355. Some problems with polynomials or equations I

by Virgil Nicula, Aug 28, 2012, 1:21 PM

PP1. Prove easily that $\boxed{g(x)=(x+y+z)^3-\left(x^3+y^3+z^3\right)=3(x+y)(y+z)(x+z)}$ . Prove similarly that there is

$p(x,y,z)$ such that $h(x,y,z)\equiv (x+y+z)^5-\left(x^5+y^5+z^5\right)=(x+y)(y+z)(x+z)p(x,y,z)$ . Find $p(x,y,z)$ .


Proof 1. Since $g(-y,y,z)=g(-z,y,z)=g(x,-z,z)=0$ what means exists $k\in\mathbb R^*$ such that $g(x,y,z)=k(x+y)(x+z)(y+z)$ for any $\{x,y,z\}\subset\mathbb R$ .

Thus, $g(1,1,0)=2k\implies 2^3-2=2k\implies k=3$ . In conclusion, $g(x)=3(x+y)(y+z)(x+z)$ . Observe that $h(-y,y,z)=h(-z,y,z)=h(x,-z,z)=0$

what means that exists $\{m,n\}\subset\mathbb R$ so that $h(x,y,z)=(x+y)(x+z)(y+z)\left[m(x+y+z)^2+n(xy+yz+zx)\right]$ for any $\{x,y,z\}\subset\mathbb R$ .

Thus, $\left\{\begin{array}{ccc}
h(1,1,0)=30=2(4m+n) & \implies & 4m+n=15\\\\
h(1,1,1)=240=24(3m+n) & \implies & 3m+n=10\end{array}\right\|\implies$ $\left\{\begin{array}{c}
m=5\\\
n=-5\end{array}\right\|\implies$

$\boxed{\ \left(x+y+z\right)^5=x^5+y^5+z^5+5(x+y)(y+z)(z+x)\left(x^2+y^2+z^2+xy+yz+zx\right)\ }$ .

Verify : $x=1\ ,\ y=2\ ,\ z=2\ \implies\ 5^5=65+5\cdot 3\cdot 3\cdot 4\cdot (9+8)\iff$ $612=36\cdot 17$ .

Remark. Prove easily that $3\cdot \left[(x+y+z)^5-\left(x^5+y^5+z^5\right)\right]=$ $5\cdot\left[(x+y+z)^3-\left(x^3+y^3+z^3\right)\right]\left(x^2+y^2+z^2+xy+yz+zx\right)$ .

Proof 2 (with fundamental symmetrical forms). Denote the equation $(t-x)(t-y)(t-z)=t^3-s_1t^2+s_2t-s_3=0$ with the roots $\{x,y,z\}$ , where $\left\{\begin{array}{c}
x+y+z=s_1\\\\
xy+yz+zx=s_2\\\\
xyz=s_3\end{array}\right\|$

and $(\forall )\ n\in\mathbb N$ , $S_n=x^n+y^n+z^n$ . Prove easily that $S_0=3$ , $S_1=s_1$ , $S_2=s_1^2-2s_2$ and $S_{n+3}=s_1\cdot S_{n+2}-s_2\cdot S_{n+1}+s_3\cdot S_n$ . Therefore,

$\left\{\begin{array}{ccccc}
S_3 & = & x^3+y^3+z^3 & = & s_1^3-3s_1s_2+3s_3\\\\
S_4 & = & x^4+y^4+z^4 & = & s_1^4-4s_1^2s_2+4s_1s_3+2s_2^2\\\\
S_5 & = & x^5+y^5+z^5 & = & s_1^5-5s_1^3s_2+5s_1^2s_3-5s_2s_3+5s_1s_2^2\end{array}\right\|\implies$ $s_1^5=S_5+5\left(s_1^2-s_2\right)\left(s_1s_2-s_3\right)$ . Prove easily that $(a+b)(b+c)(c+a)=s_1s_2-s_3$

and $a^2+b^2+c^2+ab+bc+ca=s_1^2-s_2$ . Thus, $\left(x+y+z\right)^5=x^5+y^5+z^5+5(x+y)(y+z)(z+x)\left(x^2+y^2+z^2+xy+yz+zx\right)$ .

