331. Some nice problems with polynomials/equations I.

by Virgil Nicula, Dec 22, 2011, 11:16 AM

PP1 (zone district contest, Canada). Let $x^3-x-1=0$ be the equation with the roots $x_k\ ,\ k\in \overline {1,3}$ . Find the value of $E=\sum_{k=1}^3\frac {1+x_k}{1-x_k}$ .

Proof 1. Prove easily that for a polynomial $P\in\mathbb C[X]$ with $\mathrm{gr} P=n\in\mathbb N^*$ and the roots $x_k\ ,\ k\in \overline {1,n}$ we have $\boxed{\sum_{k=1}^n\frac {1}{X-x_k}=\frac {P'(X)}{P(X)}}$ .

In our case for $P=X^3-X-1$ obtain that $E=\sum_{k=1}^3\left(-1+\frac {2}{1-x_k}\right)=$ $-3+2\cdot\sum_{k=1}^3\frac {1}{1-x_k}=$ $-3+2\cdot\frac {P'(1)}{P(1)}=$ $-3+2\cdot\frac {2}{-1}\implies$ $\boxed{E=-7}$ .

Proof 2. Form the equation with the roots $y_k=\frac {1+x_k}{1-x_k}$ , where $\in\overline{1,3}$ . Thus we"ll eliminate $y$ between $\left\{\begin{array}{c}
x^3-x-1=0\\\\
y=\frac {1+x}{1-x}\end{array}\right\|$ ,

i.e. $x=\frac{y-1}{y+1}$ . Obtain that $\left(\frac{y-1}{y+1}\right)^3-\frac{y-1}{y+1}-1=0\iff$ $(y-1)^3-(y-1)(y+1)^2-(y+1)^3=0\iff$

$(y^3-3y^2+3y-1)-(y^3+y^2-y-1)-(y^3+3y^2+3y+1)=0\iff$ $y^3+7y^2-y+1=0$ .

From the Viete's relation obtain $E=y_1+y_2+y_3=-\frac {-7}{-1}\implies$ $\boxed{E=-7}$ .

Proof 3 (Sorin Borodi). Observe that $\left(1-x_k\right)\left(1+x_k+x_k^2\right)=1-x_k^3=-x_k\ ,\ k\in\overline{1,3}$ . Therefore, $E=\sum_{k=1}^3\frac {1+x_k}{1-x_k}=$

$\sum_{k=1}^3\frac {(1+x_k)(1+x_k+x_k^2)}{1-x_k^3}=$ $-\sum_{k=1}^3\frac {1+2x_k+2x_k^2+x_k^3}{x_k}=$ $-\sum_{k=1}^3\left(x_k^2+2x_k+2+\frac {1}{x_k}\right)=-\left(\sum _{k=1}^3x_k^2+2\sum_{k=1}^3 x_k+\sum_{k=1}^32+\sum_{k=1}^3\frac {1}{x_k}\right)=$

$-\left(s_1^2-2s_2+2s_1+6+\frac {s_2}{s_3}\right)$ , where $s_1=0\ ,\ s_2=-1\ ,\ s_3=1$ . In conclusion, $E=-(2+6-1)$ , i.e. $\boxed{E=-7}$ .

Proof 4. $E=\frac AB$ , where $A=\sum_{\mathrm{cyc}}\left(1+x_1\right)\left(1-x_2\right)\left(1-x_3\right)$ and $B=\prod_{k=1}^3(1-x_k)$ . Since $P(X)\equiv X^3-X-1=$

$(X-x_1)(X-x_2)(X-x_3)\implies$ $P(1)=\prod_{k=1}^3(1-x_k)$ get $B=-1$ . On other hand, $(1+x_1)(1-x_2)(1-x_3)=$ $(1+x_1)\left[1-(x_2+x_3)+x_2x_3\right]=$ $(1+x_1)\left[1-(s_1-x_1)+s_2-x_1(x_2+x_3)\right]=$ $(1+x_1)(1+x_1-1+x_1^2)=$ $x_1+2x_1^2+x_1^3=$

$x_1+2x_1^2+x_1+1=$ $1+2x_1+2x_1^2$ . Thus, $A=\sum_{\mathrm{cyc}}(1+2x_1+2x_1^2)=$ $3+2s_1+2(s_1^2-2s_2)=$ $3-4s_2=7$ . Hence $E=\frac {7}{-1}$ , i.e. $\boxed{E=-7}$ .



