4. Remarkable geometrical inequalities (2).

by Virgil Nicula, Apr 19, 2010, 2:22 PM

III. Remarkable geometrical inequalities.

$ \bigodot$ Let $ x_k$ , $ y_k$ , $ k\in\overline {1,n}\ .$ Then exists the Cauchy-Bunyakovsky-Schwarz's inequality (C.B.S) $ \boxed {\left(\sum_{k=1}^nx_ky_k\right)^2\le\sum_{k=1}^nx_k^2\cdot\sum_{k=1}^ny_k^2}\ .$ See here. We have equality if and only if

$ \frac {x_1}{y_1}=\frac {x_2}{y_2}=\ldots =\frac {x_n}{y_n}$ with the convention $ x_k=0\Longleftrightarrow y_k=0$ (see
here ). Another usual forms $:\ \sum _{k=1}^n\frac {a_k^2}{b_k}\cdot\sum_{k=1}^n b_k\ge\left(\sum_{k=1}^na_k\right)^2\ ;\ \left(\sum_{k=1}^na_k\right)\left(\sum_{k=1}^nx_k\right)\ge \left(\sum_{k=1}^n\sqrt {a_kx_k}\right)^2$ .

Method 1. I"ll use the Lagrange's identity $\sum_{k=1}^nx_k^2\cdot\sum_{k=1}^ny_k^2=\left(\sum_{k=1}^nx_ky_k\right)^2+\sum_{1\le k<j\le n}\left(x_ky_j-x_jy_k\right)^2\ge\left(\sum_{k=1}^nx_ky_k\right)^2\ .$

Method 2. Consider the polynomial $ f\equiv\sum_{k=1}^n\left(a_kX-b_k\right)^2=X^2\cdot \sum_{k=1}^nx_k^2-2X\cdot\sum_{k=1}^nx_ky_k+\sum_{k=1}^ny_k^2\ .$ Observe that

$ (\forall )\ x\in\mathbb R\ ,\ f(x)\ge 0\ .$ Hence $ \Delta'=\left(\sum_{k=1}^nx_ky_k\right)^2-\sum_{k=1}^nx_k^2\cdot\sum_{k=1}^ny_k^2\le 0$ , i.e. $ \left(\sum_{k=1}^nx_ky_k\right)^2\ \le\ \sum_{k=1}^nx_k^2\cdot x\sum_{k=1}^ny_k^2\ .$


Remark. For $ x_k>0$ , $ k\in\overline {1,n}$ can write the C.B.S's inequality thus :

$ \boxed {\ \sum_{k=1}^nx_k\cdot\sum_{k=1}^n\frac {y_k^2}{x_k}\ \ge\ \sum_{k=1}^ny_k^2\ }$ OR $ \boxed {\ \sum_{k=1}^nx_ky_k\cdot\sum_{k=1}^n\frac {y_k}{x_k}\ \ge\ \left(\sum_{k=1}^ny_k\right)^2\ }$ OR $ \boxed {\ \sum_{k=1}^nx_k\cdot\sum_{k=1}^nx_ky_k^2\ \ge\ \left(\sum_{k=1}^n x_ky_k\right)^2\ }$ . Indeed :

$ \odot\ \ \sum_{k=1}^ny_k^2\ =$ $ \sum_{k=1}^n\left(\sqrt {x_k}\cdot\frac {y_k}{\sqrt {x_k}}\right)^2\ \le$ $ \sum_{k=1}^n\left(\sqrt {x_k}\right)^2\cdot\sum_{k=1}^n\left(\frac {y_k}{\sqrt {x_k}}\right)^2\ =$ $ \sum_{k=1}^nx_k\cdot\sum_{k=1}^n\frac {y^2_k}{x_k}\ .$

$ \odot\ \ \sum_{k=1}^nx_ky_k\cdot\sum_{k=1}^n\frac {y_k}{x_k}\ =$ $ \sum_{k=1}^n\left(\sqrt {x_ky_k}\right)^2\cdot\sum_{k=1}^n\left(\sqrt{\frac {y_k}{x_k}}\right)^2\ \ge$ $ \left(\sum_{k=1}^n\sqrt {x_ky_k\cdot\frac {y_k}{x_k}}\right)^2\ =$ $ \left(\sum_{k=1}^ny_k\right)^2\ .$

$ \odot\ \ \sum_{k=1}^nx_k\cdot\sum_{k=1}^nx_ky_k^2\ =$ $ \sum_{k=1}^n\left(\sqrt {x_k}\right)^2\cdot\sum_{k=1}^n\left(y_k\sqrt{x_k}\right)^2\ \ge\ \left(\sum_{k=1}^n\sqrt {x_k}\cdot y_k\sqrt {x_k}\right)^2\ =\ \left(\sum_{k=1}^n x_ky_k\right)^2\ .$

Example. If $ a$ , $ b$ , $ c$ are positively, then $ \boxed {\ \frac {a}{b+c}+\frac {b}{c+a}+\frac {c}{a+b}\ \ge \frac 32\ }$ (the Nesbitt's imequality).

