238. Some metrical problems.

by Virgil Nicula, Mar 4, 2011, 12:47 PM

PP1. Let $ ABC$ be an acute triangle with the orthocenter $ H$ . The its incircle $ C(I,r)$ touches its sides in $ D\in (BC)$ , $ E\in (CA)$ ,

$ F\in (AB)$ respectively. Suppose $ AB\ne AC$ and denote $ R\in AH\cap EF$ . Prove that if $ DR\perp EF$ , then $ R\equiv H$ .


Proof. Prove easily that (or is well-known) : $ m(\angle EDF)=\frac {B+C}{2}=90^{\circ}-\frac A2$ a.s.o. ; $ AH=2R\cos A$ ; $ r=(p-a)\tan\frac A2=(p-b)\tan\frac B2=$

$(p-c)\tan\frac C2$ ; $ \cos A+\cos B+\cos C=1+\frac rR$ . Thus, $ \frac {RF}{RE}=\frac {AF}{AE}\cdot\frac {\sin\widehat {RAF}}{\sin\widehat {RAE}}=$ $\frac {\sin\left(90^{\circ}-B\right)}{\sin\left(90^{\circ}-C\right)}=$ $\frac {\cos B}{\cos C}$ $ \implies$ $ \boxed {\ \frac {RF}{RE}=\frac {\cos B}{\cos C}\ }\ \ (1)$ .

Thus, $ \frac {AR}{\sin \widehat {AFR}}=\frac {AF}{\sin\widehat {ARF}}\implies\frac {AR}{\cos\frac A2}=$ $\frac {p-a}{\sin\left(B+\frac A2\right)}\implies$ $ AR=\frac {(p-a)\cos\frac A2}{\sin\left(B+\frac A2\right)}=$ $ \frac {r}{\tan\frac A2}\cdot \frac {\cos\frac A2}{\sin\left(B+\frac A2\right)}=$ $ r\cdot\frac {\cos^2\frac A2}{\sin\left(B+\frac A2\right)\sin\frac A2}$ $ \implies$

$ \boxed {\ AR=r\cdot\frac {1+\cos A}{\cos B+\cos C}\ }\ \ (2)$ .

$ =============================================$ $================$

$ \blacktriangleright\ DR\perp EF\implies$ $ \frac {RF}{RE}=\frac {DF}{DE}\cdot\frac {\sin\widehat {RDF}}{\sin\widehat {RDE}}\stackrel {(1)}{\ \implies\ }\frac {\cos B}{\cos C}=\frac {2(p-b)\sin\frac B2}{2(p-c)\sin\frac C2}\cdot \frac {\sin\frac C2}{\sin \frac B2}$ $ \implies$ $ \frac {\cos B}{\cos C}=\frac {p-b}{p-c}=\frac {\tan\frac C2}{\tan\frac B2}$ $ \implies$

$ \cos B\tan\frac B2=\cos C\tan\frac C2$ $ \implies$ $ \cos B\sin\frac B2\cos\frac C2=\cos C\sin \frac C2\cos\frac B2$ $ \implies$ $ \cos B\left(\cos\frac A2+\sin\frac {B-C}{2}\right)=$

$\cos C\left(\cos\frac A2-\sin\frac {B-C}{2}\right)$ $ \implies$ $ \cos\frac A2(\cos B-\cos C)+$ $\sin\frac {B-C}{2}(\cos B+\cos C)=0$ $ \implies$

$ 2\cos^2\frac A2\sin\frac {C-B}{2}+\sin\frac {B-C}{2}(\cos B+\cos C)=0\stackrel {(b\ne c)}{\ \implies\ }$ $ 2\cos^2\frac A2=\cos B+\cos C$ $ \implies$ $1+\cos A=\cos B+\cos C\ \stackrel {(2)}{\implies}$

$\boxed {\ AR=r\ }$ and $ 1+2\cos A=\cos A+\cos B+\cos C=1+\frac rR$ $ \implies$ $ 2R\cos A=r$ $ \implies$ $ \boxed {\ AH=r\ }$ .

Therefore, $ AR=AH\ \implies\ R\equiv H$ . In conclusion, $ \boxed {\ DR\perp EF\ \implies\ R\equiv H\ }$ .

