394. A cevian in a triangle and two incircles.

by Virgil Nicula, Apr 12, 2014, 1:13 AM

PP1. Let $\triangle ABC$ with semiperimeter $p$ and incircle $w=C(I,r)\ .$ For $M\in (BC)$ let the incircles $w_{1}=C(I_{1},r_{1}),\ w_{2}=C(I_{2},r_{2})$ of $\triangle ABM,\ \triangle ACM$ respectively. Prove that :

$1.\blacktriangleright\ pr^{2}+ar_{1}r_{2}=pr(r_{1}+r_{2})\ \ (*)\ .$ Prove easily that the relation $(*)$ $\Longleftrightarrow$ $p(r-r_{1})(r-r_{2})=(p-a)r_{1}r_{2}$ $\Longleftrightarrow$ $\frac{1}{r_{1}}+\frac{1}{r_{2}}=\frac{r}{r_{1}r_{2}}+\frac{2}{h_{a}}\ .$

$2.\blacktriangleright\ r< r_{1}+r_{2}\le 2\delta\ ,$ where $\delta=\frac{r}{a}\cdot \left[ p-\sqrt{p(p-a)}\right]$, with equality iff $r_{1}=r_{2}=\delta\ .$

$3.\blacktriangleright$ $M\in w$ $\Longleftrightarrow$ The circles $w_{1}\ ,\ w_{2}$ are tangent to the line $AM$ in the same point. In this case denote the middlepoints $D\ ,\ S$ of the side $[BC]\ ,$

the segment $[AM]$ respectively ; the point $R\in AM$ for which $IR\perp AM\ .$ Prove easily that $\left\{\begin{array}{c}3.1\blacktriangleright\ (r-r_{1})(p-b)=(r-r_{2})(p-c)=r\sqrt{r_{1}r_{2}}\ .\\\\ 3.2\blacktriangleright\ I\in (SD)\ ,\ a\cdot IS=(p-a)\cdot ID\ .\\\\ 3.3\blacktriangleright\ \widehat{BRM}\equiv\widehat{CRM}\ .\end{array}\right\|$



$1.\blacktriangleright$ Proof. Suppose w.l.o.g. that $c<b\ .$ Denote : the tangent points $U\ ,\ V$ of the circles $w_{1}\ ,\ w_{2}$ with the line $AM$ respectively ; the tangent points $X\ ,\ Y$ of the circles $w_{1}\ ,\ w_{2}$

with the line $BC$ respectively ; $BX=x\ ,\ CY=y\ .$ Prove easily that : $UV=b-c+x-y\ ;$ $\tan \frac{B}{2}=\frac{r}{p-b}=\frac{r_{1}}{x}\ ;$ $\tan\frac{C}{2}=\frac{r}{p-c}=\frac{r_{2}}{y}$ and $XY=a-x-y\ .$ Thus,

$UV^{2}+(r_{1}+r_{2})^{2}=I_{1}I_{2}^{2}=XY^{2}+(r_{1}-r_{2})^{2}$ $\Longrightarrow$ $UV^{2}+4r_{1}r_{2}=XY^{2}$ $\Longrightarrow$ $\left[(b-c)+(x-y)\right]^{2}+4r_{1}r_{2}=[a-(x+y)]^{2}$ $\Longrightarrow$ $2a(x+y)+2(b-c)(x-y)+$

$4r_{1}r_{2}=a^{2}-(b-c)^{2}+4xy$ $\Longrightarrow$ $(p-c)x+(p-b)y+r_{1}r_{2}=(p-b)(p-c)+xy$ $\Longrightarrow$ $(p-c)\cdot\frac{(p-b)r_{1}}{r}+(p-b)\cdot\frac{(p-c)r_{2}}{r}+r_{1}r_{2}=$ $(p-b)(p-c)+$

$\frac{(p-b)r_{1}}{r}\cdot\frac{(p-c)r_{2}}{r}$ $\Longrightarrow$ $(p-b)(p-c)(r-r_{1})(r-r_{2})=r^{2}r_{1}r_{2}\ ,\ (p-a)(p-b)(p-c)=pr^{2}$ $\Longrightarrow$ $\boxed{\ p(r-r_{1})(r-r_{2})=(p-a)r_{1}r_{2}\ }$ $\Longrightarrow$