Remark. $(a+b+c)^5=\sum (b+c-a)^5+80abc\left(a^2+b^2+c^2\right)$ and $(a+b+c)^5\ge 81abc\left(a^2+b^2+c^2\right)$ .



PP2. Let $z_k\ ,\ k\in\overline{1,4}$ be the roots of the equation $(z - i)^4=(2z - i)^4$ . Determine the value of the product $P\equiv \prod_{k=1}^4\left(z_k^2  + 1\right)$ .

Proof. Let $f(z)=(2z - i)^4-(z - i)^4=15\cdot\prod_{k=1}^4\left(z-z_k\right)$ . Thus, $P=\prod_{k=1}^4\left[\left(i-z_k\right)\cdot\left(-i-z_k\right)\right]=$ $\prod_{k=1}^4\left(i-z_k\right)\cdot \prod_{k=1}^4\left(-i-z_k\right)=$ $\frac {f(i)}{15}\cdot \frac {f(-i)}{15}=\frac {65}{225}\implies$ $\boxed{\ P=\frac {13}{45}\ }$


PP3. Let a cubic polynomial $P$ . You are also give $\left\{\begin{array}{c}
Q_1(X) = X^2 + (k-29)X - k\\\\
Q_2(X) = 2X^2 + (2k-43)X + k\end{array}\right|$ . If both $Q_1$ and $Q_2$ are factors of the polynomial $P$ , then compute largest possible value of $k$

Proof. $Q_1$ , $Q_2$ are factors of $P$ iff the equations $Q_1(x)=0$ and $Q_2(x)=0$ have at least one common root iff $\left|\begin{array}{cc}
1 & -k\\\\
2 & k\end{array}\right|^2=\left|\begin{array}{cc}
1 & k-29\\\\
2 & 2k-43\end{array}\right|\cdot\left|\begin{array}{cc}
k-29 & -k\\\\
2k-43 & k\end{array}\right|\iff$

$9k^2=15k(3k-72)\iff$ $k\in \{0,30\}$ . In conclusion, $k=30$ and in this case $P(x)=0\implies$ $x\in \left\{-6,-\frac 52,5\right\}$ .

Remark (see PP12). I used the remarkable property: the equations $\left\{\begin{array}{c}
a_1x^2+b_1x+c_1=0\\\\
a_2x^2+b_2x+c_2=0\end{array}\right|$ , where $a_1a_2\ne 0$ have at least one common root $\iff$ $\left|\begin{array}{cc}
a_1 & c_1\\\\
a_2 & c_2\end{array}\right|^2=\left|\begin{array}{cc}
a_1 & b_1\\\\
a_2 & b_2\end{array}\right|\cdot\left|\begin{array}{cc}
b_1 & c_1\\\\
b_2 & c_2\end{array}\right|$ .



PP4. Let $f = aX^3 + bX^2 + cX + d$ . Given that $f(2)= 5$ , $f(3)= 14$ and $f(8) - f(7) = 64$ . Find the value of $f(12) - f(11)$ .

Proof. Denote $g(X)=f(X)-f(X-1)-X^2$ . Observe that $\mathrm{gr}(g)\le 2$ , $g(X)=(3a-1)X^2+(2b-3a)X+a-b+c$

and $\left\{\begin{array}{ccc}
x:=3 & \implies & g(3)=f(3)-f(2)-3^2=14-5-9=0\\\\
x:=8 & \implies & g(8)=f(8)-f(7)-8^2=64-6=0\end{array}\right|\implies$ $G(X)=(3a-1)(X-3)(X-8)$ .

In conclusion, $f(12)-f(11)=12^2+(3a-1)(12-3)(12-8)=$ $144+36(3a-1)\implies$ $\boxed{f(12)-f(11)=108(a+1)}$ .