PP2. Let $P(x)\equiv x^n+x+1=0$ be the equation with the roots $x_k\ ,\ k\in \overline {1,n}\ ,\ n\in\mathbb N^*$ . Find $E_n=\sum_{k=1}^n\frac {1}{x_k-n}$ and show that $\lim_{n\to\infty}E_n=-1$ .

Proof. Using same remarkable identity obtain $E_n=-\sum_{k=1}^n\frac {1}{n-x_k}=-\frac {P'(n)}{P(n)}=-\frac {n^n+1}{n^n+n+1}\rightarrow -1$ .


PP3. Let $x_k\ ,\ k\in\overline{1,n}$ be the roots of the equation $P(x)\equiv x^n+2x^{n-1}+3x^{n-2}+\ \ldots\ +nx+(n+1)=0$ , where $n\in\mathbb N^*$ .

Let for any $p\in\mathbb N\ ,\ S_p=\sum_{k=1}^nx_k^p$ . Prove that $(\forall) p\in\overline{1,n}$ we have $S_p=-2$ and $S_{n+1}=n(n+3)\ ,\ S_{n+2}=-(n^2+3n+4)$ .


Proof. $P(x)=\sum_{k=0}^n(n+1-k)x^k=$ $(n+1)\cdot\sum_{k=0}^n x^k-\sum_{k=1}^nkx^k=$ $(n+1)\cdot \frac {x^{n+1}-1}{x-1}-x\cdot\left(\sum_{k=1}^nx^k\right)'=$

$(n+1)\cdot\frac {x^{n+1}-1}{x-1}-x\cdot\frac {nx^{n+1}-(n+1)x^n+1}{(x-1)^2}=$ $\frac {x^{n+2}-(n+2)x+(n+1)}{(x-1)^2}$ .Thus, the polynomial $Q(X)=(x-1)^2P(X)=$

$x^{n+2}-(n+2)x+(n+1)$ has the roots $y_k\ ,\ k\in\overline{1,n+2}$ , i.e. $x_1,x_2,\ \ldots\ ,x_{n-1},x_n,1,1$ . The fundamental symmetrical forms

are $s_k=0\ ,\ k\in\overline{1,n}$ and $s_{n+1}=(-1)^n(n+2)\ ,\ s_{n+2}=(-1)^n(n+1)$ . Denote $R_p=\sum_{k=1}^{n+2}y_k^p$ . Using the Newton's relations show easily that

$\left\{\begin{array}{ccc}
R_p=0\ ,\ p\in\overline{1,n} & \implies & \boxed{S_p=-2\ ,\ p\in\overline{1,n}}\\\\
R_{n+1}=(-1)^{n+2}(n+1)s_{n+1}=(n+1)(n+2) & \implies & \boxed{S_{n+1}=n(n+3)}\\\\
R_{n+2}=(-1)^{n+3}(n+2)s_{n+2}=-(n+1)(n+2) & \implies &\boxed{S_{n+2}=-(n^2+3n+4)}\end{array}\right\|$ .



PP4. Let $ a$ and $ b$ be two roots of $ x^4+x^3-1=0$ . Prove that $ab$ is a root of $x^6+x^4+x^3-x^2-1=0$ .

Proof 1. Let $ab=p$ and $a+b=s$ . Thus, exist $\{m,n\}\subset \mathbb C$ so that $x^4+x^3-1=\left(x^2-sx+p\right)\left(x^2-mx+n\right)\iff$

$\left\{\begin{array}{c}
m+s=-1\\\\
n+ms+p=0\\\\
sn+pm=0\\\\
\boxed{n=-\frac 1p}\end{array}\right\|\iff$ $\left\{\begin{array}{c}
m+s=-1\\\\
ms=\frac 1p-p\\\\
\boxed{s=mp^2}\end{array}\right\|\iff$ $\left\{\begin{array}{c}
\frac {p^2}{\left(1+p^2\right)^2}=\frac {1-p^2}{p}\\\\
\boxed{m=-\frac {1}{1+p^2}}\end{array}\right\|\iff$ $\boxed{p^6+p^4+p^3-p^2-1=0}$ .

