347. Two isogonal lines in a triangle.

by Virgil Nicula, Jun 23, 2012, 4:43 PM

PP1. Let $A$-right $\triangle ABC$ and rectangle $DEFG$ , where $\left\{\begin{array}{c}
D\in (AB)\ ;\ E\in (AC)\\\\
\{G,F\}\subset (BC)\end{array}\right|$ . Let $H\in BE\cap DG$ and $I\in CD\cap EF$ . Prove that $\widehat{BAH}\equiv\widehat{CAI}$ .

Proof 1 (metric). Let $\left\{\begin{array}{c}
DE=GF=x\\\\
DG=EF=y\end{array}\right|\implies$ $\left\{\begin{array}{ccc}
\triangle ADE\sim\triangle ABC & \implies & \frac {AD}{c}=\frac xa=\frac {AE}{b}\ \odot \begin{array}{cc}
\nearrow & AD=\frac {xc}{a}\\\\
\searrow & AE=\frac {xb}{a}\end{array}\\\\
\triangle BDG\sim\triangle ECF & \implies & \frac {BG}{y}=\frac cb=\frac {y}{CF}\ \odot\begin{array}{cc}
\nearrow & BG=\frac {yc}{b}\\\\
\searrow & CF=\frac {yb}{c}\end{array}\end{array}\right\|$ . Denote

$\left\{\begin{array}{c}
m\left(\widehat{BAH}\right)=\phi\\\\
m\left(\widehat{CAI}\right)=\psi\end{array}\right|\implies$ $\left\{\begin{array}{ccc}
\left|\begin{array}{ccc}
\frac {HB}{HE}=\frac {GB}{GF} & \implies & \frac {HB}{HE}=\frac {yc}{xb}\\\\
\frac {HB}{HE}=\frac {AB}{AE}\cdot \frac {\sin\widehat{HAB}}{\sin\widehat{HAE}} & \implies & \frac {HB}{HE}=\frac {ac}{xb}\cdot\tan\phi\end{array}\right| & \implies & \tan\phi=\frac ya\\\\
\left|\begin{array}{ccc}
\frac {IC}{ID}=\frac {FC}{FG} & \implies & \frac {IC}{ID}=\frac {yb}{xc}\\\\
\frac {IC}{ID}=\frac {AC}{AD}\cdot \frac {\sin\widehat{IAC}}{\sin\widehat{IAD}} & \implies & \frac {IC}{ID}=\frac {ab}{xc}\cdot\tan\psi\end{array}\right| & \implies & \tan\psi=\frac ya\end{array}\right\|$ $\implies$ $\phi=\psi$ . In conclusion, $\widehat{BAH}\equiv\widehat{CAI}$ .

Proof 2 (metric). $\left\{\begin{array}{c}
DE=GF=x\\\\
DG=EF=y\end{array}\right|\implies$ $\left\{\begin{array}{ccc}
\triangle ADE\sim\triangle ABC & \implies & \frac {AD}{c}=\frac xa=\frac {AE}{b}\ \odot \begin{array}{cc}
\nearrow & AD=\frac {xc}{a}\\\\
\searrow & AE=\frac {xb}{a}\end{array}\\\\
\triangle BDG\sim\triangle ECF & \implies & \frac {BG}{y}=\frac cb=\frac {y}{CF}\ \odot\begin{array}{cc}
\nearrow & BG=\frac {yc}{b}\\\\
\searrow & CF=\frac {yb}{c}\end{array}\end{array}\right\|$ . Denote $\left\{\begin{array}{c} 
X\in BC\cap AH\\\\
Y\in BC\cap AI\end{array}\right|$ and apply

the Menelaus' theorem to the following transversals: $\left\{\begin{array}{cccccc}
\overline{AHX}/\triangle BCE\ : & \frac {AE}{AC}\cdot\frac {XC}{XB}\cdot\frac {HB}{HE}=1 & \implies & \frac {XB}{XC}=\frac {AE}{AC}\cdot\frac {HB}{HE}=\frac xa\cdot \frac {GB}{GF}=\frac xa\cdot \frac {yc}{xb} & \implies & \frac {XB}{XC}=\frac {yc}{ab}\\\\
\overline{AIY}/\triangle BCD\ : & \frac {AD}{AB}\cdot\frac {YB}{YC}\cdot\frac {IC}{ID}=1 & \implies & \frac {YB}{YC}=\frac {AB}{AD}\cdot\frac {ID}{IC}=\frac ax\cdot \frac {FG}{FC}=\frac ax\cdot \frac {xc}{yb} & \implies & \frac {YB}{YC}=\frac {ac}{yb}\end{array}\right|$ $\implies$