Metoda 1. $ \sum\frac {a}{b+c}=\sum\frac {a^2}{a(b+c)}\ge\frac {(a+b+c)^2}{2(ab+bc+ca)}\ge \frac 32$ deoarece $ (a+b+c)^2\ge 3(ab+bc+ca)\ .$

Metoda 2. Se foloseste identitatea $ \sum\frac {a}{b+c}=\frac 32+\frac 12\cdot\sum\frac {(b-c)^2}{(a+b)(a+c)}\ .$

Metoda 3. Folosim principiul rearanjamentelor $ \implies\ \left|\begin{array}{c}
\sum \frac {a}{b+c}\ge \sum\frac {b}{b+c}\\\\
\sum \frac {a}{b+c}\ge \sum\frac {c}{b+c}\end{array}\right|\bigoplus\ \implies$ inegalitatea Nesbitt.


Exemplu. In tr-un triunghi neobtuzunghic $ ABC$ exista inegalitatea Walker $ \boxed {\ a^2 + b^2 + c^2\ \ge\ 4(R + r)^2\ }$ .

Metoda 1. $ \frac {a^2 + b^2 + c^2}{8RS} = \sum\frac {\cos^2A}{a\cdot\cos A}\ \stackrel{(C.B.S.)}{\ge}\ \frac {\left(\sum\cos A\right)^2}{\sum a\cdot\cos A} =$ $ \frac {(R + r)^2}{2RS}\ \implies\ a^2 + b^2 + c^2\ \ge\ 4(R + r)^2$ .

Observatie. $ HA = 2\cdot\delta_{BC}(O)$ si $ \sum\delta_{BC}(O) = R + r$ (relatia Euler intr-un triunghi neobtuzunghic) $ \implies\ \sum HA = 2(R + r)$

$ \implies\ \boxed {\ \sum a^2\ge \left(\sum HA\right)^2\ }$ . Am notat $ \delta_{BC}(O)$ - distanta de la circumcentrul $ O$ al $ \triangle ABC$ la dreapta $ BC$ .

Metoda 2. $ 2 = \sum\frac {HA}{h_a} =$ $ \sum\frac {HA^2}{h_a\cdot HA}\ \stackrel{(C.B.S.)}{\ge}\ \frac {\left(\sum HA\right)^2}{\sum h_a\cdot HA} =$ $ \frac {\left(\sum HA\right)^2}{\frac 12\cdot\sum a^2}\ \implies\ \sum a^2\ge\ \left(\sum HA\right)^2$ .

Am folosit relatiile cunoscute $ bc = 2Rh_a$ etc si $ b^2 + c^2 - a^2 = 2bc\cdot\cos A$ etc. Vezi
here articolul lui Cezar Lupu.


$\bigodot$ Extension of the Walker's inequality (see here). Let $ M$ be an interior point of the triangle $ ABC$ with the barycentrical coordinates

$ (x,y,z)$ w.r.t. $ \triangle ABC$ $ (x + y + z = 1)$ . Then there is an inequality $ \boxed {\ \left(MA + MB + MC\right)^2\ \le\ 2\cdot \sum \left(b^2z + c^2y - \frac {a^2yz}{y + z}\right)\ }$ .


Proof. For the point $ M(x,y,z)$ denote $ D\in BC\cap AM$ , $ E\in CA\cap BM$ , $ F\in AB\cap CM$ . Since $ AM = (y + z)\cdot AD$

a.s.o. obtain that $ \left(\sum MA\right)^2 =$ $ \left[\sum (y + z)\cdot AD\right]^2\le \sum (y + z)\cdot\sum (y + z)\cdot AD^2 = 2\cdot\sum (y + z)\cdot AD^2 =$

$ 2\cdot\sum\left(b^2z + c^2y - \frac {a^2yz}{y + z}\right)$ . In conclusion $ \left(\sum MA\right)^2\le 2\cdot$ $ \sum\left(b^2z + c^2y - \frac {a^2yz}{y + z}\right)$ with equality iff $ AD = BE = CF$ .

Particular cases.

$ \odot\ M: = H\ \implies\ \left(\sum HA\right)^2\ \le\ a^2 + b^2 + c^2\ \le \ 3\cdot\sum HA^2$ .

$ \odot\ M: = G\ \implies\ \left(\sum GA\right)^2\ \le\ a^2 + b^2 + c^2\ = \ 3\cdot\sum GA^2$ .

$ \odot\ M: = I\ \implies\ \left(\sum IA\right)^2\ \le\ 2abc\cdot\sum\left(\frac 1a - \frac {1}{b + c}\right)\ \le\ a^2 +$ $ b^2 + c^2\ \le\ \ 3\cdot\sum IA^2$ .



$ \bigodot\ \ \left|\begin{array}{c}
0\le X\le A\\\\
0\le Y\le B\\\\
0\le P\le \sqrt {XY}\end{array}\right|\implies\left|\begin{array}{c}
\underline {\underline {(A-X)(B-Y)}}\ \le\ \left(\sqrt {AB}-\sqrt {XY}\right)^2\ \le\ \underline {\underline {\left(\sqrt {AB}-P\right)}}^2\\\\
\sqrt {A-X}+\sqrt {B-Y}\ \le\ \sqrt {\left(\sqrt A+\sqrt B\right)^2-\left(\sqrt X+\sqrt Y\right)^2}\end{array}\right|$

Exemplu 1. Fie numerele reale $ a_{k}$ , $ b_k$ , unde $ k\in\overline {1,n}$ si numerele reale pozitive $ a$ , $ b$ pentru care $ a^2\ge \sum_{k=1}^na_k^2$ si $ b^2\ge\sum _{k=1}^nb^2_k$ .