Proof 2. Let $\{a,b,c,d\}$ be the roots of $x^4+x^3-1=0$ . The required equation what has the root $ab$ is

$f(x)\equiv (x-ab)(x-ac)(x-ad)(x-bc)(x-bd)(x-cd)=0$ . Using the Viete's relations $\left\{\begin{array}{c}
s_1=a+(b+c+d)=-1\\\\
s_2=a(b+c+d)+(bc+bd+cd)=0\\\\
s_3=a(bc+bd+cd)+bcd=0\\\\
s_4=abcd=-1\end{array}\right\|$ .

Let $S_k=a^k+b^k+c^k+d^  k\in \mathbb N$ . Prove easily $S_2=0\ ,\ S_3=-1\ ,\ S_4=5$ . Thus,

$f(x)=x^6-s'_1x^5+s'_2x^4-s'_3x^3+s'_4x^2-s'_5x+s'_6$ , where $\boxed{s'_1=0}$ , $\boxed{s'_6=-1}$ , $s'_2=3s_4+\sum a^2(bc+bd+cd)=$

$-3+\sum a^2\left[s_2-a(s_1-a)\right]=$ $-3+s_2S_2-s_1S_3+S_4=$ $-3-1+5=1$ , i.e. $\boxed{s'_2=1}$ , $\boxed{s'_3=1}$ (isn't easily !), $\boxed{s'_4=-1}$ , $\boxed{s'_5=0}$ .



PP5. Let $P(x) = x^4 + ax^3 + bx^2 + cx + d $ so that $P(1) = 10$ , $P(2)=20$ , $P(3) = 30$ . Prove that $\frac{P(12) + P(-8)}{4960}=4$ .

Proof. Let $Q(X)=P(X)-10X$ . So $Q(1)=Q(2)=Q(3)=0\iff$ exists $m\in\mathbb C$ so that $Q(X)=(X-1)(X-2)(X-3)(X+m)\iff$

$P(X)=(X-1)(X-2)(X-3)(X+m)+10X$ . Thus, $\left\{\begin{array}{c} P(12)=120+11\cdot 10\cdot 9(12+m)\\\\
P(-8)=-80-9\cdot 10\cdot 11(-8+m)\end{array}\right\|\implies$ $P(12)+P(-8)=40+9\cdot 10\cdot 11(12+8)\iff$

$\frac{P(12) + P(-8)}{4960}=$ $\frac {40+9\cdot 10\cdot 11\cdot 20}{4960}=$ $\frac {1+9\cdot 5\cdot 11}{124}=$ $\frac {496}{124}=4\iff$ $\boxed{\frac{P(12) + P(-8)}{4960}=4}$ .


Extension. Let $P(x) = x^4 + mx^3 + nx^2 + px + r$ so that $P(1) = a$ , $P(2)=2a$ , $P(3) = 3a$ . Prove that $P(2+b) + P(2-b)=4a+2b^2\left(b^2-1\right)$ .

Remark. For $a=b=10$ obtain the proposed problem, i.e. $P(12)+P(-8)=40+200\cdot 99=$ $40\cdot (1+5\cdot 99)=40\cdot 496=4\cdot 4960$ .


PP6. Solve equation $4x^2+12x\sqrt{x+1}=27(x+1)$ , where $x\in\mathbb R$ .

Proof. With the substitution $x=y^2-1\ ,\ y\ge 0$ the equation becomes $4y^4+12y^3-35y^2-12y+4=0$ . Since $y=0$ is not a solution can write

$4\left(y^2+\frac {1}{y^2}\right)+12\left(y-\frac 1y\right)-35=0$ . Using the substitution $z=y-\frac 1y$ obtain that $y^2+\frac {1}{y^2}=z^2+2$ and $4z^2+12z-27=0\implies\begin{array}{cc}
\nearrow & -\frac 92\\\\
\searrow & \frac 32\end{array}$ .

$\blacktriangleright\ z=\frac 32\implies$ $ 2y^2-3y-2=0\implies $ $y\in \left\{2,-\frac 12\right\}$ . Since $y\ge 0$ remains $y_1=2\implies \boxed{x_1=3}$ .

$\blacktriangleright\ z=-\frac 92\implies$ $2y^2+9y-2=0\implies$ $y\in\left\{\frac {-9\pm\sqrt {97}}{4}\right\}$ . Since $y\ge 0$ remains $y_2=\frac {-9+\sqrt {97}}{4}\implies$ $\boxed{x_2=\frac{9(9-\sqrt{97})}8}$ .