PP5. Let the equation $x^{3} +ax +b=0\odot \begin{array}{ccc}
\nearrow & x_1 &\searrow\\\\
\rightarrow & x_2 & \rightarrow\\\\
\searrow & x_3 & \nearrow\end{array}\odot$ . Find the equation with the roots $\left\{\begin{array}{c}
y_1=\frac {x_2}{x_3}+\frac {x_3}{x_2}\\\\
y_2=\frac {x_3}{x_1}+\frac {x_1}{x_3}\\\\
y_3=\frac {x_1}{x_2}+\frac {x_2}{x_1}\end{array}\right|$ .

Proof. Denote $S_2=x_1^2+x_2^2+x_3^2$ and $\left\{\begin{array}{ccc}
s_1 & = & x_1+x_2+x_3\\\\
s_2 & = & x_1x_2+x_2x_3+x_3x_1\end{array}\right|$ . Observe that $\left\{\begin{array}{c}
s_1=0\\\\
s_2=a\end{array}\right|$ and $S_2=s_1^2-2s_2$ $\implies$ $S_2=-2a$ . Thus, $y_1=\frac {x_2}{x_3}+\frac {x_3}{x_2}=$ $\frac {x_2^2+x_3^2}{x_2x_3}=$

$\frac {S_2-x_1^2}{s_2-x_1\left(s_1-x_1\right)}\implies$ $\boxed{y_1=-\frac {x_1^2+2a}{x_1^2+a}}$ , i.e. $y_k=-\frac {x_k^2+2a}{x_k^2+a}\ ,\ k\in\overline{1,3}$ . I"ll eliminate $x$ between $\left\{\begin{array}{c}
x^3+ax+b=0\\\\
y+\frac {x^2+2a}{x^2+a}=0\end{array}\right|$ $\iff$ $\left\{\begin{array}{c}
x^3+ax+b=0\\\\
x^2=\frac {-a(y+2)}{y+1}\end{array}\right|$

$\iff$ $\left\{\begin{array}{c}
x\cdot \frac {-a(y+2)}{y+1}+ax+b=0\\\\
x^2=\frac {-a(y+2)}{y+1}\end{array}\right|$ $\iff$ $\left\{\begin{array}{c}
x=\frac {b(y+1)}{a}\\\\
x^2=\frac {-a(y+2)}{y+1}\end{array}\right|$ $\iff$ $\left[\frac {b(y+1)}{a}\right]^2+\frac {a(y+2)}{y+1}=0\iff$ $b^2(y+1)^3+a^3(y+2)=0$ .

In conclusion, the required equation is $\boxed{b^2y^3+3b^2y^2+\left(a^3+3b^2\right)y+\left(2a^3+b^2\right)=0}$ .



PP6. Solve the following system of equations $\left\{\begin{array}{cc}
f(x,y)\equiv x^2+3y^2+4xy-18x-22y+31=0\\\\
g(x,y)\equiv 2x^2+4y^2+2xy+6x-46y+175=0\end{array}\right\|$ .

Proof 1. The idea is to let $x=u+a, y=v+b$ and find $a,b$ so that the coefficients of degree 1 become zero. Basically what we have to do is to take derivatives

of the two LHS in terms of $x$ and $y$. Then let all 4 derivatives equal zero and solve that system of equations to obtain $a,b$ . Therefore, $\left\{\begin{array}{c}
f'_x=2x+4y-18=0\\\\
f'_y=6y+4x-22=0\\\\
g'_x=4x+2y+6=0\\\\
 g'_y=8y+2x-46=0\end{array}\right|\implies$

$x=-5$ and $y=7$ . Let $x=u-5, y=v+7$ we have the system $\left\{\begin{array}{cc}
u^2+3v^2+4uv=1\\\\
2u^2+4v^2+2uv=1\end{array}\right\|$ . Substract (3) from (4) we have $(u-v)^2=0 \Leftrightarrow u=v$ a.s.o.