$\boxed{\ pr^{2}+ar_{1}r_{2}=pr(r_{1}+r_{2})\ }\ ,\ \frac{a}{p}=\frac{2r}{h_{a}}$ $\Longrightarrow$ $r+\frac{2}{h_{2}}\cdot r_{1}r_{2}=r_{1}+r_{2}$ $\Longrightarrow$ $\boxed{\ \frac{1}{r_{1}}+\frac{1}{r_{2}}=\frac{r}{r_{1}r_{2}}+\frac{2}{h_{a}}\ }\ .$

$2.\blacktriangleright$ Proof 1 (with derivatives). Let $\mathrm{\ x\ .s.s.\ y}$ $\Longleftrightarrow$ $xy>0$ or $x=y=0\ .$ Prove easily that $\left\{\begin{array}{c}
\{r_{1},r_{2}\}\subset (0,r)\\\\
1<r_{1}+r_{2}\end{array}\right\| .$ Let $k=\frac{a}{p}<1\ ,\ x=\frac{r_{1}}{r}<1\ ,\ y=\frac{r_{2}}{r}<1\ .$

The relation $(*)$ becomes $1+kxy=x+y$ and the problem $\max_{(x,y)\in D}\{\ x+y\ \}\ ,$ $(x,y)\in D\Longleftrightarrow$ $\{x,y\}\subset (0,1)\ ,\ 1<x+y=1+kxy\ ,$ i.e. $1-x<y=\frac{1-x}{1-kx}\ .$

Remark $0<x<1<\frac{1}{k}\ .$ Let $f: (0,1)\rightarrow\mathbb R\ ,\ f(x)=x+\frac{1-x}{1-kx}=x+y\ .$ Prove easily that $f'(x)\mathrm{\ .s.s.\ }(kx^{2}-2x+1)\ .$ Thus, for any $x\in (0,1)\ ,$ $f(x)\le f(x_{0})$, where

$x_{0}=\frac{1-\sqrt{1-k}}{k}\ .$ Coming back to the initial problem get $\delta =r\cdot \frac{1-\sqrt{1-\frac{a}{p}}}{\frac{a}{p}}\ ,$ i.e. $\boxed{\ \delta =\frac{r}{a}\cdot \left[ p-\sqrt{p(p-a)}\right]\ }\ .$

Proof 2 (without derivatives). Using the same notations from the previous proof obtain : $1<(x+y)=1+kxy<2$ $\Longrightarrow$ $(x+y)\in (1,2)\ .$ Thus, $(x+y)^{2}\ge 4xy$ $\Longrightarrow$

$k(x+y)^{2}\ge 4[(x+y)-1]$ $\Longrightarrow$ $k(x+y)^{2}-4(x+y)+4\ge 0$ $\implies$ $(x+y)\not\in \left(2\cdot \frac{1-\sqrt{1-k}}{k}\ ,\ 2\cdot\frac{1+\sqrt{1-k}}{k}\right)$ and $(x+y)\in (1,2)$ $\implies$

$1<(x+y)\le 2\cdot\frac{1-\sqrt{1-k}}{k}$ because $1<2\cdot\frac{1-\sqrt{1-k}}{k}<2<2\cdot\frac{1+\sqrt{1-k}}{k}\ .$ We have equality iff $x=y=x_{0}=\frac{1-\sqrt{1-k}}{k}$ a.s.o.

Remark 1. In the case $r_{1}=r_{2}=\delta =\frac{r}{a}\cdot \left[p-\sqrt{p(p-a)}\right]$ add and another relations : $\boxed{\ a\delta^{2}-2pr\delta+pr^{2}=0\ }\mathrm{\ \ ;\ \ }$ $p(r-\delta )^{2}=(p-a)\delta^{2}\mathrm{\ \ ;\ \ }$ $\frac{2}{\delta}=\frac{r}{\delta^{2}}+\frac{2}{h_{a}}\ ;$

