270. Morrocan M.O. 2010 and Croatia TST 2009.

by Virgil Nicula, Apr 30, 2011, 6:01 PM

Morrocan M.O. 2010. Let $ABC$ be a triangle. The interior bisector of the angle $\angle BAC$ cuts $[BC]$ in $L$ and the circumcircle $w$ of

$\triangle ABC$ in $D$ . The perpendicular to $(AC)$ going through $D$ cuts $[AC]$ in $M$ . Find the value of $\frac{AM}{MC}$ knowing that $\frac{LB}{LC}=\frac{1}{2}$ .


Proof. Suppose w.l.o.g. $b>c$ , i.e. $M\in (AC)$ . Denote $N\in AB$ , $DN\perp AB$ . Thus, $B\in (AN)$ and $\triangle BDN\sim\triangle CDM$

because these triangles are right-angled and $BD=CD$ , $DN=DM$ . Therefore, $BN=CM=x\implies$ $\left\|\begin{array}{c}
AM=b-x\\\
AN=c+x\end{array}\right\|$

and $AM=AN\implies$ $b-x=c+x\implies x=\frac {b-c}{2}$ . In conclusion, $MC=\frac {b-c}{2}$ and $AM=\frac {b+c}{2}$ $\implies$ $\boxed{\frac {MA}{MC}=\frac {b+c}{b-c}}$ .

In our particular case $\frac {LB}{LC}=\frac {AB}{AC}=\frac cb=\frac 12\ \ (b>c)$ obtain that $\boxed{\frac {MA}{MC}=\frac {b+c}{b-c}}=\frac {1+\frac cb}{1-\frac cb}=\frac {1+\frac 12}{1-\frac 12}=3\ .$

Remarks.

$\blacktriangleright$ If $\left\|\begin{array}{cc}
P\in AL\ ; & BP\perp AL\\\\
N\in BC\ ; & AN\perp AL\end{array}\right\|$ , then $ABL\sim ADC\implies$ $\frac {MA}{MC}=\frac {PA}{PL}=$ $\frac {BN}{BL}=$ $\frac {\frac {ac}{|b-c||}}{\frac {ac}{b+c}}\implies$ $\frac {MA}{MC}=\frac {b+c}{|b-c|}$ . Otherwise, $Q\in BP\cap AC\implies$

$ AQ=c$ and $\widehat{CBP}\equiv\widehat{CDM}\implies$ the point $K\in BP\cap DM$ belongs to $w$ . In conclusion, $DB=DC\implies MQ=MC\implies$ $AM=\frac {b+c}{2}$ .

$\blacktriangleright\ MA=DA\cdot\cos\frac A2=$ $2R\sin\left(C+\frac A2\right)\cos\frac A2=$ $R(\sin B+\sin C)=$ $\frac {b+c}{2}$ . In conclusion, $\left\|\begin{array}{c}
MA=\frac {b+c}{2}\\\
MC=\frac {|b-c|}{2}\end{array}\right\|$ and required ratio $\frac {MA}{MC}=\frac {b+c}{|b-c|}$ .

$\blacktriangleright\ \frac {MA}{MC}=\frac {DA}{DC}\cdot\frac {\sin\widehat{MDA}}{\sin\widehat{MDC}}=$ $\frac {\sin \widehat{ACD}}{\sin\widehat{CAD}}\cdot\frac {\sin\widehat{MDA}}{\sin\widehat{MDC}}=$ $\frac {\sin\left(C+\frac A2\right)}{\sin\frac A2}\cdot\frac {\cos\frac A2}{\left|\cos\left(C+\frac A2\right)\right|}=$ $\frac {\left|\tan\left(C+\frac A2\right)\right|}{\tan\frac A2}=$ $\frac {\tan\frac {B+C}{2}}{\tan\left|\frac {B-C}{2}\right|}=\frac {b+c}{|b-c|}$ .

$\blacktriangleright\ ABD\sim ALC\implies AD\cdot AL=bc\implies$ $AM=AD\cdot\cos\frac A2=\frac {bc}{AL}\cdot\cos\frac A2$ . But $AL=\frac {2bc}{b+c}\cdot\cos\frac A2\implies$ $AM=\frac {b+c}{2}$ a.s.o.

$\blacktriangleright$ If $P\in AL$ , $BP\perp AL$ , then $ABL\sim ADC\implies$ $\frac {MA}{MC}=\frac {PA}{PL}=$ $\frac {BA}{BL}\cdot\frac {\sin\widehat{PBA}}{\sin\widehat{PBL}}=$ $\frac {b+c}{a}\cdot\frac {\cos\frac A2}{\left|\cos\left(C+\frac A2\right)\right|}=$ $\frac {b+c}{a}\cdot\frac {\sin A}{\left|\sin B-\sin C\right|}=$ $\frac {b+c}{|b-c|}$ .