Proof 2. $\left\{\begin{array}{c}
x^2+3y^2+4xy-18x-22y+31=0\\\\
2x^2+4y^2+2xy+6x-46y+175=0\end{array}\right\|\iff$ $\odot\begin{array}{ccc}
\nearrow & x^2+2(2y-9)x+\left(3y^2-22y+31\right)=0 & \searrow\\\\
\searrow & 2x^2+2(y+3)x+\left(4y^2-46y+175\right)=0 & \nearrow\end{array}\odot x_{\mathrm{com}}\iff$

$\left|\begin{array}{cc}
1 & 3y^2-22y+31\\\\
1 & 4y^2-46y+175\end{array}\right|^2=$ $\left|\begin{array}{cc}
1 & 2(2y-9)\\\\
1 & 2(y+3)\end{array}\right|\cdot $ $\left|\begin{array}{cc}
2(2y-9) & 3y^2-22y+31\\\\
2(y+3) & 4y^2-46y+175\end{array}\right|\iff$ $\left(y^2-24y+144\right)^2=$

$4(12-y)\left[(2y-9)\left(4y^2-46y+175\right)-(y+3)\left(3y^2-22y+31\right)\right]\iff$

$(y-12)^4+4(y-12)\left(5y^3-115y^2+799y-1668\right)=0\iff$

$(y-12)^4+4(y-12)^2\left(5y^2-55y+139\right)=0\iff$ $(y-12)^2\left(21y^2-244y+700\right)=0\ .$ a.s.o.



PP7. Prove that for any real number $x$ there is the inequality $x^8-x^7+x^2-x+15>0$ .

Proof. Denote $f(x)=x^8-x^7+x^2-x+15\ ,\ x\in\mathbb R$ . Therefore, $\left\{\begin{array}{ccccccc}
x\not\in(0,1) & \implies & f(x) & = & 15+x(x-1)\left(x^6+1\right) & \ge & 15\\\\
x\in (0,1) & \implies & f(x) & = & 14+x^2+(x-1)^2\sum\limits_{k=0}^6x^k & > & 14\end{array}\right\|$ $\implies (\forall )\ x\in\mathbb R\ ,\ f(x)>0$ .


PP8. Let $(a,b,c,d)$ be a solution of the system $\left\{\begin{array}{c}
a+b=15\\\\
ab+c+d=78\\\\
ad+bc=160\\\\
cd=96.\end{array}\right|$ . Find the greatest possible value of $a^2+b^2+c^2+d^2$ .

Proof. Let $P(x)=$ $(x^2-ax+b)(x^2-cx+d)$ . Expanding gives $P(x)=x^4-(a+b)x^3+(ab+c+d)x^2-(ad+bc)+cd=$ $x^4-15x^3+78x^2-160x+96=$

$(x-1)(x-4)^2(x-6)$. Suppose w.l.o.g. that $x-1$ is a factor of $x^2-ax+b$ . The other factor is either $x-4$ or $x-6$ . Thus, $(a, b, c, d)=(5, 4, 10, 24)$ with sum of squares $717$

or $(a, b, c, d)=(7, 6, 8, 16)$ with sum of squares $405$ . In conclusion, $717$ is the greatest.



PP9. Let $\{x,y,z\}\subset\mathbb C$ such that $(y+z)(x-y)(x-z)=(z+x)(y-z)(y-x)=(x+y)(z-x)(z-y)=1$ . Find all possible values of $(y+z)(x+y)(z+x)$ .

Proof. So $x\ne y\ne z\ne x$ . Let $\left\{\begin{array}{c}
y-z=a\\\
z-x=b\\\
x-y=c\end{array}\right|$ , where $a+b+c=0$ and $abc\ne 0$ . Thus, $bc(y+z)=ca(z+x)=ab(x+y)=-1\iff$ $\frac {y+z}a=\frac {z+x}b=$ $\frac {x+y}c=$

$\frac {2(x+y+z)}{a+b+c}=$ $-\frac 1{abc}\implies$ $\boxed{x+y+z=0}$ . Thus, $(y+z)(x-y)(x-z)=1\stackrel{(y+z=-x)}{\iff}$ $x(x-y)(x-z)+1=0\iff$ $x^3-x^2(y+z)+xyz+1=0$ a.s.o. $\stackrel{(y+z=-x)}{\iff}$

$\left\{\begin{array}{c}
2x^3=-(xyz+1)\\\\
2y^3=-(xyz+1)\\\\
2z^3=-(xyz+1)\end{array}\right|\bigodot\implies$ $(2xyz)^3+(xyz+1)^3=0\iff$ $2xyz+xyz+1=0\iff$ $xyz=-\frac 13\iff$ $\prod (y+z)=\frac 13$ .