$\frac {XB}{XC}\cdot\frac {YB}{YC}=$ $\frac {yc}{ab}\cdot \frac {ac}{yb}=$ $\frac {c^2}{b^2}\implies \frac {XB}{XC}\cdot\frac {YB}{YC}=\left(\frac {AB}{AC}\right)^2$ . From the Steiner's theorem obtain that the rays $[AX$ and $[AY$ are isogonals w.r.t. the angle $\widehat{BAC}$ , i.e. $\widehat{BAH}\equiv\widehat{CAI}$

Proof 3 (analytic).



Lemma. In any triangle $ABC$ there is the equivalence $\boxed{\ A=2B\iff a^2=b(b+c)\ }$ .

Proof. Denote $D\in (BC)$ so that $\widehat{DAB}\equiv\widehat{DAC}$ . Thus, $CD=\frac {ab}{b+c}$ and $A=2B\iff$ $\triangle CAD\sim CBA\iff$ $b^2=a\cdot CD\iff$ $b^2=a\cdot \frac {ab}{b+c}\iff$ $a^2=b(b+c)$ .

PP2. Let $\triangle ABC$ with $A = 3B$ . Prove that $(a+b)(a-b)^{2} = bc^{2}$ .

Proof 1. Let cyclic $ACDEB$ so that $CD=DE=EB$ and $CE=BD=l$ . Thus, $A=3B\iff$ $AC=CD=DE=EB=b$ and $AD=CE=BD=l$ .

The Ptolemy's relation $:\ \left\{\begin{array}{ccc}
AC\cdot BD+AB\cdot CD=AD\cdot BC & \iff & bl+bc=al\\\\
CD\cdot BE+DE\cdot BC=CE\cdot BD & \iff & b^2+ba=l^2\end{array}\right|\implies$ $l=\frac {bc}{a-b}$ and $b(a+b)=\left(\frac {bc}{a-b}\right)^2\implies$ $(a+b)(a-b)^{2} = bc^{2}$ .

Proof 2. Let $D\in (BC)$ so that $m\left(\widehat{CAD}\right)=B$ . Thus, $\triangle CAD\sim\triangle CBA\implies$ $\frac ba=\frac {AD}{c}=\frac {DC}b\implies$ $\left\{\begin{array}{c}
DC=\frac {b^2}{a}\\\\
AD=\frac {bc}{a}\end{array}\right|$ and

$BD=a-DC=a-\frac {b^2}a\implies$ $\boxed{BD=\frac {a^2-b^2}{a}}$ . Since $m\left(\widehat {BAD}\right)=2B\iff BD^2=AD\cdot (AD+AB)$ from upper

lemma obtain that $\left(\frac {a^2-b^2}{a}\right)^2=\frac {bc}a\cdot\left(\frac {bc}a+c\right)\iff$ $\left(a^2-b^2\right)^2=bc^2(b+a)\iff$ $\boxed{(a+b)(a-b)^{2} = bc^{2}}$ .

Proof 3 (without upper lemma). Denote $\left\{\begin{array}{ccc}
D\in (BC) & , & m\left(\widehat{CAD}\right)=m\left(\widehat{CBA}\right)\\\\
E\in (BC) & , & m\left(\widehat{EAB}\right)=m\left(\widehat{EBA}\right)\end{array}\right\|$ . Therefore,

$\begin{array}{ccccccc}
\triangle CAD\sim\triangle CBA & \implies & \frac ba=\frac {AD}{c}=\frac {DC}b & ; & \left|\begin{array}{c}
DC=\frac {b^2}{a}\\\\
AD=\frac {bc}{a}\end{array}\right| & \implies & BD=BC-CD=\frac {a^2-b^2}{a}\ .\\\\
\triangle DAE\sim\triangle DBA & \implies & \frac {BC}{a^2-b^2}=\frac {AE}{c}=\frac {DE}{\frac {bc}{a}} & ; & \left|\begin{array}{c}
AE=\frac {bc^2}{a^2-b^2}\\\\
DE=\frac {b^2c^2}{a\left(a^2-b^2\right)}\end{array}\right| & \implies & BE=BD-DE=\frac {\left(a^2-b^2\right)^2-b^2c^2}{a\left(a^2-b^2\right)}\ .\end{array}$

In conclusion, $EA=EB\iff$ $\frac {bc^2}{a^2-b^2}=\frac {\left(a^2-b^2\right)^2-b^2c^2}{a\left(a^2-b^2\right)}\iff$ $bc^2(a+b)=\left(a^2-b^2\right)^2\iff$ $(a+b)(a-b)^2=bc^2$ .