$\frac{MX}{p-c}=\frac{MY}{p-b}=\frac{r-\delta }{r}\ ;$ $\left\{\begin{array}{c}MB=(p-c)-\frac{\delta }{r}\cdot (b-c)\\\\ MC=(p-c)+\frac{\delta }{r}\cdot (b-c)\end{array}\right\|\ .$ From the Stewart's theorem applying for $[AM]$ obtain $\boxed{\boxed{\ \blacktriangleleft\ AM^{2}=p(p-a)\ \blacktriangleright\ }}\ .$

Remark 2. In same case $r_1=r_2=\delta=\frac{r}{a}\cdot \left[ p-\sqrt{p(p-a)}\right]$. Let $m\left(\widehat{AMB}\right)=\phi$ . Thus, $\tan\frac {\phi}2=\frac {\delta}{MX}=$ $\frac {\frac{r}{a}\cdot \left[ p-\sqrt{p(p-a)}\right]}{\frac {(r-\delta)(p-c)}r}=$ $\frac {r^2\left[p-\sqrt{p(p-a)}\right]}{(p-c)\left[ar-pr+r\sqrt{p(p-a)}\right]}=$

$\frac {r\left[p-\sqrt{p(p-a)}\right]}{(p-c)\left[\sqrt{p(p-a)}-(p-a)\right]}=$ $\frac{r\sqrt p\left(\sqrt p-\sqrt{p-a}\right)}{(p-c)\sqrt{p-a}\left(\sqrt p-\sqrt {p-a}\right)}=$ $\frac r{p-c}\cdot\sqrt{\frac p{p-a}}\implies$ $ \tan^2\frac {\phi}2=\frac {r^2p}{(p-c)^2(p-a)}\implies$ $\boxed{\tan^2\frac {\phi}2=\frac {p-b}{p-c}}\implies$

$\cos\phi =\frac {1-\tan^2\frac {\phi}2}{1+\tan^2\frac {\phi}2}=$ $\frac {1-\frac {p-b}{p-c}}{1-\frac {p-b}{p-c}}\implies$ $\boxed{\cos\phi =\frac {b-c}a}$ . On other hand, $\frac {\sin\frac A2}{\sin\phi}=$ $\sqrt{\frac {(p-b)(p-c)}{bc}}\cdot\frac {1+\tan^2\frac {\phi}2}{2\tan\phi}=$ $\sqrt{\frac {(p-b)(p-c)}{bc}}\cdot\frac {\frac a{p-c}}{2\sqrt{\frac {p-b}{p-c}}}\implies$ $\boxed{\frac {\sin\frac A2}{\sin\phi}=\frac a{2\sqrt{bc}}}$ .

$3.\blacktriangleright$ Proof 1. Using the above notations, the circles $w_{1}\ ,\ w_{2}$ are tangent in the same point to the line $AM$ $\Longleftrightarrow$ $MX=MY$ $\Longleftrightarrow$

$MB+MA-c=MC+MA-b$ $\Longleftrightarrow$ $MB+MC=a\ ,\ MB-MC=c-b$ $\Longleftrightarrow$ $MB=p-b$ $\Longleftrightarrow$ $M\in w\ .$

Proof 2. $M\in w$ $\Longleftrightarrow$ $MB+AC=MC+AB$ $\Longleftrightarrow$ the triangle $ABC$ is a degenerated circumscribed quadrilateral $ABMC$ $\Longleftrightarrow$

(from a well-known property) the incircles of the triangles $ABM\ ,\ ACM$ are tangent in the same point of the "diagonal" $AM\ .$

$3.1\blacktriangleright\ M\in w\Longrightarrow XY=2\sqrt{r_{1}r_{2}}$ $\Longrightarrow$ $[a-(x+y)]^{2}=4r_{1}r_{2}$ $\Longrightarrow$ $\left[a-\frac{r_{1}(p-b)+r_{2}(p-c)}{r}\right]^{2}=4r_{1}r_{2}$ $\Longleftrightarrow$ $\{r[(p-b)+(p-c)]-r_{1}(p-b)-$

$-r_{2}(p-c)\}^{2}=$ $4r^{2}r_{1}r_{2}$ $\Longrightarrow$ $[(r-r_{1})(p-b)+(r-r_{2})(p-c)]^{2}=4r^{2}r_{1}r_{2}$ $\Longrightarrow$ $(r-r_{1})(p-b)+(r-r_{2})(p-c)=2r\sqrt{r_{1}r_{2}}\ \ (1)\ .$