Atunci exista inegalitatea Aczel $ \boxed {\ \left(a^2-\sum _{k=1}^na^2_k\right)\left(b^2-\sum _{k=1}^nb^2_k\right)\ \le\ \left(ab-\sum_{k=1}^na_kb_k\right)^2\ }\ .$ Aceasta inegalitate se obtine

imediat prin inlocuirile $ X=\sum_{k=1}^na_k^2\le a^2=A\ ,\ Y=\sum_{k=1}^nb_k^2\le b^2=B$ si $ P=\sum_{k=1}^na_kb_k\le \sqrt {XY}$ (inegalitatea C.B.S.).

O interesanta consecinta este $ \sqrt {a^2-\sum_{k=1}^na^2_k}+\sqrt {b^2-\sum_{k=1}^nb^2_k}$ $ \ \le\ \sqrt {(a+b)^2-\sum_{k=1}^n\left(a_k+b_k\right)^2}\ .$


Exemplu 2. Asemanator se pot genera asa zise " inegalitati de tip Aczel ". Pentru $ \left|\ \begin{array}{c}
 0 < a_1\le a_2\le \ldots \le a_n\\\\
x_1\ge x_2\ge \ldots\ge x_n>0\end{array}\ \right|$ , notam

$ \begin{array}{c}
X=\left(a_1+a_2+\ldots +a_n\right)^2\le n\cdot\left(a_1^2+a_2^2+\ldots +a_n^2\right)=A\\\\
Y=\left(x_1+x_2+\ldots +x_n\right)^2\le n\cdot\left(x_1^2+x_2^2+\ldots +x_n^2\right)=B\\\\
P=n\cdot\left(a_1x_1+a_2x_2+\ldots +a_nx_n\right)\le\left(a_1+a_2+\ldots +a_n\right)\cdot\left(x_1+x_2+\ldots +x_n\right)=\sqrt {XY}\end{array}$

Se obtine astfel lantul de inegalitati $ \frac 1n\cdot\sum_{1\le j < k\le n}^n\left|\left(a_j - a_k\right)\left(x_j - x_k\right)\right| + \sum_{k = 1}^n a_kx_k\ \le$

$ \frac 1n\cdot\sqrt {\sum_{1\le j<k\le n}^n (a_j-a_k)^2\cdot\sum_{1\le j<k\le n}^n (x_j-x_k)^2 + \sum_{k=1}^n a_kx_k}\ \le\ \sqrt {\sum_{k=1}^n a_k^2\cdot\sum_{k=1}^n x_k^2}$

care este o intarire a inegalitatii C.B.S. in situatia speciala in care cele doua siruri finite $ a_k$ , $ x_k$ , $ k\in\overline {1,n}$ sunt invers ordonate.

Exemplu 3. Se stie inegalitatea bilaterala $ 3(ab+bc+ca)\le (a+b+c)^2\le 3\left(a^2+b^2+c^2\right)\ .$

$ \odot\ \ \left|\begin{array}{c}
X=3\cdot\sum bc\le \left(\sum a\right)^2=A\\\\
Y=\sum bc\le \sum a^2=B\\\\
P=\sqrt 3\cdot\sum bc=\sqrt {XY}\\\\
\left[\ A-X=B-Y=\frac 12\cdot\sum (b-c)^2\ \right]\end{array}\right|$ $ \implies$ $ (ab+bc+ca)\sqrt 3+\frac 12\cdot \sum (b-c)^2\le (a+b+c)\cdot\sqrt {a^2+b^2+c^2}\ .$

$ \odot\ \ \left|\begin{array}{c}
X=\left(\sum a\right)^2\le 3\cdot\sum a^2=A\\\\
Y=\sum bc\le \sum a^2=B\\\\
P=3\cdot\sqrt {abc\sum a}\le \sum a\cdot \sqrt {\sum bc}=\sqrt {XY}\\\\
\left[\ A-X=2(B-Y)=\sum (b-c)^2\ \right]\end{array}\right|$ $ \implies$ $ 3\sqrt {abc(a+b+c)}+\frac {\sqrt 2}{2}\cdot \sum (b-c)^2\le \left(a^2+b^2+c^2\right)\sqrt 3\ .$

$ \odot\ \ \left|\begin{array}{c}
X=3\cdot\sum bc\le \left(\sum a\right)^2=A\\\\
Y=\left(\sum a\right)^2\le 3\cdot\sum a^2=B\\\\
P=3\cdot\sum bc\le \sqrt 3\cdot\sum a\cdot \sqrt {\sum a^2}=\sqrt {XY}\\\\
\left[\ 2(A-X)=(B-Y)=\sum (b-c)^2\ \right]\end{array}\right|$ $ \implies$ $ 3(ab+bc+ca)+\frac {\sqrt 2}{2}\cdot \sum (b-c)^2\le (a+b+c)\cdot\sqrt {3\left(a^2+b^2+c^2\right)}\ .$



$ \bigodot$ Fie numerele reale nenegative $ x$ , $ y$ , $ z$ . Atunci pentru orice numar pozitiv $ r$ exista relatia

$ \boxed {\ x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ }\ \ge\ 0$ (inegalitatea Schur).