Proof 4. $\frac {a}{\sin 3B}=\frac {b}{\sin B}=\frac {c}{\sin  4B}\iff$ $\frac {a}{1+2\cos 2B}=\frac b1=\frac {c}{4\cos B\cos 2B}\iff$ $\left\{\begin{array}{ccc}
\cos 2B=\frac {a-b}{2b}\\\\
\cos B=\frac {c}{2(a-b)}\end{array}\right\|$ . Therefore,

$\cos 2x=2\cos^2x-1\implies$ $\frac {a-b}{2b}=2\cdot\left[\frac {c}{2(a-b)}\right]^2-1\iff$ $(a-b)^3=bc^2-2b(a-b)^2\iff$ $(a+b)(a-b)^{2} = bc^{2}$ .


Extension. (see three upper proof). Let $\triangle ABC$ and twin sequencies $\left\{\left|\begin{array}{c}
a_1=a\\\\
b_1=b\end{array}\right|\begin{array}{c}
a_{n+1}=\frac {a_n^2-b_n^2}{a_n}\\\\
b_{n+1}=\frac {cb_n}{a_n}\end{array}\right\|$ , for any $n\in\mathbb N^*$ . Prove that $(\forall )\ n\in\mathbb N^*\ ,\ A=nB\iff a_n=b_n$ .


PP3. Let $\triangle ABC$ with the orthocenter $H$ and the circumcenter $O$ . The perpendicular bisector of $[AH]$ meet $AB$ , $AC$ in $D$ , $E$ . Prove that $\widehat{DOA}\equiv\widehat{EOA}$ .

Proof. $\left\{\begin{array}{ccccccc}
\triangle AHE\sim\triangle ABO & \iff & \frac {AH}{AB}=\frac {AE}{AO} & \iff & \triangle AHB\sim\triangle AEO & \iff & m\left(\widehat{EOA}\right)=m\left(\widehat{HBA}\right)=90^{\circ}-A\\\\
\triangle AHD\sim\triangle ACO & \iff & \frac {AH}{AC}=\frac {AD}{AO} & \iff & \triangle AHC\sim\triangle ADO & \iff & m\left(\widehat{DOA}\right)=m\left(\widehat{HCA}\right)=90^{\circ}-A\end{array}\right\|$ $\implies$

$\boxed{m\left(\widehat{EOA}\right)=m\left(\widehat{DOA}\right)=90^{\circ}-A}$ . I used that the $A$-altitude and the $A$-diameter of the circumcircle are isogonal lines in the angle $\widehat{BAC}$ .



PP4. Let $\triangle ABC$ with orthocenter $H$ , circumcenter $O$ , $P\in BC$ so that $AP\perp BC$ , $D\in AO\cap BC$ and the midpoint $E$ of $[AD]$ . Prove that $EP$ pass through the midpoint of $[OH]$ .

Proof 1. Let midpoints $M$ , $T$ of $[BC]$ , $[AH]$ respectively and diameter $[AS]$ of circumcircle $w$ of $\triangle ABC$ . Is well-known that $MT$ is middle line in $\triangle ASH$ , midpoint of $[OH]$ is center

of Euler's circle and it is midpoint of $MT$ , i.e. $OMHT$ is parallelogram. Thus, $MT\parallel AD$ in $\triangle ADP\implies$ $EP$ pass through midpoint of $TH$ , i.e. $EP$ pass through midpoint of $OH$ .

Proof 2 (Sunken Rock). Let $[AS]$ be a diameter of the circumcircle $w$ , $\{A,K\}=AP\cap w$ and $I\in PE\cap HO$ . It is well-known that $PK=PH$ and $SK\parallel BC$ .