Otherwise. $M\in w\Longleftrightarrow$ $UV=0\Longleftrightarrow$ $x-y=c-b$ $\Longleftrightarrow$ $\frac{r_{1}(p-b)}{r}-\frac{r_{2}(p-c)}{r}=c-b$ $\Longleftrightarrow$ $(p-b)r_{1}-(p-c)r_{2}=r[(p-b)-(p-c)]$,

i.e. $(p-b)(r-r_{1})=(p-c)(r-r_{2})\ \ (2)\ .$ From the relations $(1)$ and $(2)$ obtain $\boxed{\ (p-b)(r-r_{1})=(p-c)(r-r_{2})=r\sqrt{r_{1}r_{2}}\ }\ .$

$3.2\blacktriangleright$ Denote the intersections $L\in BC\cap AI\ ,\ T_{1}\in AB\cap DS\ ,\ T_{2}\in AB\cap DI\ .$ Prove easily that $DL=\frac{a(b-c)}{2(b+c)}$ , $DM=\frac{b-c}{2}$ , $LM=\frac{(b-c)(p-a)}{b+c}$ , $\frac{IA}{IL}=\frac{b+c}{a}\ .$

Apply the Menelaus's theorem to the transversals $\odot\begin{array}{cccccccc}
\nearrow & \overline{DST_{1}}/\triangle ABM\ : & \frac{DM}{DB}\cdot\frac{T_{1}B}{T_{1}A}\cdot\frac{SA}{SM}=1 & \Longrightarrow & \frac{T_{1}A}{T_{1}B}=\frac{DM}{DB}\cdot \frac{SA}{SM} & \Longrightarrow & \frac{T_{1}A}{T_{1}B}=\frac{b-c}{a} & (3)\\\\
\searrow &\overline{DIT_{2}}/\triangle ABL\ : &  \frac{DL}{DB}\cdot\frac{T_{2}B}{T_{2}A}\cdot \frac{IA}{IL}=1 & \implies & \frac{T_{2}A}{T_{2}B}=\frac{DL}{DB}\cdot\frac{IA}{IL}   & \Longrightarrow & \frac{T_{2}A}{T_{2}B}=\frac{b-c}{a} & (4)\end{array}\odot$ .

From the relations $(3)$ and $(4)$ obtain $T_{1}\equiv T_{2}\equiv T$ , i.e. $I\in DS$ and $\frac{TA}{TB}=\frac{b-c}{a}\ .$ Apply the Menelaus' theorem to the transversal $\overline{AIL}$ in $\triangle DMS\ :$

$\frac{AS}{AM}\cdot\frac{LM}{LD}\cdot\frac{ID}{IS}=1$ $\Longrightarrow$ $\frac{IS}{ID}=\frac{AS}{AM}\cdot \frac{LM}{LD}$ $\Longrightarrow$ $\frac{IS}{p-a}=\frac{ID}{a}=\frac{SD}{p}$ , i.e. $\boxed{\ a\cdot IS=(p-a)\cdot ID\ }\ .$ Remark $\frac{TA}{TB}=\frac{IS}{ID}=\frac{p-a}{a}\ !$

$3.3\blacktriangleright$ Denote the tangent points $N\in AC$ , $P\in AB$ of the incircle $w$ and the intersection $V\in BC\cap NP\ .$ Thus, $AI\perp VN\ ,$ i.e. $AV^{2}-AN^{2}=$

$IV^{2}-IN^{2}\ .$ Thus, $VA^{2}-VM^{2}=$ $(AV^{2}-AN^{2})+(AN^{2}-VM^{2})=$ $(IV^{2}-IN^{2})+(AN^{2}-VM^{2})=$ $(IV^{2}-VM^{2})+(AN^{2}-IN^{2})=$

$IM^{2}+AN^{2}-IN^{2}=$ $AN^{2}=$ $IA^{2}-IN^{2}=$ $IA^{2}-IM^{2}$ $\Longrightarrow$ $VA^{2}-VM^{2}=IA^{2}-IM^{2}\ ,$ i.e. $\boxed{\ VI\perp AM\ }\ .$ The points $V$ , $M$ are conjugate

w.r.t. $\{B,C\}\ .$ Thus, $R\in VI$ and $VI\perp AM$ $\Longrightarrow$ the ray $[RM$ is the bisector of the angle $\widehat{BRC}\ .$
I hope for no mistakes in the my proof !