PP7. Let $\{a,b,c\}\subset\mathbb R$ and let $f(x)$ be a quadratic polynomial for which $f(a)=bc\ ,\ f(b)=ac\ ,\ f(c)=ab$ . Find $f(a+b+c)$ .

Proof 1. Denote $\left\{\begin{array}{c}
a+b+c=s_1\\\
ab+bc+ca=s_2\\\
abc=s_3\end{array}\right\|$ . So $f(a)=bc=s_2-a(b+c)=s_2-a(s_1-a)$ a.s.o. Let the quadratic polynomial $g(x)=f(x)-s_2+x(s_1-x)$

which has the property $g(a)=g(b)=g(c)=0$ . So $g(x)\equiv 0$ , i.e. $f(x)=x^2-s_1x+s_2$ $\implies$ $f(a+b+c)=f(s_1)=s_2=ab+bc+ca$ .

Remark. $f(x)=x^2-(a+b+c)\cdot x+(ab+bc+ca)\implies$ $\boxed{xf(x)=(x-a)(x-b)(x-c)+abc}$ .

Proof 2. Notice that $g(x)\equiv xf(x) - abc$ has $a,b,c$ as roots. Since $\mathrm{gr}(f)=2\iff \mathrm{gr}(g)=3$ get that $g(x)= d(x-a)(x-b)(x-c)$ .

Thus, $\boxed{xf(x)=abc+d(x-a)(x-b)(x-c)}$ . For $x: = 0$ we get $d = 1$ and for $x: = a+b+c$ we get $(a+b+c)f(a+b+c)=$

$abc+(a+b)(b+c)(c+a)$ . So $f(a+b+c) = \frac{(a+b)(b+c)(c+a)+abc}{a+b+c}\implies$ $\boxed{f(a+b+c)=ab+bc+ca}$ .

Remark. $xf(x)=abc+\prod (x-a)=abc+x^3-x^2\cdot \sum a+x\cdot \sum bc-abc\implies$ $\boxed{f(x)=x^2-(a+b+c)\cdot x+(ab+bc+ca)}$ .

Proof 3 (generally). I"ll find $\{m,n,p\}$ so that $f(x)=mx^2+nx+p$ and $\left\{\begin{array}{c}
f(a)=bc\\\\
f(b)=ca\\\\
f(c)=ab\end{array}\right\|$ , i.e. $\left\{\begin{array}{c}
a^2\cdot m+a\cdot n+p=bc\\\\
b^2\cdot m+b\cdot n+p=ca\\\\
c^2\cdot m+c\cdot n+p=ab\end{array}\right\|\iff$ $\left(\begin{array}{ccc}
a^2 & a & 1\\\\
b^2 & b & 1\\\\
c^2 & c & 1\end{array}\right)\cdot\left(\begin{array}{c}
m\\\\
n\\\\
p\end{array}\right)=\left(\begin{array}{c}
bc\\\\
ca\\\\
ab\end{array}\right)$ .

Thus, $\Delta =\left|\begin{array}{ccc}
a^2 & a & 1\\\\
b^2 & b & 1\\\\
c^2 & c & 1\end{array}\right|=-(a-b)(b-c)(c-a)$ and $\Delta_m=\left(\begin{array}{ccc}
bc & a & 1\\\\
ca & b & 1\\\\
ab & c & 1\end{array}\right)=\Delta\ ,\ \Delta_n=$ $\left(\begin{array}{ccc}
a^2 & bc & 1\\\\
b^2 & ca & 1\\\\
c^2 & ab & 1\end{array}\right)=-\Delta\cdot\sum a\ ,\ \Delta_p=$ $\left(\begin{array}{ccc}
a^2 & a & bc\\\\
b^2 & b & ca\\\\
c^2 & c & ab\end{array}\right)=\Delta\cdot\sum bc$ .

So $\frac {m}{\Delta_m}=\frac {n}{\Delta_n}=\frac {p}{\Delta_p}=\frac {1}{\Delta}\implies$ $m=1\ ,\ n=-\sum a\ ,\ p=\sum bc$ $\implies$ $f(x)=x^2-(a+b+c)\cdot x+(ab+bc+ca)\implies$ $\boxed{f(a+b+c)=ab+bc+ca}$ .



