tan x\tan y=1\implies$ $(1+\tan x)(1+\tan y)=2\implies$

$\left(1+\frac a{c+b}\right)\left(1+\frac b{c+a}\right)=2\implies$ $2(c+a)(c+b)=(c+a+b)^2\implies$ $c^2=a^2+b^2\implies$ $IJ^2=2c^2=2\left(a^2+b^2\right)\implies$ $\boxed{IJ=\sqrt{2\left(a^2+b^2\right)}}$ .

Proof 2 (synthetic). Let: the circles $C(I,a)$ , $C(J.b)$ ; the projections $X$ , $Y$ of $I$ , $J$ on $AB$ ; $XY=c$ . Thus, $AB=c+(a+b)$ , $YA=c+a$ , $XB=c+b$ and $IJ^2=2c^2$ .

Prove easily that $ABJ\stackrel{(a.a.)}{\sim} CIB\iff$ $\frac {AB}{CI}=\frac {AJ}{CB}\iff$ $AB^2=AJ\cdot CI\iff$ $AB^2=YA\sqrt 2\cdot XB\sqrt 2\iff$ $[c+(a+b)]^2=2(c+a)(c+b)\iff$

$c^2+(a+b)^2=2(c^2+ab)\iff$ $a^2+b^2=c^2\iff$ $IJ^2=2\left(a^2+b^2\right)$ .

Remark (equivalent). Let an isosceles $B$-right $\triangle ABC$ . For $D\in (AC)$ let the feet $I$ , $J$ of the $B$-bisectors in $\triangle DBA$ , $\triangle DBC$ respectively. Prove that $AJ\cdot CI=AB^2$.


Extension. $ABCDE$ is convex and cyclic so that $AB=BC=DE<AC$ . Let $I\in BE\cap AC$ and

$J\in BD\cap AC$ . Prove that $AJ\cdot CI=AB^2$ , $IJDE$ is cyclic and $BI\cdot BE=BJ\cdot BD=AB^2$ .


Proof. $m\left(\widehat{IBJ}\right)=m\left(\widehat{BAC}\right)=m\left(\widehat{BCA}\right)=m\left(\widehat{AEB}\right)=m\left(\widehat{CDB}\right)=\alpha$ and $m\left(\widehat{ABI}\right)=x$ , $m\left(\widehat{CBJ}\right)=y$ , where

$x+y=B-\alpha$ and $m\left(\widehat{BIJ}\right)=m\left(\widehat{JDE}\right)=\alpha +x$ , i.e. $IJDE$ is cyclic and $BI\cdot BE=BA^2=BC^2=BJ\cdot BD\implies$

$BI\cdot BE=BJ\cdot BD=AB^2$ . Prove easily that $\triangle ABJ\stackrel{(a.a.)}{\sim}\triangle CIB$ , i.e. $\frac {AB}{CI}=\frac {AJ}{CB}\implies$ $AJ\cdot CI=AB^2$ .
This post has been edited 74 times. Last edited by Virgil Nicula, Nov 16, 2015, 5:22 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a