Remark. $ M$ is the midpoint of $ [BC]\implies H\in MI$ and $ AHDI$ is parallelogram !



PP2. In $\triangle ABC$ define $P$ so that $\angle{APC}=180^{\circ}-C$ , $\angle{BPC}=180^\circ -B$ ,

$\angle{APB}=180^\circ -A$. Prove that $\frac{PA}{PB} \cdot a^3 = \frac{PB}{PC} \cdot b^3 = \frac{PC}{PA} \cdot c^3=abc$ .


Proof. Denote $S\in AB\cap CP$ , $R\in CP$ so that $AR\parallel BC$ . Since $m(\angle RAB)=m(\angle RCB)=B$ obtain that $APBR$ is cyclic. Thus $m(\angle RBA)=C$ ,

$m(\angle ARB)=A$ and $\frac {RA}{\sin C}=\frac {AB}{\sin A}$ $\implies$ $\boxed {RA=\frac {c^2}{a}}\ (1)$ . Observe that $\frac {SA}{SB}=\frac {RA}{a}$ and $\frac {SA}{SB}=\frac {PA}{PB}\cdot \frac {\sin C}{\sin B}$ $\implies$ $\frac {RA}{a}=\frac {PA}{PB}\cdot \frac cb$ $\implies$

$\frac {PA}{PB}=\frac {b}{ac}\cdot RA\ \stackrel{(1)}{\implies}$ $\frac {PA}{PB}=\frac {bc}{a^2}$ $\implies$ $\frac {PA}{PB}\cdot a^3=abc$ what is symmetrical expresion w.r.t, $\triangle ABC$ . In conclusion $\frac{PA}{PB} \cdot a^3 =$ $ \frac{PB}{PC} \cdot b^3 = $ $\frac{PC}{PA} \cdot c^3=abc$ .



PP3. $\bigodot\ \ \boxed {\ \cos\frac {B-C}{2}\ \ge\ \sqrt {\frac {2r}{R}}\ }$ with equality iff $ b+c=2a\ .$

Method I. Know that $ \prod\sin \frac{A}{2}=\frac {r}{4R}$ . Deci relatia $ \sqrt {\frac {2r}{R}}\ \le\ \cos\frac {B-C}{2}\  (*)\ \Longleftrightarrow$ $ \cos^2\frac{B-C}{2}\ \ge\ 8\cdot\prod\sin \frac{A}{2}\ \Longleftrightarrow$

$ \cos^2\frac{B-C}{2}\ge 4\sin\frac{A}{2}\left(\cos\frac{B-C}{2}-\sin\frac{A}{2}\right)\ \Longleftrightarrow$ $ \left(\cos\frac{B-C}{2}-2\sin\frac{A}{2}\right)^2\ge 0$ . Have equality iff

$ \cos\frac{B-C}{2}=2\sin\frac{A}{2}$ $ \Longleftrightarrow$ $ 2\sin\frac {B+C}{2}\cos\frac{B-C}{2}=4\cos\frac A2\sin\frac{A}{2}$ $ \Longleftrightarrow$ $ \sin B+\sin C=2\sin A$ $ \Longleftrightarrow$ $ b+c=2a\ .$

Method II. Consider the diameter $ [NS]$ of the circumcircle $ w=C(O,R)$ of $ \triangle ABC$ cfor which $ NS\perp BC$ and $ BC$ doesn't separate $ A$ and $ N\ .$

$ m(\widehat {ASN})=\frac {|B-C|}{2}\Longrightarrow$ $ IA\cdot IS=2Rr$ and $ \cos\frac {B-C}{2}=\frac {AS}{NS}$ $ =\frac {AI+IS}{NS}\ \ge$ $ \frac {2\cdot\sqrt {IA\cdot IS}}{NS}=$

$ \frac {2\cdot\sqrt {2Rr}}{2R}=\sqrt {\frac {2r}{R}}\Longrightarrow$ $ \cos\frac {B-C}{2}\ \ge\ \sqrt {\frac {2r}{R}}\ .$ Avem egalitate $ \Longleftrightarrow\ IA=IS\Longleftrightarrow$ $ IA\perp IO\Longleftrightarrow IA^2=2Rr\Longleftrightarrow$