A similar identity. For the triangle $ABC$ denote the length $h_{a}$ of the $A$- altitude and the $A$- exincircle $w=C(I_{a},r_{a})\ .$ For a point $M\in (BC)$ denote the $A$-excircles $w_{1}=C(I_{1},r_{1})$ ,

$w_{2}=C(I_{2},r_{2})$ of the triangles $ABM$ , $ACM$ respectively. Prove that exists the identity $\boxed{\ ar_{1}r_{2}+pr(r_{1}+r_{2})=prr_{a}\ }$ , which is equivalently with $\boxed{\ \frac{1}{r_{1}}+\frac{1}{r_{2}}-\frac{2}{h_{a}}=\frac{r_{a}}{r_{1}r_{2}}\ }\ .$



PP2. Let an equilateral $\triangle ABC$ and for $D\in (BC)$ denote the incircles $\left\{\begin{array}{ccc}
w_1=C\left(I_1,r_1\right) & \mathrm{for} & \triangle ABD\\\\
w_2=C\left(I_2,r_2\right) & \mathrm{for} & \triangle ACD\end{array}\right\|$ . Find the length of the side $BC$ .

Proof. Suppose w.l.o.g. $DB<DC$ . Denote $\left\{\begin{array}{ccc}
M\in BC\cap w_1 & ; & DM=x\\\\
N\in BC\cap w_2 & ; & DN=y\end{array}\right\|$ . Prove easily that $MB=r_1\sqrt 3\ ;\ NC=r_2\sqrt 3$ and $\triangle MI_1D\sim\triangle NDI_2\implies $

$\boxed{xy=r_1r_2}\ (1)$ . Observe that $\left\{\begin{array}{c}
2\cdot MB=BD+BA-AD\\\\
2\cdot NC=CD+CA-AD\end{array}\right\|\implies$ $2\cdot (MB-NC)=BD-CD=(BM+MD)-(CN+ND)\implies$

$MB-NC=MD-ND\implies$ $\boxed{x-y=\left(r_1-r_2\right)\sqrt 3}\ (2)$ . Obtain that $(x+y)^2=(x-y)^2+4xy\stackrel{1\wedge 2}{=}$ $3\left(r_1-r_2\right)^2+4r_1r_2\implies$

$MN=x+y=\sqrt {3\left(r_1^2+r_2^2\right)-2r_1r_2}\implies$ $BC=BM+MN+NC\implies$ $\boxed{BC=\left(r_1+r_2\right)\sqrt 3+\sqrt {3\left(r_1^2+r_2^2\right)-2r_1r_2}}$ .

Particular case. $r_1=2\ ,\ r_2=3\ \implies\ a=8\sqrt 3\ \implies$ the length of the altitude is $h=4$ .



PP3. Let $D\in (BC)$ of $\triangle ABC$, and $E$ and $F$ be the incentres of $\triangle ABD$ , $\triangle ACD$ respectively. Suppose that $B$, $C$, $E$, $F$ are concyclic. Prove that $\frac {AD + BD}{AD + CD}=\frac{AB}{AC}\ .$

Proof. Let $\left\{\begin{array}{c}
G\in EF\cap AB\\\\
H\in EF\cap AC\\\\
K\in EF\cap AD\end{array}\right\|$ and we put $B =2y\ ,\ C =2z$ . Thus, $\left\{\begin{array}{c}
m(<GBE)=m(<EBD)=y\\\\
m(<DCF)= m(<FCH) = z\end{array}\right\|$ . Since $BCFE$ is a cyclical quadrilateral,

$\left\{\begin{array}{c}
m(<GEB) = m(<FCD)=z\\\\
m(<CFH) = m(<EBD) = y\end{array}\right\|$ $\implies$ $m(<AGH) = y + z = m(<AHG)$ giving $\boxed{AG = AH}\ (1)$ . $AE$ bisects $\widehat{GAK}$ and $AF$ bisects $\widehat{KAH}\implies$ $\frac {KE}{EG} = \frac{KA}{AG} \stackrel{(1)}{=} $