PP10. Factorize over $\mathbb R$ (with the details and no extra assist) the polynomial $x^8+98x^4+1$ .

Proof 1. I"ll use the standard substitution $\boxed{x+\frac 1x=t\iff xt=x^2+1}$ . Therefore, our polynomial becomes :

\[\boxed{\ \begin{array}{c}
\\ x^8+98x^4+1\ \iff\ x^4\left[\left(x^4+\frac 1{x^4}\right)+98\right]\ \iff\ x^4\left[\left(x^2+\frac 1{x^2}\right)^2+96\right]\\\\
x^4\left\{\left[\left(x+\frac 1x\right)^2-2\right]^2+96\right\}\ \iff\ x^4\left[\left(t^2-2\right)^2+96\right]\ \iff\ x^4\left(t^4-4t^2+100\right)\\\\
x^4\left[\left(t^2+10\right)^2-24t^2\right]\ \iff\ x^4\left(t^2-2\sqrt 6\cdot t+10\right)\left(t^2+2\sqrt 6\cdot t+10\right)\\\\
\left[(xt)^2-2\sqrt 6\cdot x(xt)+10x^2\right]\left[(xt)^2+2\sqrt 6\cdot x(xt)+10x^2\right]\\\\
\left[\left(x^2+1\right)^2-2\sqrt 6\cdot x\left(x^2+1\right)+10x^2\right]\left[\left(x^2+1\right)^2+2\sqrt 6\cdot x\left(x^2+1\right)+10x^2\right]\\\\
\boxed{\left(x^4-2\sqrt 6\cdot x^3+12x^2-2\sqrt 6\cdot x+1\right)\left(x^4+2\sqrt 6\cdot x^3+12x^2+2\sqrt 6\cdot x+1\right)}\\\\
\left(x^4+12x^2+1\right)^2-\left[2\sqrt 6x\left(x^2+1\right)\right]^2\\\ \end{array}\ }\]
Proof 2. I"ll use the standard substitution $\boxed{x-\frac 1x=t\iff xt=x^2-1}$ . Therefore, our polynomial becomes :

\[\boxed{\ \begin{array}{c}
\\ x^8+98x^4+1\ \iff\ x^4\left[\left(x^4+\frac 1{x^4}\right)+98\right]\ \iff\ x^4\left[\left(x^2+\frac 1{x^2}\right)^2+96\right]\\\\
x^4\left\{\left[\left(x-\frac 1x\right)^2+2\right]^2+96\right\}\ \iff\ x^4\left[\left(t^2+2\right)^2+96\right]\ \iff\ x^4\left(t^4+4t^2+100\right)\\\\
x^4\left[\left(t^2+10\right)^2-16t^2\right]\ \iff\ x^4\left(t^2-4t+10\right)\left(t^2+4t+10\right)\\\\
\left[(xt)^2-4x(xt)+10x^2\right]\left[(xt)^2+4x(xt)+10x^2\right]\\\\
\left[\left(x^2-1\right)^2-4x\left(x^2-1\right)+10x^2\right]\left[\left(x^2-1\right)^2+4x\left(x^2-1\right)+10x^2\right]\\\\
\boxed{\left(x^4-4x^3+8x^2+4x+1\right)\left(x^4+4x^3+8x^2-4x+1\right)}\\\\
(x^4 + 8x^2 + 1)^2 - (4x^3 - 4x)^2\\\ \end{array}\ }\]
Proof 3. $x^8 + 98x^4 + 1 = (x^4 + 8x^2 + 1)^2 - (4x^3 - 4x)^2 \implies$ $x^8 + 98x^4 + 1 =(x^4 + 4x^3 + 8x^2 - 4x + 1)(x^4 - 4x^3 + 8x^2 + 4x + 1)$ .