$ \frac {bc(p-a)}{p}=2Rr\Longleftrightarrow 2bc(p-a)=4Rpr=abc$ $ \Longleftrightarrow 2(p-a)=a\Longleftrightarrow$ $ b+c=2a\ \Longleftrightarrow\ IO\perp IA\ .$

Remark. Generally, if an interior point $ M$ has the power $ p_w(M)$ w.r.t. $ w$ and $ m(\widehat {MAO})=\phi$ , then

$ cos\phi \ \ge\ \sqrt {\frac {-p_w(M)}{R^2}}\ .$ Have equality, i.e. $ R\cos\phi=\sqrt {-p_w(M)}\ \Longleftrightarrow\ MO\perp MA\ .$ If $ M: =I$ , then

$ p_w(I)=-2Rr$ si $ \phi =\frac {|B-C|}{2} .$ Thus, $ \cos\frac {B-C}{2}\ \ge\ \sqrt {\frac {2r}{R}}\ .$ For example, if the Lemoine's point $ L$ of $ \triangle ABC$

has the property $ m(\widehat {LAO})=30^{\circ}$ , then $ p_w(L)=-3\cdot\left(\frac {abc}{a^2+b^2+c^2}\right)^2$ si $ R\cos 30^{\circ}\ge \sqrt {\frac {3a^2b^2c^2}{\left(a^2+b^2+c^2\right)^2}}\ \Longleftrightarrow$

$ R\left(a^2+b^2+c^2\right)\ge 2abc\ \Longleftrightarrow\ a^2+b^2+c^2\ \ge 8S$ cu egalitate $ \ \Longleftrightarrow\ LO\perp LA\ .$

Method III. Multiply the inequality $ (*)$ with $ 2\sin\frac {B+C}{2}=2\cos\frac A2=\sqrt {\frac {4p(p-a)}{bc}} .$ Hence $ \cos\frac {B-C}{2}\ge \sqrt {\frac {2r}{R}}\ \Longleftrightarrow$

$ \sin B+\sin C\ge \sqrt {\frac {8rp(p-a)}{Rbc}}\Longleftrightarrow$$ b+c\ge \sqrt {\frac {8\cdot 4Rrp\cdot (p-a)}{bc}}\Longleftrightarrow$ $ (b+c)^2\ge 8a(p-a)\ \Longleftrightarrow$

$ [(b+c-a)+a]^2\ge 4a(b+c-a)\ \Longleftrightarrow\ [(b+c-a)-a]^2\ \ge\ 0$ . Avem egalitate $ \Longleftrightarrow\ b+c=2a\ .$

Method IV. Observe that $ (b+c)^2=[2(p-a)+a]^2\stackrel {(*)}{\ \ge\ }8a(p-a)$ . Have equality iff $ b+c=2a\ .$

$ 2R=\frac {a}{\sin A}=\frac {b}{\sin B}=\frac {c}{\sin C}=\frac {b+c}{2\cos\frac A2\cdot\boxed {\cos\frac {B-C}{2}}}$ $ \implies$ $ \frac {a}{\sin\frac A2}=\frac {b+c}{\cos\frac {B-C}{2}}\ \implies$

$ \cos\frac {B-C}{2}=\frac {b+c}{4R\cos\frac A2}\Longrightarrow$ $ \cos^2\frac {B-C}{2}=\frac {bc(b+c)^2}{16R^2p(p-a)}=$ $ \frac {abc\cdot (b+c)^2}{16R^2ap(p-a)}=$ $ \frac {2r}{R}\cdot\frac {(b+c)^2}{8a(p-a)}\stackrel {(*)}{\ \ge\ }\frac {2r}{R}\ .$



PP4. Let $ \triangle\ ABC$ , the midpoint $ M$ of $ [AC]$ and $ P\in MI_a\cap BC\ .$ Prove that $ A=2C\ \Longleftrightarrow\ BP=AB\ .$

Proof. Denote $ D\in AI\cap BC$ . Apply Menelaus' theorem to transversal $ \overline {I_aPM}/ \triangle ADC\ \Longrightarrow$ $ \frac {PD}{PC}=\frac {I_aD}{I_aA}=\frac {ID}{IA}=\frac {a}{b+c}$ $ \Longrightarrow$ $ PD=\frac {a^2b}{2p(b+c)}$ $ \Longrightarrow$

