134. Some problems with projections/perpendiculars (2).

by Virgil Nicula, Sep 30, 2010, 8:57 AM

Quote:
PP1.1. (Iran NMO, 2008-6). Let $ABC$ be an acute triangle with the circumcircle $w=C(O,R)$ . Denote the midpoints $E$ , $F$ of $[AC]$ , $[AB]$ respectively,

the projection $D$ of $A$ on $BC$ and the projections $X$ , $Y$ of $D$ on $AB$ , $AC$ respectively. Prove that $OX=AE\iff OY=AF\iff h_a=R$ .


PP1.2. (
Iran NMO, 2008-2). The $A$-exincircle $w=C(I_a)$ of $\triangle ABC$ touches $AB$ , $AC$ at $B'$ , $C'$ respectively. Denote the incenter $I$ ,

$P\in I_aB\cap B'C'$ , $Q\in I_aC\cap B'C'$ , $M\in BQ\cap CP$ . Prove that the quadrilateral $IBMC$ is a parallelogram.


PP2. Let $ABC$ be a triangle. For a point $M\in AC$ define the point $N\in BC$ so that $MN\perp BC$ , the point $P$ so that

$PB\perp BC$ , $PC\perp AN$ and the intersection $Q\in PM\cap AN$ . Prove that $AP\perp CQ\iff AB\perp AC$ .


PP3. Let $ABC$ be a triangle with the orthocenter $H$ and the circumcircle $w=C(O,R)$ . Denote $D\in BC$

so that $AD\perp BC$ , the symmetrical point $E$ of $C$ w.r.t. $D$ and $F\in EH\cap AB$ . Prove that $DF\perp DO$ .


PP4. Let $d_1$ , $d_2$ be two lines, where $d_1\parallel d_2\ \ \vee\ \ d_1\cap d_2\ne \emptyset$ . For a point $I$ denote $X\in d_1$ , $Y\in d_2$

so that $IX\perp d_1$ , $IY\perp d_2$ . Suppose that $IX=IY$ . Consider two points $M\in d_1$ , $N\in d_2$ .

Prove that $\boxed{\ IN\perp MY\ \iff\ IM\perp NX\ \iff\ MX^2+NY^2=MN^2\ }$ .

Particular cases

$\blacktriangleright\ d_1\parallel d_2$ . Let $XYNM$ be a trapezoid, where $d_1\equiv XM\parallel YN\equiv d_2$ . Denote the midpoint $I$

of $[XY]$ . Prove that $IN\perp MY\ \iff\ IM\perp NX\ \iff\ MX^2+NY^2=MN^2$ .

$\blacktriangleright\ d_1\cap d_2\ne\emptyset\ \wedge\ XY$ doesn't separates $M$ , $N$ . Let $ABC$ be a triangle with the incircle $w=C(I,r)$ which touches

the sides at $D\in BC$ , $E\in CA$ , $F\in AB$ . Denote $L\in BC\cap EF$ . Prove that $LI\perp AD$ and $LA^2=LD^2+AE^2$ .

Let $ABC$ be a triangle with the exincircle $w_a=C(I_a,r_a)$ which touches the sides at $D_a\in BC$ , $E_a\in CA$ ,

$F_a\in AB$ . Denote $L_a\in BC\cap E_aF_a$ . Prove that $L_aI_a\perp AD_a$ and $L_aA^2=L_aD_a^2+AE_a^2$ .

$\blacktriangleright\ d_1\cap d_2\ne\emptyset\ \wedge\ XY$ separates $M$ , $N$ .

Proof of PP1.1. Observe that $\left\|\begin{array}{ccccc}
DX^2=XA\cdot XB & ; & DX=h_a\cos B & ; & OE=R\cos B\\\
DY^2=YA\cdot YC & ; & DY=h_a\cos C & ; & OF=R\cos C\end{array}\right\|$ .

Therefore, $\left\|\begin{array}{cccc}
XA\cdot XB=R^2-OX^2 & \implies & OX^2=R^2-DX^2\\\
YA\cdot YC=R^2-OY^2 & \implies & OY^2=R^2-DY^2\end{array}\right\|$ . Thus,

$OX=AE \iff  R^2-AE^2=DX^2 $ $\iff OE=DX \iff  h_a=R\ .$

$OY=AF  \iff  R^2-AF^2=DY^2 $ $\iff OF=DY \iff h_a=R\ .$

Remark. $h_a=R\iff bc=2R^2\iff \sin B\sin C=\frac 12$ . Prove easily that

$4R^2\left[\left(OX^2-AE^2\right)-\left(OY^2-AF^2\right)\right]=\left(h_a^2-R^2\right)\left(b^2-c^2\right)$ .