Remark. The last two proofs present the factorize over $\mathbb Z$ .

Proof 4. $x^8+98x^4+1=\left(x^4+49\right)^2+1-49^2=$ $\left(x^4+49\right)^2-48\cdot 50=$ $\left(x^4+49\right)^2-\left(20\sqrt 6\right)^2\implies$ $x^8+98x^4+1=\left(x^4+49+20\sqrt 6\right)\left(x^4+49-20\sqrt 6\right)$ .



PP11. Let $\{a,b,c\}\subset\mathbb R$ such that $abc=-1$ , $a+b+c=4 $ and $\sum\frac{a}{a^2-3a-1}=\frac{4}{9}$ . Find the value of $a^2+b^2+c^2$ .

Proof. $ab+bc+ca=m$ , $x^3-4x^2+mx+1=0$ $\odot\begin{array}{ccc}
\nearrow & a & \searrow\\\
\rightarrow & b & \rightarrow\\\
\searrow & c & \nearrow\end{array}\odot$ . Thus, $x^3-4x^2+mx+1=0\stackrel{(*)}{\iff}$ $\frac {x}{x^2-3x-1}=\frac {x-1}{2-m}$ . So $\sum\frac{a}{a^2-3a-1}=\frac{4}{9}$ $\iff$

$\sum\frac {a-1}{2-m}=\frac 49\iff$ $9\left(-3+\sum a\right)=4(2-m)\iff$ $9=4(2-m)\iff$ $\boxed{m=-\frac 14}$ . In conclusion, $a^2+b^2+c^2=$ $(a+b+c)^2-2(ab+bc+ca)=$ $16+\frac 12$ $\implies$

$a^2+b^2+c^2=$ $\frac {33}{2}$ . $*\blacktriangleright$ Remark. $0=x^3-4x^2+mx+1=(x^2-3x-1)(x-1)+(m-2)x\implies$ $\frac {x}{x^2-3x-1}=\frac {x-1}{2-m}$ .



PP12. The equations $\left\{\begin{array}{c}
a_1x^2+b_1x+c_1=0\\\\
a_2x^2+b_2x+c_2=0\end{array}\right\|$ have at least one common root $\iff$ $\left|\begin{array}{cc}
a_1 & c_1\\\\
a_2 & c_2\end{array}\right|^2=\left|\begin{array}{cc}
a_1 & b_1\\\\
a_2 & b_2\end{array}\right|\cdot\left|\begin{array}{cc}
b_1 & c_1\\\\
b_2 & c_2\end{array}\right|$ and the common root is $x_{\mathrm{com}}=-\frac {\left|\begin{array}{cc}
a_1 & c_1\\\\
a_2 & c_2\end{array}\right|}{\left|\begin{array}{cc}
a_1 & b_1\\\\
a_2 & b_2\end{array}\right|}$ .

Proof. Using the Cramer's rules solve the system $\left\{\begin{array}{c}
a_1\cdot \left(x^2\right)+b_1\cdot (x)=-c_1\\\\
a_2\cdot\left(x^2\right)+b_2\cdot (x)=-c_2\end{array}\right\|\implies$ $\left(x^2\right)=\frac {\left|\begin{array}{cc}
b_1 & c_1\\\\
b_2 & c_2\end{array}\right|}{\left|\begin{array}{cc}
a_1 & b_1\\\\
a_2 & b_2\end{array}\right|}\ \ \wedge\ \ (x)=-\frac {\left|\begin{array}{cc}
a_1 & c_1\\\\
a_2 & c_2\end{array}\right|}{\left|\begin{array}{cc}
a_1 & b_1\\\\
a_2 & b_2\end{array}\right|}$ .