$ PB=\frac {a^2+ac}{2p}$ . It is well-known (or prove easily) that $ A=2C\ \Longleftrightarrow\ a^2=c(b+c)\ .$ Thus, $ A=2C\ \Longleftrightarrow\ PB=\frac {c(b+c)+ac}{a+b+c}\ \Longleftrightarrow\ PB=c\ .$



Lemma. Let $ ABC$ be a triangle with the orthocenter $ H$ . Then $ AH=BC\ \Longleftrightarrow\ A\in\left\{45^{\circ},135^{\circ}\right\}$ (an old easy problem !).


PP5. In a $ A$ - right triangle $ ABC$ construct $ D\in BC\ ,\ AD\perp BC$ and the incircles $ C(I_1,r_1)$ , $ C(I_2,r_2)$ ,

$ C(I,r)$ of $ \triangle ADB$ , $ \triangle ADC$ , $ \triangle ABC$ respectively . Prove that $ r_1^2+r_2^2=r^2$ and $ I_1I_2=AI$ .


Proof. Observe that $ \frac {AD}{bc}=\frac {DB}{c^2}=\frac {DC}{b^2}=\frac 1a$ . Prove easily that $ BI_1\perp AI_2$ , $ CI_2\perp AI_1$ and $ m(\widehat {I_1AI_2})=45^{\circ}$ .

Therefore, the point $ I$ is orthocenter of $ \triangle I_1AI_2$ . Using the upper lemma obtain for $ \triangle I_1AI_2$ that $ \boxed {\ AI=I_1I_2\ }$ .

Denote $ AD=h$ . Since in any $ A$ - triangle $ ABC$ exists the relation $ r=p-a$ obtain for $ \triangle ADB$ , $ \triangle ADC$ that

$ \left\|\begin{array}{ccc}
2r_1=DB+h-c=\frac 1a\cdot (c^2+bc-ac) & \implies & r_1=\frac {c(p-a)}{a}=\frac {cr}{a}\\\\
2r_2=DC+h-b=\frac 1a\cdot (b^2+bc-ab) & \implies & r_2=\frac {b(p-a)}{a}=\frac {br}{a}\end{array}\right\|$ $ \implies$ $ \frac {r_1}{c}=\frac {r_2}{b}=\frac ra$ $ \implies$ $ \boxed {\ r_1^2+r_2^2=r^2\ }$ .



PP6. Let $ ABCD$ be a convex quadrilateral and $ I = AC\cap BD$ , $ E\in (AB)$ , $ H\in (BC)$ , $ F\in (CD)$ , $ G\in (DA)$

such that $ I\in EF \cap GH$ . Denote $ M\in EG \cap AC$, $ N\in HF \cap AC$ . Prove that $ \frac {MA}{MI}\cdot \frac {NI}{NC} = \frac {IA}{IC}$ .


Prove easily that the following two lemmas :

Lemma 1. Let $ ABC$ be a triangle and $ D\in (BC)$ , $ E\in (CA)$ , $ F\in (AB)$ and $ P\in AD\cap EF$ . Then $ \frac {PD}{PA}\cdot BC = \frac {EC}{EA}\cdot DB + \frac {FB}{FA}\cdot DC$ .

Proof.

Lemma 2. Let $ ABCD$ be a convex quadrilateral and $ I\in AC\cap CD$ , $ E\in (AB)$ , $ F\in (CD)$ such that $ I\in EF$ . Then $ \frac {EB}{EA}\cdot\frac {FC}{FD} = \frac {IB}{ID}\cdot\frac {IC}{IA}$ .

Proof.