Demonstratie. Presupunem fara a restrange generalitatea ca $ x\ge y\ge z\ .$ Se observa ca

$ x\ge y\ge z\ \implies$ $ \left|\begin{array}{c}
x-z\ge y-z\ge 0\\\\
x^r\ge y^r\ge 0\end{array}\right|\ \implies\ x^r(x-z)\ge y^r(y-z)\ .$ In concluzie,

$ \sum x^r(x-y)(x-z)=(x-y)\cdot\left[x^r(x-z)-y^r(y-z)\right]+z^r(x-z)(y-z)\ge 0\ .$


Extindere I. Daca tripletele $ (a,b,c)$ , $ (x,y,z)$ de numere reale sunt la fel ordonate, atunci $ \sum a(x-y)(x-z)\ \ge\ 0\ .$

Extindere II. Fie numerele reale $ a$ , $ b$ , $ c$ si $ x$ , $ y$ , $ z$ astfel incat $ a\ge b\ge c$ si $ y\in [x,z]\cup [z,x]\ .$

Consideram o functie convexa sau monotona $ f: \mathbb R\rightarrow [0,\infty )$ si $ n\in \mathbb N^*\ .$ Atunci $ \sum f(x)(a-b)^n(a-c)^n\ge 0\ .$


$ \odot\ \sum a(a-b)(a-c)\ge 0\ \Longleftrightarrow\ 2\sum a^3+$ $ 3abc\ge \sum a\cdot\sum a^2\ \Longleftrightarrow\ \sum a^3+6abc\ge \sum a\cdot \sum bc\ .$

$ \odot\ \sum a^2(a-b)(a-c)\ge 0\ \Longleftrightarrow\ 2\sum a^4+$ $ abc\sum a\ge \sum a\cdot\sum a^3\ \Longleftrightarrow\ \sum a^4+2abc\sum a\ge \sum a^2\cdot\sum bc\ .$


$ \bigodot\ \{x\ ,\ y\ ,\ z\}\ \subset\  R\ \wedge\ x+y+z=0$ $ \Longrightarrow$ $ \boxed { yza^2+zxb^2+xyc^2\ \le\ 0\ }\ .$

Demonstratie. $ \left\|\ \begin{array}{c}
 yza^2+zxb^2+xyc^2\ \le\ 0\\\\
 z=-(x+y)\end{array}\ \right\|$ $ \Longrightarrow\ yza^2\le (y+z)\left(zb^2+yc^2\right)\ \Longleftrightarrow$

$ y^2c^2+yz\left(b^2+c^2-a^2\right)+z^2b^2\ge 0$ $ \Longleftrightarrow\ y^2c^2+2yzbc\cdot \cos A+z^2b^2\ge 0\ \Longleftrightarrow$

$ \left(yc+zb\cdot\cos A\right)^2+z^2b^2\sin^2A\ge 0\ ,$ ceea ce este adevarat. Avem egalitate $ \Longleftrightarrow\ x=y=z=0 .$


Cazuri particulare.

$ \ \bullet\ x=b-c\ ,\ y=c-a\ ,\ z=a-b$ $ \Longrightarrow\ \sum (c-a)(a-b)a^2\le0\ \Longrightarrow$

$ \underline {\overline {\left\|\ a^2(a-b)(a-c)+b^2(b-c)(b-a)+c^2(c-a)(c-b)\ \ge\ 0\ \right\|}}$ (inegalitatea Schur pentru $ r=2$ ).

$ \ \bullet\ x=a(b-c)\ ,\ y=b(c-a)\ ,\ z=c(a-b)$ $ \Longrightarrow\ \sum b(c-a)c(a-b)a^2\le0\ \Longrightarrow$

$ \boxed { a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)\ \ge\ 0\ }$ (inegalitatea Schur pentru $ r=1$ ).

Inegalitatea o regasim si in una din urmatoarele forme : $ \left\|\begin{array}{c}
(a+b+c)^3+9abc\ \ge\ 4(a+b+c)(ab+bc+ca)\ .\\\\
2\left(a^3+b^3+c^3\right)+3abc\ \ge\ (a+b+c)\left(a^2+b^2+c^2\right)\ .\end{array}\right\|\ .$


$ \ \bullet\ x=b+c-2a\ ,\ y=c+a-2b\ ,\ z=a+b-2c$ $ \Longleftrightarrow$ $ \sum (c+a-2b)(a+b-2c)a^2\le0\ \Longleftrightarrow$

$ s_1^3-5s_1s_2+18s_3\ \le\ 0$ $ \Longleftrightarrow$ $ 8p^3-10p\left(p^2+r^2+4Rr\right)+18\cdot 4Rpr\ \le\ 0$ $ \Longleftrightarrow$ $ \boxed { p^2+5r^2\ \ge\ 16Rr\ }\ .$


$ \ \bullet\ x=\frac {a^2-bc}{(a+b)(a+c)}$ etc. Se observa ca $ \sum\frac {a^2-bc}{(a+b)(a+c)}=0\ .$ Obtinem $ \sum \frac {a(a+b)(a+c)}{b+c}\ \le\ \sum\frac {a^2\left(b^2+c^2\right)}{bc}\ .$


$ \bigodot$ Fie un triunghi $ ABC$ si notam proiectiile $ X$ , $ Y$ , $ Z$ ale unui punct $ P$ interior triunghiului pe dreptele suport $ BC$ , $ CA$ , $ AB$

ale laturilor acestuia. Atunci $ \boxed {\ PA+PB+PC\ \ge\ 2\cdot (PX+PY+PZ)\ }$ (inegalitatea Erdos-Mordell - vezi
aici).