PP8. Let $\{a,b,c,d\}\subset\mathbb C$ and let $f$ be a $C$-polynomial for which $\mathrm{gr}(f)=3$ and $f(a)=bcd\ ,\ f(b)=acd\ ,$

$f(c)=abd\ ,\ f(d)=abc$ and $3\cdot f(a+b+c+d)=a^3+b^3+c^3+d^3$ . Prove that $a+b+c+d=0$ .


Proof. Let $\left\{\begin{array}{c}
a+b+c+d=s_1\\\
ab+bc+ca+d(a+b+c)=s_2\\\
abc+d(ab+bc+ca)=s_3\\\
abcd=s_4\end{array}\right\|$ . So $f(a)=bcd=s_3-a[s_2-a(s_1-a)]=$ $-a^3+s_1\cdot a^2-s_2\cdot a+s_3$ a.s.o. Let the polynomial

$g(x)=f(x)+x^3-s_1\cdot x^2+s_2\cdot x-s_3$ which has $\mathrm{gr}(g)\le 3$ and the property $g(a)=g(b)=g(c)=g(d)=0$ . Therefore, $g(x)\equiv 0$ , i.e. $f(x)=-x^3+s_1\cdot x^2-s_2\cdot x+s_3$ .

So $3\cdot f(s_1)=\sum a^3\implies$ $-3s_1s_2+3s_3=s_1^3-3s_1s_2+3s_3\implies$ $s_1=0\implies$ $a+b+c+d=0$ . Observe that $\boxed{xf(x)=abcd-(x-a)(x-b)(x-c)(x-d)}$ .



PP9. Let polynomial $f\in \mathbb R[X]$ which has at least $n\ge 4$ distinct real roots $x_k\ne 0\ ,\ (\forall )\ k\in\overline{1,n}$ . Then its graph $\mathrm G_f$ has at least $(n-2)$ tangents what are concurrently in the origin.

Proof. Equation of tangent $t$ in $T\left(x_0,f\left(x_0\right)\right)\in \mathrm G_f$ to graph $\mathrm G_f$ is $y-f\left(x_0\right)=f'\left(x_0\right)\cdot \left(x-x_0\right)$ . Origin $O\in t\iff$ $f\left(x_0\right)=f'\left(x_0\right)\cdot x_0$ . Thus, number of the tangents to $\mathrm G_f$

what are concurrently in origin is equally to the number of the distinct real roots of $f(x)-xf'(x)=0$ . Let $x_k\ne 0\ ,\ k\in\overline{1,n}$ be the distnct real roots of $f(x)=0$ . Let $g:\mathbb R^*\rightarrow \mathbb R$ ,

where $g(x)=\frac {f(x)}{x}$ . Since $g\left(x_k\right)=0$ $(\forall ) k\in\overline{1,n}$ can apply Rolle's theorem to $g$ on the intervals $\left[x_k,x_{k+1}\right]\ ,\ k\in\overline{1,n}$ which don't include the origin. Results that $g'(x)=0$

has at least $(n-2)$ distinct, real and nonzero roots, i.e. the equation $xf'(x)=f(x)$ has at least $(n-2)$ distinct, real and nonzero roots.



PP10. Solve the equations $\frac{1}{\sqrt{1-x^2}}+4=\frac {\sqrt 3}{x}$ and $2\sqrt 2+\frac {1}{\sqrt{1-x^2}}=\frac 1x$ .

Proof. Prove easily $x\in(0,1)$ . Using the substitution $\boxed{x=\sin t }$ , where $t\in\left(0,\frac {\pi}{2}\right)$ the initial equation becomes $\tan t+4\sin t=\sqrt 3\iff$

$\sin t+2\sin 2t=\sqrt 3\cdot\cos t\iff$ $\frac {\sqrt 3}{2}\cdot \cos t-\frac 12\cdot\sin t=\sin 2t\iff$ $\sin 2t=\sin\left(\frac {\pi}{3}-t\right)\ ,\ t\in\left(0,\frac {\pi}{2}\right)$ . Hence the result is $\boxed{x=\sin\frac{\pi}9}$


See here.
This post has been edited 249 times. Last edited by Virgil Nicula, Nov 19, 2015, 3:56 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a