Proof of the proposed problem. $ \left\|\begin{array}{ccccc} I\in HG & \stackrel {(lemma\ 2)}{\ \ \implies\ \ } & \frac {HB}{HC}\cdot\frac {GA}{GD} = \frac {IB}{ID}\cdot\frac {IA}{IC} & \implies & \frac {GD}{GA}\cdot IB = \frac {HB}{HC}\cdot\frac {IC}{IA}\cdot ID \\
 \\
I\in EF & \stackrel {(lemma\ 2)}{\ \ \implies\ \ } & \frac {EB}{EA}\cdot \frac {FC}{FD} = \frac {IB}{ID}\cdot\frac {IC}{IA} & \implies & \frac {EB}{EA}\cdot ID = \frac {FD}{FC}\cdot\frac {IC}{IA}\cdot IB\end{array}\right\|$ $ \bigoplus\ \implies$

$ \frac {GD}{GA}\cdot IB + \frac {EB}{EA}\cdot ID = \frac {IC}{IA}\cdot\left(\frac {HB}{HC}\cdot ID + \frac {FD}{FC}\cdot IB\right)$ $ \stackrel{(lemma\ 1)}{\ \ \implies\ \ }$ $ \frac {MI}{MA}\cdot BD = \frac {IC}{IA}\cdot\left(\frac {NI}{NC}\cdot BD\right)$ $ \implies$ $ \boxed {\ \frac {MA}{MI}\cdot\frac {NI}{NC} = \frac {IA}{IC}\ }$ .



PP7. Let $P$ be an interior point for $\triangle ABC$ . Consider the points $\left\|\begin{array}{c}
 \{F,H\}\subset (BC)\\\
 \{E,G\}\subset  (C,A)\\\
 \{I,D\}\subset (A,B)\end{array}\right\|$ so that the point
$P\in DE\cap FG\cap HI$ , $\left\|\begin{array}{c}
DE\parallel BC\\\
HI\parallel CA\\\
GF\parallel AB\end{array}\right\|$ and $DE=FG=HI=x$ . Find $x$ in terms of $a$ , $b$ , $c$ .
Answer : $x=\frac {2abc}{ab+bc+ca}$ .


PP8. Let $ABCD$ be a convex quadrilateral with $AB=a$ , $BC=b$ , $CD=c$ , $DA=d$ . Consider an interior point $P$ in $ABCD$ such that

$m\left(\widehat{PAB}\right)=m\left(\widehat{PBC}\right)=m\left(\widehat{PCD}\right)=m\left(\widehat{PDA}\right)=z$ . Show that $\tan z=\frac {4S}{a^{2}+b^{2}+c^{2}+d^{2}}$ , where $S=[ABCD]$ (area).


Proof. Denote $PA=x$ , $PB=y$ , $PC=z$ , $PD=t$ . Using well-known relation $\boxed{4S=\left(b^2+c^2-a^2\right)\cdot\tan A}$ in $\triangle ABC$ obtain that

$\cot z=\frac{a^2+x^2-y^2}{4\cdot [APB]}=$ $\frac{b^2+y^2-z^2}{4\cdot [BPC]}=$ $\frac{c^2+z^2-t^2}{4\cdot [CPD]}=$ $\frac{d^2+t^2-x^2}{4\cdot [DPA]}=\frac {\sum \left(a^2+x^2-y^2\right)}{4\cdot \sum [APB]}$ $\implies$ $\cot z=\frac{a^2+b^2+c^2+d^2}{4S}$ .



PP9. Let $AD$ be the $A$-altitude of $ \triangle ABC$ with the circumcircle $C(O,R)$ , where $D\in (BC)$ . Denote the feet $E$

and $F$ of perpendiculars from the point $D$ to sidelines $AB$ and $ AC$ . Prove that $ AD=R\sqrt{2}\iff O\in EF$ .


Proof. Denote $P\in EF$ for which $AP\perp EF$ . Observe that $O\in AP$ because $\widehat{BAD}\equiv\widehat{OAC}$ , $EF=AD\cdot\sin A\ (1)$ and $AEDF$ is

cyclically$\implies$ $\widehat{AEF}\equiv\widehat{ADF}\equiv\widehat{FCB}\implies$ $\widehat{AEF}\equiv\widehat{FCB}\implies$ $BEFC$ is cyclically $\implies$ $AEF\sim ACB\implies$ $\frac {AD}{BC}=\frac {AP}{EF}\stackrel{(1)}{\implies}$

$AD^2\sin A=2R\sin A\cdot AP\implies$ $AD^2=2R\cdot AP\ (2)$ . In conclusion, $O\in EF\iff$ $AP=R\stackrel{(2)}{\iff}$ $AD=R\sqrt 2$ .



