63. A nice problem with radical center (livetolove212).

by Virgil Nicula, Jul 17, 2010, 9:28 PM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=298310
livetolove212 wrote:
Given triangle $ ABC$ with circumcircle $ (O)$ and incircle $ (I)$ which touches $ BC, CA, AB$ at $ X, Y, Z$, respectively. Denote the midpoints $ M, N, P$ of $ BC, CA, AB$ respectively and $\{A_1, A_2\}=NP\cap (O)$ . Similar for $ B_1$ , $B_2$ , $ C_1$ , $C_2$ . Prove that $ I$ is the radical center of the circumcircles of the triangles $ (XA_1A_2)$ , $(YB_1B_2)$ , $(ZC_1C_2)$ .

Proof (metric). Denote the circumcircle $w_a=\mathrm C(P,\rho )$ of $\triangle A_1XA_2$ , the intersection $N\in A_1A_2\cap OM$ and $NP=x$ , the projection $R$ of $I$ on $OM$ and $S\in OM\cap (O)$ so that the sideline $BC$ separates $A$ , $S$ .

$\blacktriangleright$ $A_1A_2^2=4\left(OA_1^2-ON^2\right)=$ $4\left[R^2-\left(\frac {h_a}{2}-R\cos A\right)^2\right]=$ $4\left(R^2\sin^2A-\frac {h_a^2}{4}+h_aR\cos A\right)=$ $a^2-h_a^2+4h_aR\cos A=$ $a^2-h_a^2+b^2+c^2-a^2$ $\implies$ $\boxed {\ A_1A_2^2=b^2+c^2-h_a^2\ }$ .

$\blacktriangleright$ $\left\|\begin{array}{c}
\rho^2=AP^2=AN^2+NP^2=\frac 14\cdot\left(b^2+c^2-h_a^2\right)+x^2\\\\
\rho^2=XP^2=XM^2+MP^2=\left(\frac {b-c}{2}\right)^2+\left(\frac {h_a}{2}+x\right)^2\end{array}\right\|\implies$ $4\rho^2-4x^2=b^2+c^2-h_a^2=(b-c)^2+h_a^2+4xh_a$ $\implies$

$\blacksquare\ x=\frac {bc-h_a^2}{2h_a}=\frac {2Rh_a-h_a^2}{2h_a}$ $\implies$ $\boxed {\ R=x+\frac {h_a}{2}\ }$ $\Longleftrightarrow$ $\underline{MP=R}$ , i.e. $\underline{OP=MS}\ \ \mathrm{!!}$
$\blacksquare$ Since $XM=\frac {|b-c|}{2}$ and $MP=R$ obtain $\rho^2=XM^2+MP^2$ $\implies$ $\boxed {\rho^2=\left(\frac {b-c}{2}\right)^2+R^2}$ .

$\blacktriangleright$ The power of $I$ w.r.t. the circle $w_a$ is $p_{w_a}(I)=IP^2-\rho^2=$ $XM^2+RP^2-\rho^2=$ $\left(\frac {b-c}{2}\right)^2+\left(\frac {h_a}{2}-r+x\right)^2-\left(\frac {b-c}{2}\right)^2-R^2=(R-r)^2-R^2$ , $\implies$ $\boxed {\ p_{w_a}(I)=-r(2R-r)\ }$ .

Since the expression of the power $p_{w_a}(I)$ is symmetrically w.r.t $\triangle ABC$ obtain the conclusion of this nice proposed problem.
This post has been edited 2 times. Last edited by Virgil Nicula, Nov 23, 2015, 4:11 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a