In conclusion, $(x)^2=\left(x^2\right)\implies$ $\left|\begin{array}{cc}
a_1 & c_1\\\\
a_2 & c_2\end{array}\right|^2=\left|\begin{array}{cc}
a_1 & b_1\\\\
a_2 & b_2\end{array}\right|\cdot\left|\begin{array}{cc}
b_1 & c_1\\\\
b_2 & c_2\end{array}\right|$ and in this case the common root is $x_{\mathrm{com}}=-\frac {\left|\begin{array}{cc}
a_1 & c_1\\\\
a_2 & c_2\end{array}\right|}{\left|\begin{array}{cc}
a_1 & b_1\\\\
a_2 & b_2\end{array}\right|}$



PP13. Prove that the roots of the equation $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = \frac{1}{x}$ , where $0<c<b<a$ , are real.

Proof 1 (without derivatives). $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = \frac{1}{x}\iff$ $f(x)\equiv x[(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)]-(x-a)(x-b)(x-c)=0$ .

Thus, $f(x)\equiv 2x^3-(a+b+c)x^2+abc=0\odot\begin{array}{ccc}
\nearrow & x_1 & \searrow\\\\
\rightarrow & x_2 & \rightarrow\\\\
\searrow & x_3 & \nearrow\end{array}\odot$ and prove easily that $\left\{\begin{array}{cccc}
f(-\infty ) & = & -\infty & -\\\\
f(0) & = & abc & +\\\\
f(c) & = & c(c-a)(c-b) & +\\\\
f(b) & = & b(b-a)(b-c) & -\\\\
f(a) & = & c(c-a)(c-b) & +\\\\
f(\infty ) & = & \infty & +\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccccc}
f(-\infty ) & < & 0 & < & f(0)\\\\
f(c) & > & 0 & > &  f(b) \\\\
f(b) & < & 0 & < & f(a)\end{array}\right\|$ .

In conclusion, the equation $f(x)=0$ has three real roots so that $x_1<0<c<x_2<b<x_3<a$ .

Proof 2 (with derivatives). Denote $\frac {a+b+c}3=m$ and prove easily that $f(x)=x\sum (x-b)(x-c)-(x-a)(x-b)(x-c)=0\iff$

$f(x)=2x^3-(a+b+c)x^2+abc=0$ . Since $f^{\prime}(x)=6x^2-2(a+b+c)x=0\begin{array}{ccc}
\nearrow & 0 & \searrow\\\\
\searrow & \frac {a+b+c}3 & \nearrow\end{array}\odot$ obtain that

$\left\{\begin{array}{cccc}
-\infty\ <\ x\ <\ 0 & \implies & f\ \nearrow & 0\ >\ -\infty \ =\ f(-\infty)\ <\ f(x)\ <\ f(0)=abc\ >\ 0\\\\\
0\ <\ x\ <\ m & \implies & f\ \searrow & 0\ <\ abc\ =\ f(0)\ >\ f(x)\ >\  f(m)=-m^3+27abc\ <\ 0\\\\
m\ <\ x\ <\ \infty & \implies & f\ \nearrow & 0\ >\ -m^3+27abc\ =\ f(m)\ <\ f(x)\ <\ f(\infty )\ =\ \infty \ >\ 0\end{array}\right\|$ . Thus, $0<c<m<a$ and $f(-\infty)<0<f(c)=$

$(c-a)(c-b)>0>f(m)<0<f(a)=(a-b)(a-c)$ . In conclusion, $(\exists )\ \left\{x_1,x_2,x_3\right\}\subset\mathbb R$ so that $x_1<0<c<x_1<m<x_3<a$ .



PP14. Find $a\in\mathbb R$ so that exist $\{x,y\}\subset\mathbb R^*$ for which $\left\{\begin{array}{cc}
 x^2-2xy-3y^2=8\\\\
2x^2+4xy+5y^2=m\end{array}\right\|$ , where $m=a^4-4a^3+4a^2-12+\sqrt{105}$ .