Hence $\frac{DA}{DS}=\frac{PA}{PK}=\frac{PA}{PH}$ and $\frac{EO}{EA}=\frac{DS}{DA}$ . The Menelaus' theorem to the transversal $\overline{PIE}/\triangle AOH\ :\ \frac{EO}{EA}\cdot\frac{PA}{PH}\cdot\frac{IH}{IO}=1\implies \frac{DS}{DA}\cdot \frac{DA}{DS}\cdot\frac{IH}{IO}=1 $ .

Thus, $IH=IO$ , i.e. $EP$ pass through the midpoint of $[OH]$ .



PP5. The trisectors of $\widehat{BAC}$ of $\triangle ABC$ are: median $AM$ and symmedian $AS$ , where $\left\{\begin{array}{ccc}
D\in BC & ; & AD\perp BC\\\\
m\left(\widehat{DAM}\right)=\phi & ; & \{M,S\}\subset BC\end{array}\right\|$ . Prove that $\sin\phi=\frac {\min \{b,c\}}a$ . See and here.

Proof. Suppose w.l.o.g. $c<b$ and denote $BS=x$ , $SM=y$ . Prove easily that $b^2-c^2=2a\cdot DM$ and $\sin\phi =\frac {DM}{AM}$ , i.e. $\boxed{\sin\phi =\frac {b^2-c^2}{2am_a}}\ (*)$ .Apply the theorem of bisector:

$\left\{\begin{array}{c}
\frac xc=\frac y{m_a}=\frac {a}{2\left(c+m_a\right)}\\\\
\frac {y}{s_a}=\frac {a}{2b}\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
2y\left(c+m_a\right)=am_a\\\\
as_a=2by\\\\
2bcm_a=s_a\left(b^2+c^2\right)\end{array}\right\|\bigodot\implies$ $2c\left(c+m_a\right)=b^2+c^2\implies$ $\boxed{m_a=\frac {b^2-c^2}{2c}}\implies$ $a\sin\phi \stackrel{(*)}{=}\frac {b^2-c^2}{2m_a}=c\implies$ $\sin\phi =\frac ca$ .



Lemma. Let $ABC$ be a triangle with the circumcircle $w$ . Denote $T\in BB\cap CC$ and $S\in AT\cap BC$ , where

$XX$ is the tangent line to the circle $w$ in the point $X\in w$ . Then the ray $[AS$ is a symmedian in the triangle $ABC$ .


Proof 1 (metric). Denote $\{A,X\}=\{A,T\}\cap w$ . Thus, $\left\{\begin{array}{cc}
\triangle ABX\ : & \frac {TX}{TA}=\left(\frac {BX}{BA}\right)^2\\\\
\triangle ACX\ : & \frac {TX}{TA}=\left(\frac {CX}{CA}\right)^2\end{array}\right|\implies$ $\frac {BX}{BA}=\frac {CX}{CA}\implies$ $\frac {BX}{CX}=\frac {BA}{CA}$ ,

i.e. $ABXC$ is harmonically and $\frac {SB}{SC}=\frac {BX\cdot BA}{CX\cdot CA}\implies$ $\frac {SB}{SC}=\left(\frac {BA}{CA}\right)^2$ , i.e. the ray $[AS$ is a symmedian in the triangle $ABC$ .

Proof 2 (synthetic). Denote the midpoint $M$ of $[BC]$ . Draw the line through $T$ antiparallel to $BC$ in $\triangle ABC$ so that when we extend $AC$ and $AB$ to meet it

at $E$ and $F$ , where $\triangle AEF \sim \triangle ABC$ . Then $\angle CET= \angle ABC=\angle ECT$ , so $\triangle CTE$ is isoceles, and similarly $\angle TFB=\angle BCA=\angle TBF$ ,

so $\triangle DTF$ is isoceles. Thus, $TE=TC=TB=TF\implies$ $TE=TF$ , so $AM$ and $AT$ are medians of similar triangles and thus $\angle EFC= \angle GFD$ .


PP6. Let $ABC$ be a triangle with the incircle $w$ what touch the sides $BC$ , $CA$ , $AB$ at $D$ , $E$ , $F$ respectively. Let $G$ be the midpoint of $[DE]$ . Prove that $\widehat{EFC}\equiv\widehat{GFD}$ .

Proof. Apply upper lemma to $\triangle DEF$ , where $C\in DD\cap EE$ . Obtain that $CF$ is $F$-symmedian, i.e. $\widehat{EFC}\equiv\widehat{GFD}$ .
This post has been edited 64 times. Last edited by Virgil Nicula, Nov 17, 2015, 4:26 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a