$\frac {KA}{ AH }=\frac { KF }{FH}$. Hence $\frac {KE}{EG} +1=\frac { K}{FH} +1\implies$ $\boxed{\frac {KG}{EG}=\frac {KH}{ FH}}\ (2)$ . In $\triangle ABD$ let the inradius, the altitude from $D$ , the area be $r_1$ , $h_1$ , $T_1$ respectively. In $\triangle ACD$ let the

corresponding quantities be $r_2$ , $h_2$ , $T_2$ . In $\triangle AKG$ , $\triangle AKH$ let the altitude from $K$ be $k_1$ , $k_2$ respectively. Then $\frac {h_1}{h_2} =\frac { k_1 }{k_2}$ . Hence $\boxed{\frac {h_1}{ k_1}=\frac {h_2}{ k_2}}\ (3)$ . From $(2)$ get $\frac {k_1}{r_1}=\frac {KG}{ EG}=$

$\frac {KH }{FH}=\frac {k_2}{ r_2}\ (4)$ . From $(3\ \wedge\ 4)$ obtain $\boxed{\frac{h_1}{r_1}=\frac {h_2}{ r_2}}\ (5)$ . Now $h_1\cdot AB =2\cdot T_1=r_1\cdot (AB + BD + DA)$ . So $\frac {h_1}{ r_1}=\frac {AB + BD + DA }{AB}=1+\frac {BD + DA }{AB}\ (6)$

and similarly $\frac {h_2}{ r_2}=\frac {AC + CD + DA }{AC}=1+\frac {CD + DA }{AC}\ (7)$ . From $(5\ \wedge\ 7)$ it follows $\frac {AD + BD }{AD + CD}=\frac {AB}{ AC}$ .



PP4. Let $ \triangle ABC$ with the circumcircle $w$ and the bisector $ BD$ , where $D\in (BC)$ for which denote $\{B,E\}=BD\cap w$ .

Circle with the diameter $[DE]$ cuts $w$ again at the point $ F$. Prove that $BF$ is the $B$-symmedian of $\triangle ABC$ .

Lemma. Let $\triangle ABC$ with the circumcircle $w$ . Denote the following points : the midpoint $ M$ of $ [BC]$ ; the point $ D\in (BC)$ for which $ \angle DAB\equiv\angle DAC$ ; the point $ E$ for which

$ \{A,E\} = AD\cap w$ ; the $ A$-symmedian $ AL$ , where $ L\in (BC)$ ; the point $ S$ for which $ \{A,S\} = AL\cap w$ . Then $ SD\perp SE$ , i.e. the quadrilateral $ MDSE$ is cyclically.


Proof. Denote $ XX$ - the tangent in $ X\in w$ to $ w$ . Denote $ T\in BB\cap CC$ . Observe that $ \overline {MET}\perp BC$ and $ \angle ASB\equiv\angle ACB$ . From the first well-known property, $ T\in \overline {ALS}$ and

$ \overline{ALST}$ is the $ A$-symmedian in $ \triangle ABC$ $ \Longrightarrow$ $ \left\|\begin{array}{c} \angle BAS\equiv\angle MAC \\
\ \angle SAE\equiv\angle DAM\end{array}\right\|$ . From the second well-known property, the division $ \{A,S;L,T\}$ is harmonically. Since $ ML\perp MT$ results

$ \angle DMA\equiv\angle DMS$ . Show easily that $ \triangle BAS\sim\triangle MAC$ . Thus, $ \frac {AB}{AS} = \frac {AM}{AC}$ , i.e. $ AS\cdot AM = AB\cdot AC$ . From the third well-known property $ AD\cdot AE = AB\cdot AC$, obtain

$ \boxed {AS\cdot AM = AD\cdot AE = AB\cdot AC}$ , i.e. $ \frac {AS}{AE} = \frac {AD}{AM}$ . Since $ \angle SAE\equiv\angle DAM$ get $ \triangle SAE\sim\triangle DAM$ and in consequence, $ \angle DMA\equiv\angle SEA$ .

