454. Mathematical note: "trig. ineg."- GMB 6/1992, page 201.

by Virgil Nicula, May 17, 2017, 8:04 AM

P0. Ascertain $\mathrm{Im}(f)\ ,$ where $f:\left(0,\frac {\pi}2\right]\rightarrow \mathbb R\ ,\ f(x)=\frac {\sin x-x\cos x}{x-\sin x}$

Proof. $f\left(\frac {\pi}2\right)=\frac 2{\pi -2}$ and $f(0+0)=\lim_{x\searrow 0}\frac {\sin x-x\cos x}{x-\sin x}\ \stackrel{l'H}{=}\ \lim_{x\searrow 0}\frac {x^2}{1-\cos x}\cdot\frac {\sin x}x=2\ .$ If we'll prove that the function continuous $f$ is strict monotonous, evidently strict decreasing
because $0<\frac {\pi}2$ and $f(0+0)=2>\frac 2{\pi -2}=f\left(\frac {\pi}2\right)\ ,$ then from the Darboux's property get $\mathrm{Im}(f)=\left[\frac 2{\pi -2},2\right)\ .$ Indeed, $f'(x)\ \mathrm{.a.s.}\ x^2\sin x-$ $x(1-\cos x)-\sin x(1-\cos x)=$ $\sin x\cdot\left[x-\frac {1-\cos x}{2\sin x}\cdot\left(1-\sqrt{4\cos x+5}\right)\right]\cdot\left[x-\frac {1-\cos x}{2\sin x}\cdot \left(1+\sqrt{4\cos x+5}\right)\right]\implies$ $f'(x)\ \mathrm{.a.s.}\ g(x)\equiv x-\frac {1-\cos x}{2\sin x}\cdot \left(1+\sqrt{4\cos x+5}\right)\ .$ But $g'(x)\ \mathrm{.a.s.}\ (1-\cos x)\left[(1+2\cos x\sqrt{4\cos x+5}-\left(2\cos^2x+4\cos x+3\right)\right]\ \mathrm{.a.s.}\ (1+2\cos x)^2(4\cos x+5)$ $-\left(2\cos^2x+4\cos x+3\right)=-4\sin^4x<0\ .$
In conclusion, $f'(x)<0$ for any $0<x<\frac {\pi}2\implies$ the function $f$ is decreasing and $\mathrm{Im}(f)=\left[\frac 2{\pi -2},2\right)\ ,$ i.e. $\boxed{(\forall ) x\in\left(0,\frac {\pi}2\right]\ ,\ \frac 2{\pi -2}<\frac {\sin x-x\cos x}{x-\sin x}<2}\ (*)\ .$

Remark 1. I'll write the inequality $(*)$ thus: $\frac 32<\frac {1-\cos x}{\frac {\sin x}x-\cos x}\le \frac {\pi}2\ (1)\ .$ The inequality $\frac 2{\pi}<\left(1-\frac 2{\pi}\right)\cdot\cos x+\frac 2{\pi}<\frac {\sin x}x<\frac {2+\cos x}3<1$

is equivalent with the inequality $(*)$ and is stronger than the wellknown inequality $\boxed{\frac 2{\pi}<\frac {\sin x}x<1}\ .$

Remark 2. I used the equivalence relation over $\mathbb R\ : x\ \mathrm{.a.s.}\ y\ \iff\ x=y=0\ \vee\ xy>0\ \iff\ \mathrm{sign}(x)=\mathrm{sign}(y)\ \iff\ x\ \mathrm{and}\ y\ \mathrm{have\ the\ same\ position\ w.r.t.}\ 0\ .$

Geometrical interpretation. I'll look for the most far point $S(-\lambda,0)$ to the left side of the axis $Ox\ ,$ where $\lambda >0$ so that for any point $M(x)\in w$ where $0<x<\frac {\pi}2$ the length $l$ of the arc $l(\overarc{AM})<[AT]\ ,$ where $T(1,\tan x)$ and $S\in MT\ .$ For $\lambda =0$ obtain $x<\tan x$ for any $0<x<\frac {\pi}2\ .$ Let $N=\mathrm{pr}_{Ox}(M)\ ,$ i.e. $MN=\sin x$ and $ON=\cos x\ .$ From $\frac {MN}{TA}=\frac {SN}{SA}$ obtain $AT=\frac {1+\lambda}{\cos x+\lambda}\cdot\sin x\ .$ Therefore, $\overarc{MA}<TA\iff$ $x<\frac {1+\lambda}{\cos x+\lambda}\cdot\sin x$ for any $0<x<\frac {\pi}2\ ,$ i.e. $\lambda<\frac {\sin x-x\cos x}{x-\sin x}\ .$ With other words, the most far point $S(-\lambda,0)\ ,$ $\lambda\ge 0$ to the left side of the axis $Ox$ for which $\overarc{MA}<TA\ ,$ $(\forall) x\in \left(0,\frac {\pi}2\right)$ is $S\left(-\lambda_0,0\right)\ ,$ where $\lambda_0=\frac 2{\pi-2}\ .$


Applications. $\mathrm{Prove\ that\ :}\ 0<x<\frac {\pi}2\implies \frac 2{\pi}\cdot\tan \frac x2<\frac 1x-\frac 1{\tan x}<\frac 23\cdot \tan\frac x2\ ;\ \left\{\begin{array}{ccc}
2\tan x+3x\cos x> 5\sin x\\\\
3\tan x+2x\cos x>5x\end{array}\right\|\ ;\ \left\{\begin{array}{ccc}
\frac {\pi}2+\sqrt 2 & < & 3\\\\
\pi +2 & < & 3\sqrt 3\end{array}\right\|\ .$

$\boxed{\triangle\ ABC\ :\ \left\{\begin{array}{c} K\in (AC)\ ;\ L\in (BC)\ ;\ G\in (KL)\\\\
M\in AG\cap BC\ ;\ N\in CG\cap AB\end{array}\right\|\ \implies\ \left\{\begin{array}{cc}(1) & \overline{LGK}/\triangle AMC\iff\frac {\cancel{LM}}{LC}\cdot\frac {KC}{\cancel{KA}}\cdot\cancel{\frac {GA}{GM}}=1\\\\ (2) & \overline{AGM}/\triangle CLK\iff \frac {\cancel{AK}}{AC}\cdot\frac {\cancel{MC}}{\cancel{ML}}\cdot\frac {GL}{GK}=1\\\\ (3) & \overline{CGN}/\triangle ABM\iff\frac {CB}{\cancel{CM}}\cdot\cancel{\frac {GM}{GA}}\cdot\frac {NA}{NB}=1\end{array}\right\|\bigodot\implies \frac {CK}{CL}\cdot \frac {CB}{CA}\cdot \frac {GL}{GK}\cdot \frac {NA}{NB}=1\implies\frac {GK}{GL}=\frac {NA}{NB}\cdot \frac {CK}{CL}\cdot\frac {CB}{CA}}$
.
This post has been edited 68 times. Last edited by Virgil Nicula, Jul 3, 2017, 8:10 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a