Proof. Let $\boxed{\ t=\frac xy\ }$ . Thus, $m=2x^2+4xy+5y^2=$ $y^2\left(2t^2+4t+5\right)>0$ $\implies$ $\boxed{ m > 0\ }\ (*)$ . Therefore, $\frac { x^2-2xy-3y^2}{2x^2+4xy+5y^2}=$ $\frac 8m\iff$ $\frac { t^2-2t-3}{2t^2+4t+5}=$ $\frac 8m\iff$

$(m-16)t^2-2(m+16)t-(3m+40)=0$ . Since $t\in\mathbb R$ must $\Delta^{\prime}(m)=$ $(m+16)^2+(m-16)(3m+40)\ge 0$ $\iff$ $4m^2+24m-384\ge 0$ $\iff$

$m^2+6m-96\ge 0\stackrel{(*)}{\iff}$ $\boxed{\ m\ge -3+\sqrt{105}\ }$ . In conclusion, $a^4-4a^3+4a^2-12+\sqrt{105}\ge -3+\sqrt{105}$ $\iff$ $a^4-4a^3+4a^2-9\ge 0\iff$

$(a+1)(a-3)(a^2-2a+3)\ge 0$ $\iff$ $\boxed{\ a\in (-\infty,-1]\cup[3,\infty)}$ .



PP15. Find the remainder when the polynomial $P(x)\equiv (x+2)^{2011}-(x+1)^{2011}$ is divided by $x^{2}+x+1$ .

Proof. Let $x^2+x+1=0\begin{array}{ccc}
\nearrow & w & \searrow\\\\
\searrow & \overline w & \nearrow\end{array}\odot$ where $\left\{\begin{array}{ccc}
w & = & \cos\frac {2\pi}3+i\sin\frac {2\pi}3\\\\
w^3=1 & ; & w^2+w+1=0\end{array}\right\|$ . Exist $\{a,b\}\subset\mathbb R$ so that $P(x)=\left(x^2+x+1\right)\cdot Q(x)+ax+b$ .

$\left\{\begin{array}{ccc}
(w+2)^{2011}=(w+2)^{2\cdot 1005+1}=\left(w^2+4w+4\right)^{1005}(w+2)=\left(-3w^2\right)^{1005}(w+2) & \implies & (w+2)^{2011}=-3^{1005}(w+2)\\\\

(w+1)^{2011}=(w+1)^{2\cdot 1005+1}=\left(w^2+2w+1\right)^{1005}(w+1)=w^{1005}(w+1) & \implies & (w+1)^{2011}=w+1\end{array}\right\|$ . Therefore,

$P(w)=(w+2)^{2011}-(w+1)^{2011}\implies$ $P(w)=-3^{1005}(w+2)-(w+1)$ . In conclusion, $\boxed{P(w)=-\left(3^{1005}+1\right)\cdot w-\left(2\cdot 3^{1005}+1\right)}\ (*)$ .

Since $\{a,b\}\subset\mathbb R$ obtain that $P(w)=aw+b\ \stackrel{(*)}{\implies}$ $\left\{\begin{array}{ccc}
a & = & -\left(3^{1005}+1\right)\\\\
b & = & -\left(2\cdot 3^{1005}+1\right)\end{array}\right\|$ .



PP16. Let $x^3-x^2+m(9x-1)=0$ be an equation with the roots $\{x_1,x_2,x_3\}\subset \mathbb R^*_+$ , where $m\in\mathbb R$ . Prove that $x_1=x_2=x_3$ .

Proof. Observe that $\left\{\begin{array}{ccccc}
s_1 & = & x_1+x_2+x_3 & = & 1\\\\
s_2 & = & x_1x_2+x_2x_3+x_3x_1 & = & 9m\\\\
s_3 & = & x_1x_2x_3 & = & m\end{array}\right\|\implies$ $\frac 1{x_1}+\frac 1{x_2}+\frac 1{x_3}=\frac {s_2}{s_3}=9\implies$ $9=\left(x_1+x_2+x_3\right)\left(\frac 1{x_1}+\frac 1{x_2}+\frac 1{x_3}\right)\ge 9\implies$ $x_1=x_2=x_3$ .
This post has been edited 91 times. Last edited by Virgil Nicula, Nov 17, 2015, 7:04 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a