Demonstratie. Proiectam segmentul $ [YZ]$ pe $ BC\ \ : \ \ PA\cdot \sin A= YZ\ge \Pr_{BC}([YZ])=\Pr_{BC}([PY])+\Pr_{BC}([PZ])\implies$

$ PA\cdot\sin A\ge PY\cdot\sin C+PZ\cdot \sin B$ $ \Longrightarrow$ $ a\cdot PA\ge c\cdot PY+b\cdot PZ$ .$ \Longrightarrow$ $ PA\ge \frac ca\cdot PY+\frac ba\cdot PZ$ . Obtinem :

$ \left\|\begin{array}{c}
PA\ge \frac ca\cdot PY+\frac ba\cdot PZ\\\\
PB\ge \frac ab\cdot PZ+\frac cb\cdot PX\\\\
PC\ge \frac bc\cdot PX+\frac ac\cdot PY\end{array}\right| \bigoplus\ \Longrightarrow$ $ PA+PB+PC\ge \sum\left(\frac bc+\frac cb\right)\cdot PX\ge 2(PX+PY+PZ)\ .$


$ \odot$ Extindere I. Fie un triunghi $ ABC$ si punctele $ D\in (BC)$ , $ E\in (CA)$ , $ F\in (AB)$ . Notam proiectiile

$ X$ , $ Y$ , $ Z$ ale unui punct $ P$ interior triunghiului pe dreptele suport $ BC$ , $ CA$ , $ AB$ . Atunci exista inegalitatea

$ \boxed {\ PA+PB+PC\ \ge\ 2\cdot\left(PX\sqrt {\frac {BF\cdot CE}{DF\cdot DE}}+PY\sqrt {\frac {CD\cdot AF}{ED\cdot EF}}+PZ\sqrt {\frac {AE\cdot BD}{FE\cdot FD}}\right)\ }\ .$


Demonstratie. Proiectam segmentele $ [YZ]$ , $ [ZX]$ , $ [XY]$ pe $ EF$ , $ FD$ , $ DE$ respectiv $ : \  PA\cdot\sin A=YZ\ge\Pr_{EF}([YZ])=$

$ \Pr_{EF}([PY])+\Pr_{EF}([PZ])=PY\cdot\sin\widehat {AEF}+PZ\cdot\sin\widehat {AFE}$ $ \implies$ $ PA\ge PY\cdot\frac {\sin\widehat {AEF}}{\sin A}+PZ\cdot\frac {\sin\widehat {AFE}}{\sin A}\implies$

$ PA\ge PY\cdot\frac {AF}{EF}+PZ\cdot\frac {AE}{EF}\ .$ Asadar, $ \left\|\begin{array}{c}
PA\ge PY\cdot\frac {AF}{EF}+PZ\cdot\frac {AE}{EF}\\\\
PB\ge PZ\cdot\frac {BD}{FD}+PX\cdot\frac {BF}{FD}\\\\
PC\ge PX\cdot\frac {CE}{DE}+PY\cdot\frac {CD}{DE}\end{array}\right|\bigoplus\implies$

$ \sum PA\ge\sum PX\cdot\left(\frac {BF}{FD}+\frac {CE}{DE}\right)$ $ \implies$ $ \sum PA\ge\sum 2\cdot PX\cdot\sqrt {\frac {BF\cdot CE}{DF\cdot DE}}\ .$

Cazuri particulare. Daca $ D$ , $ E$ , $ F$ sunt mijloacele laturilor corespunzatoare, atunci regasim inegalitatea Erdos-Mordell.

Daca $ D$ , $ E$ , $ F$ sunt proiectiile lui $ H$ pe laturile corespunzatoare se obtine inegalitatea $ \boxed {\ \sum PA\ \ge\ 2\cdot\sum \frac {a}{\sqrt {bc}}\cdot PX\ }\ .$

Demonstratie directa : $ \sum a\cdot PX=2S\le a\cdot AX\le a\cdot (PA+PX)\implies$ $ PA\ge \frac ba\cdot PY+\frac ca\cdot PZ\ .$

In concluzie, $ \left\|\begin{array}{c}
PA\ge \frac ba\cdot PY+\frac ca\cdot PZ\\\\
PB\ge \frac cb\cdot PZ+\frac ab\cdot PX\\\\
PC\ge \frac ac\cdot PX+\frac bc\cdot PY\end{array}\right|\bigoplus$ $ \implies$ $ \sum PA\ge \sum \left(\frac ab+\frac ac\right)\cdot PX\ge$ $ 2\cdot\sum \frac {a}{\sqrt {bc}}\cdot PX\ .$


$ \odot$ Extindere II. Fie un triunghi $ ABC$ si punctele $ M$, $ N$, $ P$ interioare triunghiului $ ABC$ astfel incat $ NP \perp BC$ ,

$ PM \perp CA$ si $ MN \perp AB$ . Notam $ X\in NP\cap BC$ , $ Y\in  PM\cap CA$ si $ Z\in  MN\cap AB$ . Atunci exista inegalitatea