Since $ \angle DMA\equiv\angle DMS$ and $ \angle SEA\equiv\angle SED$ obtain $ \angle DMS\equiv\angle SED$ , i.e. $ MDSE$ is cyclicall quadrilateral. In conclusion, $ SD\perp SE$ .

Remark. Here are another interesting relations : $ \left\|\begin{array}{ccc} ABS\sim CMS & \implies & \boxed {SB\cdot SC = SA\cdot SM} \\
 \\
AMC\sim CMS & \implies & \boxed {MA\cdot MS = MB^2}\end{array}\right\|$ . The proposed problem is an immediate consequence of the above lemma.



PP5 (Iran TST 2007). Let $\omega$ be the incircle of the triangle $ABC$. Let $P\in AB$ and $Q\in AC$ be two points such that $PQ\parallel BC$ and $PQ$ is tangent to the circle $\omega$.

$AB$, $AC$ touch the circle $\omega$ at $F$, $E$ respectively. Denote the middlepoint $M$ of $[PQ]$ and $T\in EF\cap BC$. Prove that the line $TM$ is tangent to the circle $\omega$ (Ali Khezeli)


Proof. Denote $D\in BC\cap w$ , $N\in IM\cap BC$ and the midpoints $S$ , $V$ of the segments $[AD]$ , $[BC]$ respectively. Observe that $M\in AV$ , $IM=IN$ . From the well-known properties

$\boxed{\ S\in IV\ }\ (1)\ \vee\ \boxed{\ TI\perp AD\ }\ (2)$ obtain that $MN\parallel AD$ , i.e. $TI\perp MN$ and the line $TM$ is tangent to the circle $w$ because the lines $TM$ , $TN$ are symmetrically w.r.t the line $TI$ .

$(1)\blacktriangleright$ Suppose w.l.o.g. $b\ne c$ . Denote the intersection $L\in AI\cap BC$ . Prove easily that $VL=\frac{a|b-c|}{2(b+c)}$ , $VD=\frac{|b-c|}{2}$ ,

$\frac{IA}{IL}=\frac{b+c}{a}$ . Apply the Menelaus' theorem to the transversal $\overline{VIS}$ and the triangle $ADL$ , i.e. $\frac{VD}{VL}\cdot\frac{IL}{IA}\cdot\frac{SA}{SD}=1$ $\Longleftrightarrow$ $S\in IV$ .

$(2)\blacktriangleright$ The line $EF$ is the polar $\alpha$ of the point $A$ w.r.t. the circle $w$ and the point $T\in\alpha$ $\implies A$ belongs to the polar $\tau$ of the point $T$ w.r.t.

the circle $w$ and $D\in\tau$ $\implies$ the polar of $T$ is $\tau=AD$ $\implies$ $TI\perp AD$ . Otherwise prove easily that $TA^{2}-TD^{2}=IA^{2}-ID^{2}$ .



PP6. Let an acute $\triangle ABC$ with the circumcircle $w$. Let $P\in BB\cap CC$ and the projections $D$ , $E$ of $P$ on $AB$ , $AC$ respectively. Prove that the midpoint $M$ of $[BC]$ is the orthocenter of $\triangle ADE$ .

Proof. $[AM$ , $[AP$ are isogonals w.r.t. $\widehat{BAC}$, i.e. $\widehat{PAD}\equiv\widehat{MAE}$ and $ADPE$ is cyclic, i.e. $\widehat{APD}\equiv\widehat{AED}$. Therefore, $AM\perp DE$. Since $PMCE$ and $PMBD$ are cyclic $\implies$

$\widehat{PME}\equiv\widehat{PCE}\equiv$ $\widehat{ABC}\equiv\widehat{DPM}$ $\implies EM \parallel PD\perp AD$ $\implies EM\perp AD$ , i.e. $EM$ is the $E$-altitude of $\triangle ADE$ . Hence $M$ is the orthocenter of $\triangle ADE$ (ARMO - 2013).
This post has been edited 42 times. Last edited by Virgil Nicula, Nov 13, 2015, 8:48 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404400
  • Total comments: 37
Search Blog
a