Proof 1 of PP1.2. Denote $A=2x$ , $B=2y$ , $C=2z$ $,\ \left(x+y+z=90^{\circ}\right)$ and $D'\in BC\cap w$ . Thus, $\left\|\begin{array}{c}
\widehat{BB'Q}\equiv\widehat{CC'P}\\\
\widehat{BB'Q}\equiv\widehat{BD'P}\\\
\widehat{CC'P}\equiv\widehat{CD'Q}\end{array}\right\|$ $\implies$ $\left\|\begin{array}{c}
\widehat{BB'Q}\equiv\widehat{CD'Q}\\\
\widehat{CC'P}\equiv\widehat{BD'P}\end{array}\right\|$

$\implies$ $\left\|\begin{array}{c}
B'D'\parallel BI\\\
C'D'\parallel CI\end{array}\right\|$ and $BB'QD'$ and $CC'PD'$ are cyclically $\implies$ $\left\|\begin{array}{c}
\widehat{D'BQ}\equiv\widehat{D'B'Q}\\\
\widehat{D'CP}\equiv\widehat{D'C'P}\end{array}\right\|$ . Prove easily that $m(\widehat{D'B'Q})=z$ and $m(\widehat{D'C'P})=y$ .

Therefore, $m(\widehat{D'BQ})=z$ and $m(\widehat{D'CP})=y$ , i.e. $CP\parallel IB\parallel B'D'$ and $BQ\parallel IC\parallel C'D'$ . In conclusion, the quadrilateral $IBMC$ is a parallelogram.


Proof 2 of PP1.2.

$ \blacktriangleright$ The point $ I$ is the orthocenter of the triangle $ I_aI_bI_c$ (evidently). Prove that the quadrilateral $ BPQC$ is cyclically.


Proof.
$ \blacktriangleright$ Denote $ T\in I_aM\cap BC$ . Show that $ \frac {TB}{TC} = \frac {p - c}{p - b}$ , i.e. $ \overline {I_aMT}\perp BC$ (the point $ T\equiv L$ and belongs to the circle $ w_a$ ).

Proof.
$ \blacktriangleright$ Apply lemma I to the triangle $ BCI_a$ , where $ I_aL\perp BC$ and for the point $ M\in I_aL$ the quadrilateral $ BPQC$

is cyclically. In conclusion, the point $ M$ is the orthocenter of $ \triangle BCI_a$ , i.e. $ CM\perp BI_a$ and $ BM\perp CI_a$ .


$ \blacktriangleright$ Apply lemma II to $ \triangle I_aI_bI_c$ with the orthocenter $ I$ , where $ M$ is the orthocenter of $ \triangle BCI_a$ .

In conclusion, $ ML$ is equally to the inradius of the orthic $ \triangle ABC$ w.r.t. the triangle $ I_aI_bI_c$ , i.e. $ ML = r$ .



Proof of PP2. Let $\begin{array}{c}
R\in CP\cap AN\\\
S\in AP\cap CQ\end{array}$ . Since $BNRP$ is cyclically obtain $CN\cdot CB=CR\cdot CP\ (*)$ . Thus, $\boxed{AP\perp CQ}$ $\iff$ $Q$ is orthocenter

of $\triangle APC$ $\iff$ $AMRP$ is cyclically $\iff$ $CM\cdot CA=CR\cdot CP$ $\stackrel{(*)}{\iff}$ $CM\cdot CA=CN\cdot CB$ $\iff$ $ABNM$ is cyclically $\iff$ $\boxed{AB\perp AC}$ .


Proof of PP3. Denote the second intersection $S$ of $AD$ with $w$ and $G\in FD\cap CS$ . Since $HESC$ is a rhombus obtain

$DF=DG$ . From the "butterfly problem" appling to the concurrent chords $[AS]$ , $[BC]$ in $w$ obtain that $OD\perp FG$ , i.e. $DF\perp DO$ .


Proof of PP4. $\boxed{IN\perp MB}$ $\iff$ $IM^2-IB^2=NM^2-NB^2$ $\iff$ $IM^2-IA^2=NM^2-NB^2$ $\iff$ $MA^2=NM^2-NB^2$

$\iff$ $\boxed{MA^2+NB^2=MN^2}$ $\iff$ $MA^2+\left(IN^2-IB^2\right)=MN^2$ $\iff$ $MN^2-MA^2=IN^2-IA^2$ $\iff$ $\boxed{MI\perp AN}$ .
This post has been edited 84 times. Last edited by Virgil Nicula, Nov 23, 2015, 7:21 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a