$ \boxed {\ MA\ +\ NB\ +\ PC\ \ge\ MY\ +\ MZ\ +\ NZ\ +\ NX\ +\ PX\ +\ PY\ }\ .$


Demonstratie. Se observa ca $ ABC\sim MNP$ , adica $ \frac {a}{NP}=\frac {b}{PM}=\frac {c}{MN}$ . Asadar, $ \sum\left(NZ-MZ\right)\left(\frac{a}{b}-\frac{b}{a}\right)=$

$ \epsilon\cdot\sum MN\left(\frac{a}{b}-\frac{b}{a}\right)=\epsilon\sum c\left(\frac{a}{b}-\frac{b}{a}\right)=\frac {\epsilon}{abc}\cdot\sum c^2\left(a^2-b^2\right)=0$ $ \implies$ $ \sum\left(NZ-MZ\right)\left(\frac{a}{b}-\frac{b}{a}\right)=0\ (*)\ ,$

unde $ \epsilon^2=1\ .$ Se arata usor ca $ MA \geq MY \cdot \frac{c}{a} + MZ \cdot \frac{b}{a}$ . Similar $ \left\|\begin{array}{c}
MA \geq MY \cdot \frac{c}{a} + MZ \cdot \frac{b}{a}\\\\
NB \geq NZ \cdot \frac{a}{b} + NX \cdot \frac{c}{b}\\\\
PC \geq PX \cdot \frac{b}{c} + PY \cdot \frac{a}{c}\end{array}\right|\bigoplus$ $ \implies$

$ MA+NB+PC \ge\sum \left(MZ \cdot \frac{b}{a} + NZ \cdot \frac{a}{b}\right)=$ $ \sum \left[\frac{1}{2}\left(NZ-MZ\right)\left(\frac{a}{b}-\frac{b}{a}\right) + \frac{1}{2}\left(NZ+MZ\right)\left(\frac{a}{b}+\frac{b}{a}\right)\right]\stackrel{(*)}{\ =\ }$

$ \sum\frac{1}{2}\left[\left(NZ+MZ\right)\left(\frac{a}{b}+\frac{b}{a}\right)\right]\ge$ $ \sum (NZ+MZ)$ $ \implies$ $ MA+NB+PC\ge MY+MZ+NZ+NX+PX+PY\ .$



$ \bigodot\ \boxed {\ 3r\sqrt 3\le p\le\frac {3R\sqrt 3}{2}\ }$ (Mitrinovic) ; $ \boxed {\ p\sqrt 3\ \le\ 4R+r\ }\ \ ;\ \ \boxed {\ 3r(4R+r)\ \le\ p^2\ }\ \ ;\ \ \boxed {\ p-3r\sqrt 3\le 2(R-2r)\ }$ (Blundon).

$ \ \boxed {\ a^2+b^2+c^2\ \le\ 4\left(2R^2+r^2\right)\ \le\ 9R^2\ }\ ;\ \boxed {\ 16Rr-5r^2\ \le\ p^2\ \le\ \frac {R(4R+r)^2}{2(2R-r)}\ \le\ 4R^2+4Rr+3r^2\ }$ (Blundon & Gerretsen).


Demonstratie.

$ \odot$ Se stie ca $ : \ abc=4Rpr\ ;\ (p-a)(p-b)(p-c)=pr^2\ ;\ \sum (p-b)(p-c)=r(4R+r)\ .$

Din produsul inegalitatilor evidente $ a^2\ge a^2-(b-c)^2$ , adica $ a^2\ge 4(p-b)(p-c)$ etc., $ \Longrightarrow$

$ \ abc\ge 8(p-a)(p-b)(p-c)$ , adica $ 4Rpr\ge 8pr^2$ de unde obtinem $ \underline {R\ge 2r}$ . Aplicam $ \mathrm {A.M.\ \ge\ G.M.}$ :

$ \ \frac {(p-a)+(p-b)+(p-c)}{3}\ge$ $ \sqrt[3]{p-a)(p-b)(p-c)}$ $ \Longrightarrow$ $ p\ge 3\sqrt[3]{pr^2}$ $ \Longrightarrow$ $ p^2\ge 27r^2\Longrightarrow$ $ \underline {p\ge 3r\sqrt 3}\ .$

Este necesar sa aratam acum ca $ 2p\le 3R\sqrt 3\ .$ In inegalitatea $ 3(xy+yz+zx)\le (x+y+z)^2$ inlocuim

$ \left\| \begin{array}{c}
x=(p-b)(p-c)\\\\
y=(p-c)(p-a)\\\\
z=(p-a)(p-b)\end{array}\ \right\|\ \Longrightarrow$ $ 3p(p-a)(p-b)(p-c)\le \left[r(4R+r)\right]^2$ $ \Longrightarrow$ $ \underline {p\sqrt 3\le 4R+r}\ .$

Adunam relatiile $ 9p\sqrt 3\le 9(4R+r)$ si $ 9r\le p\sqrt 3\  \Longrightarrow\ 8p\sqrt 3\le 36R$ $ \Longrightarrow$ $ \underline {2p\le 3R\sqrt 3}$ (vezi si
aici).

