298. Some nice problems from Crux Mathematicorum.

by Virgil Nicula, Jul 17, 2011, 1:43 AM

Proposed problem 2011. Let $\triangle ABC$ with the incircle $w=C(I,r)$ . Let $\begin{array}{c}
 D\in BI\cap AC\\\\
 E\in CI\cap AB\end{array}$ and $\begin{array}{c}
 P\in DE\ ;\ IP\perp DE\\\\
 Q\in IP\cap BC\end{array}$ . Prove that $IQ=2\cdot IP\implies A=60^{\circ}$ .

Proof 1 (trigonometric). Denote $\left\{\begin{array}{c}
x=m\left(\widehat{IDE}\right)\\\\
y=m\left(\widehat{IED}\right)\\\\
z=x+y=\frac {B+C}{2}\end{array}\right\|$ . Thus, $\left\{\begin{array}{c}
m\left(\widehat{AEI}\right)=z+\frac B2\\\\
m\left(\widehat{BQI}\right)=90^{\circ}+x-\frac B2\end{array}\right\|$ . Therefore, $IQ=2\cdot IP\iff$ $\frac {r}{IE}=2\cdot\frac {IP}{IE}\cdot\frac {r}{IQ}\iff$

$\sin\left(z+\frac B2\right)=2\sin y\cos\left(\frac B2-x\right)\iff$ $\sin\left(z+\frac B2\right)=\sin \left(\frac B2+y-x\right)+\sin\left(x+y-\frac B2\right)=$

$\sin \left(\frac B2+y-x\right)+\sin\left(z-\frac B2\right)\iff$ $\sin \left(\frac B2+y-x\right)=\sin\left(z+\frac B2\right)-\sin\left(z-\frac B2\right)=$ $2\cos z\sin\frac B2\iff$

$\boxed{\sin\frac B2\cos(y-x)+\cos\frac B2\sin(y-x)=2\cos z\sin\frac B2}\ (3)$ . Similarly obtain that $\boxed{\sin\frac C2\cos(y-x)-\cos\frac C2\sin(y-x)=2\cos z\sin\frac C2}\ (4)$ .

Multiply the relation $(3)$ by $\sin\frac C2$ and the relation $(4)$ by $\sin\frac B2$ we get $\left(\sin \frac C2\cos\frac B2+\cos\frac C2\sin\frac B2\right)\sin(y-x)=0\iff$

$\sin\frac {B+C}{2}\sin(y-x)=0\iff$ $\sin z\sin(y-x)=0\iff$ $y=x\stackrel{(3)}{\iff}$ $\sin\frac B2=2\cos z\sin\frac B2\iff$ $\cos z=\frac 12\iff$ $z=60^{\circ}\iff$ $A=60^{\circ}$ .

Remark. The relations $(3)$ , $(4)$ can write thus $:\left\{\begin{array}{c}
\tan\frac B2\cdot (1+\tan x\tan y)+ (\tan y-\tan x)=2(1-\tan x\tan y)\cdot \tan\frac B2\\\\
\tan\frac C2\cdot (1+\tan x\tan y)+\cdot (\tan x-\tan y)=2(1-\tan x\tan y)\cdot\tan\frac C2\end{array}\right\|$ $\iff$

$\tan\frac B2=-\tan C2=\frac {\tan y-\tan x}{1-3\tan x\tan y}\iff$ $\left\{\begin{array}{c}
\tan x=\tan y\\\\
\tan x\tan y=\frac 13\end{array}\right\|$ $\iff$ $x=y=\frac {\pi}{6}\iff$ $B+C=120^{\circ}\iff$ $A=60^{\circ}$ .

Proof 2 (metric). Observe that $IP=ID\cdot\sin x$ . Apply the Sinus' theorem in $\triangle IBQ\ :\ \frac {IQ}{\sin\frac B2}=\frac {IB}{\sin\left(\frac B2+90^{\circ}-x\right)}\iff$ $IQ=\frac {IB\cdot\sin\frac B2}{\cos\left(x-\frac B2\right)}$ .

Therefore, $IQ=2\cdot IP\iff$ $2\sin x\cos\left(x-\frac B2\right)=\frac {IB}{ID}\cdot \sin\frac B2\iff$ $\sin\left(2x-\frac B2\right)+\sin \frac B2=\frac {a+c}{b}\cdot\sin\frac B2$ . Since $\frac {a+c}{b}\cdot\sin\frac B2=$

$\frac {(\sin A+\sin C)\cdot\sin\frac B2}{\sin B}=$ $\frac {2\sin\frac {A+C}{2}\cos\frac {A-C}{2}\sin\frac B2}{2\sin \frac B2\cos\frac B2}=\cos\frac {A-C}{2}$ , obtain that $\sin\left(2x-\frac B2\right)+\sin \frac B2=\cos\frac {A-C}{2}\iff$ $\sin\left(2x-\frac B2\right)=$

$\cos\frac {A-C}{2}-\cos \frac {A+C}{2}\implies$ $\boxed{\sin\left(2x-\frac B2\right)=2\sin \frac A2\sin \frac C2}$ . Analogously obtain that $\boxed{\sin\left(2y-\frac C2\right)=2\sin \frac A2\sin \frac B2}$ .