PP10. Let $ABC$ be a triangle with incenter $I$ and circumcenter $O$ . Denote the midpoints $E$ , $F$ of $[AC]$ , $[AB]$ and $D\in AI\cap BC$ .

Prove that $b+c=2a\iff EFIO$ is cyclically $\iff IE=IF\iff BF=BD\iff$ $CE=CD\iff$ $IO\perp IA$ .


Proof. Nice and easy problem !


PP11. Let $\triangle ABD$ with $AB=1$ . Suppose that $K\in AD$ such that $KD=1$ , $BK\perp BA$ and $m\left(\widehat{DBK}\right)=30^{\circ}$ . Ascertain $AD$ .

Proof.

$\blacktriangleright$ Case $K\in (AD)$ . Denote $AK=x$ and $BD=y\implies$ $\frac {KA}{KD}=\frac {BA}{BD}\cdot\frac {\sin \widehat{KBA}}{\sin \widehat{KBD}}\iff $ $\frac x1=\frac 1y\cdot\frac {\sin90^{\circ}}{\sin  30^{\circ}}\iff$ $\boxed{xy=2}\ (*)$ .

Apply the generalized Pytagoras' theorem in $\triangle ABD\ :\ AD^2=BA^2+BD^2+BD\cdot BA\iff$ $(x+1)^2=y^2+y+1\iff$

$x^2+2x=y^2+y\stackrel{(*)}{\iff}$ $x^2+x^2y=y^2+y\iff$ $x^2(y+1)=y(y+1)\iff$ $x^2=y\stackrel{(*)}{\iff}$ $x=\sqrt[3]2\iff$ $AD=1+\sqrt[3]2$ .

$\blacktriangleright$ Case $D\in (AK)$ . Denote $AD=x$ and $BK=y\implies$ $\frac {DA}{DK}=\frac {BA}{BK}\cdot\frac {\sin \widehat{DBA}}{\sin \widehat{DBK}}\iff$ $\frac x1=\frac 1y\cdot\sqrt 3\iff$ $\boxed{xy=\sqrt 3}\ (*)$ .

Apply the Pytagoras' theorem in $\triangle ABK\ :\ AK^2=BA^2+BK^2\iff$ $(x+1)^2=y^2+1\iff$ $x^2+2x=y^2\stackrel{(*)}{\iff}$

$x^2+2x=\frac {3}{x^2}\iff$ $x^4+2x^2-3=0\iff$ $(x-1)\left(x^3+3x^2+3x+3\right)=0\iff$ $x=1\iff$ $AD=1$ .



PP12. Let $\triangle ABC$ with the centroid $G$ and the circumcircle $w$ . For a line $t$ which doesn't separate $B$ , $C$

and $G\in t$ denote $t\cap w=\{X,Y\}$ . Prove that $\boxed{AX\cdot AY=BX\cdot BY+CX\cdot CY}\ (*)$ .


Proof. Denote $\left\{\begin{array}{c}
M\in l\cap AB\\\
N\in l\cap AC\end{array}\right|$ . I'll use two well-known properties $\left\{\begin{array}{cc}
\frac {MB}{MA}=\frac {BX\cdot BY}{AX\cdot AY} & (1.1)\\\\
\frac {NC}{NA}=\frac {CX\cdot CY}{AX\cdot AY} & (1.2)\\\\
\frac {MB}{MA}+\frac {NC}{NA}=1 & (2)\end{array}\right|\implies(*)$ .


PP13. Let $ABC$ be an $A$-right triangle. For the Fermat's point $F$ know $FB=18$ and $FC=15$ . Ascertain $FC$ .

Proof. Denote $FA=x$ . Therefore, $\left\{\begin{array}{c}
x^2+18^2+18x=b^2\\\
x^2+15^2+15x=c^2\\\
a^2=15^2+18^2+15\cdot 18\\\
b^2+c^2=a^2\end{array}\right|\bigoplus\implies$ $2x^2+33x-270=0\implies x=6$ .
This post has been edited 60 times. Last edited by Virgil Nicula, Nov 22, 2015, 2:07 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a