Remark. I"ll show that $\frac pR=\sin A+\sin B+\sin C\le 3\cdot \sin \frac {A+B+C}{3}=\frac {3\sqrt 3}{2}$ . Observe that for $0<x\le y<\pi$ have

$\sin x+\sin y=2\sin \frac {x+y}{2}\cos\frac {x-y}{2}\le 2\sin\frac {x+y}{2}$ , i.e. $\boxed{0<x\le y<\pi\implies\sin x+\sin y\le \sin\frac {x+y}{2}}$ . Therefore,

$\left\{\begin{array}{c}
\sin A+\sin B\le 2\sin \frac{A+B}{2}\\\\
\sin C+\sin \frac{\pi}{3} \le  2\sin \frac{C+\frac{\pi}{3}}{2}\\\\
\sin \frac{A+B}{2}+\sin \frac{C+\frac{\pi}{3}}{2} \le  2 \sin \frac{A+B+C+\frac{\pi}{3}}{4}=2\sin \frac{\pi}{3}\end{array}\right\|\ \implies\ \sum $ $\sin A+\sin \frac{\pi}{3} \le 4\sin \frac{\pi}{3}$ $\implies\sum\sin A\le 3\sin \frac{\pi}{3} =$ $ \frac{3\sqrt{3}}{2}$ .

$\odot$ Din inegalitatea $ 3\cdot\sum (p-b)(p-c)\ \le \left[\sum (p-a)\right]^2$ obtinem $ \underline {3r(4R+r)\ \le p^2}$ , deoarece

$ \sum (p-b)(p-c)=r(4R+r)\ .\ OG^2=R^2+p_w(G)=R^2-\frac {a^2+b^2+c^2}{9}\ge 0$ $ \Longrightarrow$ $ \boxed {\ a^2+b^2+c^2\ \le\ 9R^2\ }\ .$

In concluzie, am dovedit (intr-o exprimare compacta !) ca $ \boxed {\ 1\ \le\ \frac {4R+r}{p\sqrt 3}\ \le\ \frac {p}{3r\sqrt 3}\ \le\ \frac {R}{2r}\ }\ .$

$ \odot$ Tinand seama ca $ IH^2=4R^2+4Rr+3r^2-p^2\ge 0$ obtinem inegalitatea $ \boxed {\ p^2\ \le\ 4R^2+4Rr+3r^2\ }\ .$ Asadar,

$ \sum a^2=2\cdot\left[p^2-r(4R+r)\right]\ \le\ 2\left[\left(4R^2+4Rr+3r^2\right)-r(4R+r)\right]$ $ \Longrightarrow$ $ \boxed {\sum a^2\ \le\ 4\left(2R^2+r^2\right)\ \le\ 9R^2\ }\ .$

$ \odot\  \left\|\ \begin{array}{c}
 IH^2=4R^2+4Rr+3r^2-p^2\ge 0\\\\
 9\cdot IG^2=IN^2=p^2+5r^2-16Rr\ge 0\\\\
H\Gamma^2=4R^2\left[1-\frac {2p^2(2R-r)}{R(4R+r)^2}\right]\ge 0\end{array}\ \right\|$ $ \Longrightarrow$ $ \boxed {\ \begin{array}{c}
16Rr-5r^2\ \le\ p^2\ \le\ 4R^2+4Rr+3r^2\\\\
2p^2(2R-r)\ \le\ R(4R+r)^2\end{array}\ }\ .$

$ \odot$ Se stie ca $ p^2\le 4R^2+4Rr+3r^2$ si se arata usor ca $ 4R^2+4Rr+3r^2\le \left[2R+\left(3\sqrt 3-4\right)r\right]^2\ .$

In concluzie, $ p^2\le \left[2R+\left(3\sqrt 3-4\right)r\right]^2$ $ \Longleftrightarrow$ $ p\le 2R+\left(3\sqrt 3-4\right)r$ , adica $ \boxed {\ p-3r\sqrt 3\le 2(R-2r)\ }\ .$


Observatii.

$ \odot$ Pentru un triunghi $ ABC$ notam $ \left\|\ \begin{array}{c}
 A=(b+c)(c+a)(a+b)-8abc\\\\
 B=abc-(b+c-a)(c+a-b)(a+b-c)\end{array}\ \right\|$ . Atunci $ A\ge B\ge 0$ , adica

inegalitatea $ \prod (b+c)+\prod (b+c-a)\ge 9abc$ (Virgil Nicula & Cosmin Pohoata, Mathematical Reflections).

Intr-adevar, $ A=\sum a\cdot\sum bc-9abc=2p(p^2+r^2+4Rpr)-36Rpr=2p(p^2+r^2-14Rr)\ge 0$ deoarece

$ p^2\ge 16Rr-5r^2\ge 14Rr-r^2\ .$ Pe de alta parte, $ B=abc-8\prod (p-a)=4Rpr-8pr^2=4pr(R-2r)\ge 0$ .

In sfarsit, $ A-B=2p(p^2+r^2-14Rr-2Rr+4r^2)=2p(p^2+5r^2-16Rr)\ge 0$ .