In conclusion, $\sin\left(2x-\frac B2\right)\sin\frac B2=\sin\left(2x-\frac C2\right)\sin\frac C2\iff$ $\cos (2x-C)-\cos 2x=\cos (2y-B)-\cos 2y\iff$

$\cos (2x-C)-\cos (2y-B)=\cos 2x-\cos 2y\stackrel{(2x-C)+(2x-B)=0}{\iff}$ $\cos 2x=\cos 2y\iff$ $x=y=\frac {\pi}{6}\iff$ $B+C=120^{\circ}\iff$ $A=60^{\circ}$ .



Proposed problem 2153. Suppose that $\{a, b, c\}\subset \mathbb R$ . If for all $x\in [-1,1]$ we have $\left|ax^2+bx+c\right|\le 1$ , then prove that $\left|cx^2 + bx + a\right|\le 2$ .

Proof. Let $f(x) = ax^2+bx+c$ and $g(x) = cx^2+bx+a$ . Then by assumption $|a + b + c|= |f(1)|\le 1$ , $|a-b+c|= |f(-1)|\le 1$

and $|c|=|f(0)|\le 1$ . Hence $|g(x)| =$ $\left|c\cdot\left(x^2-1\right)+(a+b+c)\cdot\frac {1+x}{2}+(a-b+c)\cdot \frac{1-x}{2}\right|\le $ $\left|x^2-1\right|+$ $\frac {|1+x|}{2}+$ $\frac {|1-x|}{2}=$

$1-x^2+$ $\frac {1+x}{2}+$ $\frac {1-x}{2}=$ $2-x^2\le 2$ for all $x\in [-1,1]$ .



Proposed problem 2151. $\triangle ABC$ is a triangle with $B=2C$ . Let $H$ be the foot of the perpendicular from $A$

to $BC$ and let $D$ be the point on the side $[BC]$ where the excircle touches $BC$ . Prove that $AC=2\cdot HD$ .


Proof 1 (synthetic). Since $b+CD=c+BD=s$ obtain that $CD=\frac {a+c-b}{2}$ . Construct the point $E\in BC$ so that $B\in (EC)$ and $BE=BA$ . Observe that

$B=2C\implies$ the triangle $AEC$ is $A$-isosceles and $HC=HE=\frac {a+c}{2}$ . Thus, $HD=HC-DC=\frac {a+c}{2}-\frac {a+c-b}{2}=\frac b2$ , i.e. $AC=2\cdot HD$ .

Proof 2 (metric). From an well-known (or prove easily) property $\boxed{B=2C\iff b^2=c(c+a)}\ (*)$ , $HC=b\cdot\cos C\ (C<60^{\circ})$

and $CD=s-b$ obtain that $HD=HC-CD=$ $b\cdot\cos C-(s-b)=$ $\frac {a^2+b^2-c^2-a(a+c-b)}{2a}=$ $\frac {s(b-c)}{a}$ .

Thus, $AC=2\cdot HD\iff$ $ab=(b-c)(a+b+c)\iff$ $ab=a(b-c)+b^2-c^2=$ $b^2=c(c+a)\iff$ $B=2C$ .

Here is a proof of the well-known property $(*)$ . Denote $F\in AC$ for[/b] which $\widehat{FBA}\equiv\widehat{FBC}$ , i.e. $\frac {FA}{c}=\frac {FC}{a}=\frac {b}{a+c}$ . Therefore, $FA=\frac {bc}{a+c}$

and $\triangle AFB\sim\triangle ABC\iff$ $\frac {AF}{AB}=\frac {AB}{AC}\iff$ $c^2=\frac {b^2c}{a+c}\iff$ $b^2=c(c+a)$ . Otherwise. Construct the point $E\in BC$ so that $B\in (EC)$

and $BE=BA$ . Observe that $BE=c$ , $AE=b$ , $EC=c+a$ and $\triangle EAB\sim\triangle ECA\iff$ $\frac {EA}{EC}=\frac {AB}{CA}\iff$ $b^2=c(c+a)$ .



Proposed problem 3009. Let $ABC$ be a triangle with the incircle $I$ . Denote $\left\{\begin{array}{c}
E\in BI\cap AC\\\
F\in CI\cap AB\end{array}\right\|$ . Prove that

$AE\cdot AF$ is greater than, equal to or less than $AI^2$ according is $A$ greater than, equal to or less than $90^{\circ}$ .


Proof. $AE\cdot AF-AI^2=\frac {bc}{a+c}\cdot\frac {bc}{a+b}-$ $\frac {bc(s-a)}{s}\ \boxed{.s.s.}\ \   \frac {bc}{(a+b)(a+c)}-1$ $+\frac as\ \boxed{.s.s.}\ \ \frac as-\frac {a^2+a(b+c)}{(a+b)(a+c)}\ \boxed{.s.s.}$

$\frac 1s-$ $\frac {a+b+c}{(a+b)(a+c)}\ \boxed{.s.s.}\ \ 2(a+b)(a+c)$ $-(a+b+c)^2\ \boxed{.s.s.}\ \ a^2$ $-\left(b^2+c^2\right)$ , where $X\ \boxed{.s.s.}\ \ Y\ \iff\ X=Y=0\ \vee\ XY>0$ .

For example, $AE\cdot AF\ >\ AI^2\ \iff\ a^2\ >\ b^2\ +\ c^2\ \iff\ A\ >\ 90^{\circ}$ .
This post has been edited 78 times. Last edited by Virgil Nicula, Nov 21, 2015, 7:51 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404427
  • Total comments: 37
Search Blog
a