$\blacktriangleright\ \frac {b+c}{b-c}=\frac {\sin B+\sin C}{\sin B-\sin C}=$ $\frac {2\sin\frac {B+C}{2}\cos\frac {B-C}{2}}{2\sin\frac {B-C}{2}\cos\frac {B+C}{2}}=$ $\frac {\tan\frac {B+C}{2}}{\tan\frac {B-C}{2}}$ . Observe that $\left(C+\frac A2\right)+\frac {B-C}{2}=90^{\circ}\implies$ $\tan\left(C+\frac A2\right)\cdot\tan\frac {B-C}{2}=1$ .


$\blacktriangleright$ Mollweide's formulas $\frac {b+c}{a}=\frac {\cos \frac {B-C}{2}}{\sin\frac A2}$ and $\frac {b-c}{a}=\frac {\sin\frac {B-C}{2}}{\cos\frac A2}$ . These sometimes referred to in older texts as Mollweide's equations named after Karl Mollweide.


Croatia TST 2009. In $\triangle ABC$ with incenter $ I$ and $ c>b$ denote $ D\in (AB)$ , $E\in AA$ for which $ AD=AE=b$ and $ AB$ doesn't separate $ C$ , $ E\implies I\in DE$ .

Proof 1 (metric). $ X\in AI\cap DE$ and $ Y\in BC\cap AI\ \implies\ m(\angle BAE)=A+B$ , $ YD=YC=\frac {ab}{b+c}$ , $ m(\angle ADY)=C$ .

Thus, $ DY\parallel AE\ \implies\ \frac {XA}{XY}=\frac {AE}{DY}=$ $ \frac {b}{\frac {ab}{b+c}}\ \implies\ \frac {XA}{XY}=\frac {b+c}{a}$ $ \stackrel{\mathrm{Van\ Aubel}}{\ \ \implies\ \ }X: =I$ . In conclusion, $ I\in DE$ .

Proof 2 (synthetic). Denote $X\in DE\cap AI$ . Observe that $m\left(\widehat{XAC}\right)=\frac A2$ , $m\left(\widehat{CAE}\right)=B$ , $m\left(\widehat{DAE}\right)=A+B$ , $AD=AE\implies$ $m\left(\widehat{XEA}\right)=\frac C2$ ,

$AC=AE\implies$ $m\left(\widehat{AEC}\right)=90^{\circ}-\frac B2$ $\implies$ $m\left(\widehat{XEC}\right)=$ $m\left(\widehat{AEC}\right)-$ $m\left(\widehat{AEX}\right)=$ $90^{\circ}-\frac B2-\frac C2=$ $\frac A2=$ $m\left(\widehat{XAC}\right)$ $\implies$

$\widehat{XEC}\equiv\widehat{XAC}$ $\implies$ the quadrilateral $XAEC$ is cyclically $\implies$ $m\left(\widehat{ACX}\right)=m\left(\widehat{AEX}\right)=\frac C2\implies$ $X\equiv I$ $\implies$ $I\in DE$ .

Proof 3 (trigonometric). Denote $X\in AI\cap DE$ . Observe that $\frac {XD}{XE}=\frac {AD}{AE}\cdot\frac {\sin \widehat {XAD}}{\sin\widehat{XAE}}=$ $\frac {\sin\frac A2}{\sin\left(B+\frac A2\right)}=$ $\frac {2\sin \frac A2\cos\frac A2}{2\sin\left(B+\frac A2\right)\cos\frac A2}=$

$\frac {\sin A}{\sin B+\sin C}=$ $\frac {a}{b+c}$ . Thus, $\frac {XD}{a}=\frac {XE}{b+c}=\frac {DE}{2s}$ . Since $DE=2\cdot AD\cdot\sin\widehat{DAE}=$ $2b\cdot\sin\frac {A+B}{2}\implies$ $DE=2b\cdot \cos\frac C2$

obtain that $XD=\frac {ab\cdot\cos\frac C2}{s}$ . Therefore, $\frac {AX}{\sin \frac C2}=\frac {XD}{\sin\frac A2}=$ $\frac {ab\cdot\cos\frac C2}{s\cdot \sin\frac A2}\implies$ $AX=\frac {ab\cdot\sin \frac C2\cos\frac C2}{s\cdot \sin\frac A2}=$ $\frac {ab\cdot\sin C}{2s\cdot \sin\frac A2}=$ $\frac {S}{s\cdot \sin\frac A2}$

$\implies$ $AX=\frac {r}{\sin\frac A2}$ . Since $\sin\frac A2=\frac {r}{AI}$ obtain that $AX=AI$ $\iff$ $X\equiv I$ , i.e. $I\in DE$ .
This post has been edited 48 times. Last edited by Virgil Nicula, Nov 22, 2015, 8:32 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a