$ \odot\ \ OH^2=9R^2-2p^2+2r(4R+r)\ge 0\ \Longrightarrow$ $ \left\|\begin{array}{c}
2\left(p^2-27r^2\right)\le(R-2r)\left(9R+26r\right)\\\\
(R-2r)(9R+2r)\le\ 27R^2-4p^2\end{array}\ \right\|\ .$

Obtinem lantul de implicatii $ 3r\sqrt 3\ \le\ p\ \implies\ 2r\le\ R\ \implies\ 2p\ \le\ 3R\sqrt 3\ \ (1)\ .$

$ IN^2=p^2+5r^2-16R^2\ge0\ \implies$ $ \left\|\begin{array}{c}
16r(R-2r)\le p^2-27r^2\\\\
27R^2-4p^2\le (R-2r)(27R-10r)\end{array}\right\|\ .$

Obtinem lantul de implicatii $ 2p\ \le\ 3R\sqrt 3\ \implies\ 2r\ \le\ R\ \implies\ 3r\sqrt3\ \le\ p\ \ (2)\ .$

Din sirurile de implicatii $ (1)$ si $ (2)$ se obtine lantul de echivalente $ \boxed {\ 3r\sqrt 3\ \le\ p \Longleftrightarrow\ 2r\ \le\ R\ \Longleftrightarrow\ 2p\ \le\ 3R\sqrt 3\ }$

care exprima echivalenta intre cele trei inegalitati fundamentale din geometria triunghiului.

$ \ \odot$ Din cele prezentate pana acum rezulta un lant interesant de inegalitati centrat in $ p^2$ care este des folosit in aplicatii.

$ 27r^2\ \le\ 3r(4R+r)\ \le\ \frac {27Rr}{2}\ \le$ $ \boxed {16Rr-5r^2\ \le\ p^2\ \le\ \frac {R(4R+r)^2}{2(2R-r)}}\ \le$ $ \ 4R^2+4Rr+3r^2\ \le\ \frac {(4R+r)^3}{16R-5r}\ .$

Lantul poate fi "slabit" spre dreapta : $ \frac {(4R+r)^3}{16R-5r}\ \le$ $ \ \frac {(4R+r)^2}{3}\ \le\ \frac {R(4R+r)^3}{2(2R-r)(2R+5r)}\ \le$ $ \ \frac {R(4R+r)^2}{2(R+r)}\ .$

$ \odot\ 12r(2R-r)\ \le\ \sum a^2\ \le 4$ $ \left(2R^2+r^2\right)\ \Longleftrightarrow\ 16Rr-5r^2\ \le\ p^2\ \le\ 4R^2+4Rr+3r^2\ .$

$ \odot\  \left\|\ \begin{array}{c}
 r_a+r_b+r_c=4R+r\\\\
  r_ar_b+r_br_c+r_cr_a=p^2\end{array}\ \right\|\ \ \wedge\ \ 3(r_ar_b+r_br_c+r_cr_a)\ \le\ (r_a+r_b+r_c)^2\ \Longrightarrow$ $ \boxed {\  p\sqrt 3\ \le\ 4R+r\ }\ .$

$ \odot\ NI^2+HI^2-HN^2=$ $ \left(p^2+5r^2-16Rr\right)+\left(4R^2+4Rr+3r^2-p^2\right)-4R\left( R-2r\right)=-4r(R-2r)\le 0$ $ \implies$

$ \boxed {\ M(\widehat {GIH})\ge 90^{\circ}\ \Longleftrightarrow\ R\ge 2r\ }$ deoarece $ 2\cdot NI\cdot HI\cdot\cos\widehat {NIH}=NI^2+HI^2-HN^2\ \le\ 0$ si $ G\in NI\ .$

Se poate usor arata ca intr-un triunghi neechilateral $ ABC$ avem relatia $ \sum IA^2\ <\ \sum HA^2\ .$ Din relatia

$ \sum XA^2=3\cdot XG^2+\frac {a^2+b^2+c^2}{3}$ in particular pentru $ X\in\{\ I\ ,\ H\ \}$ obtinem : $ \left\|\ \begin{array}{c}
\sum IA^2=3\cdot IG^2+\frac {a^2+b^2+c^2}{3}\\\\
\sum HA^2=3\cdot HG^2+\frac {a^2+b^2+c^2}{3}\end{array}\ \right\|$

Asadar, $ \sum IA^2\ <\ \sum HA^2\ \Longleftrightarrow$ $ IG\ <\  HG$ , ceea ce este adevarat deoarece $ m(\angle GIH)> 90^{\circ} .$

Guinand's theorem. Daca $M$ este mijlocul lui $[HG]$ , atunci $IM\le OG$ deoarece $m(\angle GIH)\ge 90^{\circ}\iff$ $IM\le \frac 12\cdot HG=OG$ .

$ \odot\ \boxed {\ OH^2\ \ge\ IO^2+2\cdot IH^2\ }\ .$ Intr-adevar, stiind ca $ \left\|\ \begin{array}{c}
OH^2=9R^2+8Rr+2r^2-2p^2\\\\
IO^2=R^2-2Rr\\\\
IH^2=4R^2+4Rr+3r^2-p^2\end{array}\ \right\|$

se arata usor ca inegalitatea propusa devine echivalenta cu inegalitatea remarcabila $ R\ge 2r\ .$


See LXVII-message and here
This post has been edited 40 times. Last edited by Virgil Nicula, Apr 25, 2016, 3:32 AM

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Excellent blog!!! Congratulations!!! Gretting of Peru

by viterick, Nov 23, 2013, 3:13 PM

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a