328. A general identities with areas in a triangle ABC.

by Virgil Nicula, Nov 5, 2011, 9:58 AM

PP. Let $\triangle ABC$ and the points $P\in (BC)$ , $Q\in (CA)$ , $R\in (AB)$ so that $\frac {PB}{PC}=\frac {QC}{QA}=\frac {RA}{RB}=\frac mn$ . Prove that $\frac {[PQR]}{[ABC]}=\frac {m^3+n^3}{(m+n)^3}$ .

Proof. Using the Routh's theorem for three equal ratios $\frac{_{PB}}{^{PC}}=\frac{_{QC}}{^{QA}}=\frac{_{RA}}{^{RB}}=\frac{_m}{^n}$ yields $\frac{[PQR]}{[ABC]}=\frac{1+\frac{m}{n} \cdot \frac{m}{n} \cdot \frac{m}{n}}{(1+\frac{m}{n})(1+\frac{m}{n})(1+\frac{m}{n})}=\frac{m^3+n^3}{(m+n)^3}$ .

Routh's theorem. Let $ ABC$ be a triangle with $S=[ABC]$ . Then $ \left\|\begin{array}{ccc} M\in (BC) & , & \frac {MB}{MC} = m \\
 \\
N\in (CA) & , & \frac {NC}{NA} = n \\
 \\
P\in (AB) & , & \frac {NA}{NB} = n\end{array}\right\|\ \implies\ [MNP] $ $= \frac {1 + mnp}{(1 + m)(1 + n)(1 + p)}\cdot S$ .

Proof. $ \left\{\begin{array}{c} \frac {MB}{m} = \frac {MC}{1} = \frac {BC}{1 + m} \\
 \\
\frac {NC}{n} = \frac {NA}{1} = \frac {CA}{1 + n} \\
 \\
\frac {PA}{p} = \frac {PB}{1} = \frac {AB}{1 + p}\end{array}\right\|$ . Observe that $ \frac {[MNP]}{[ABC]} = \frac {[ABC] - [APN] - [BMP] - [CNM]}{[ABC]} =$

$ 1 - \frac {AP}{AB}\cdot \frac {AN}{AC} - \frac {BM}{BC}\cdot\frac {BP}{BA} - \frac {CN}{CA}\cdot\frac {CM}{CB} =$ $ 1 - \frac {p}{1 + p}\cdot\frac {1}{1 + n} - \frac {m}{1 + m}\cdot\frac {1}{1 + p} - \frac {n}{1 + n}\cdot\frac {1}{1 + m} =$

$ \frac {(1 + m)(1 + n)(1 + p) - p(1 + m) - m(1 + n) - n(1 + p)}{(1 + m)(1 + n)(1 + p)} =$ $ \frac {1 + mnp}{(1 + m)(1 + n)(1 + p)}$ .

Remark. I used often that if $ X\in AB$ (sideline !) and $ Y\in AC$ (sideline !), then $ \frac {[AXY]}{[ABC]} = \frac {AX}{AB}\cdot\frac {AY}{AC}$ . If $ m = n = p = \frac rs\ \implies$

$\frac {[MNP]}{[ABC]} = \frac {1 + m^3}{(1 + m)^3} = \frac {r^3 + s^3}{(r + s)^3}$ (the proposed problem). Otherwise. $ \frac {MB}{MC}=\frac {NC}{NA}=\frac {PA}{PB}=$ $ \frac rs\ \implies$ $[APN]=[BMP]=$

$[CNM]=\frac {rs}{(r+s)^2}\cdot [ABC]\ \implies$ $ \frac {[MNP]}{[ABC]}=1-\frac {3rs}{(r+s)^2}=$ $ \frac {r^2+s^2-rs}{(r+s)^2}\ \implies\ [MNP]=$ $ \frac {r^3+s^3}{(r+s)^3}\cdot [ABC]$ .


Generalization. $ \triangle\ ABC\ \wedge\ \ \boxed {\ \begin{array}{ccc} D\in (BC) & ; & \frac {DB}{DC} = m \\
 \\
E\in (CA) & ; & \frac {EC}{EA} = n \\
 \\
F\in (AB) & ; & \frac {FA}{FB} = p\end{array}\ \ \wedge\ \ \begin{array}{ccc} X\in (BC) & ; & \frac {XB}{XC} = x \\
 \\
Y\in (CA) & ; & \frac {YC}{YA} = y \\
 \\
Z\in (AB) & ; & \frac {ZA}{ZB} = z\end{array}\ \ \wedge\ \ \begin{array}{c} M\in AD\cap YZ \\
 \\
N\in BE\cap ZX \\
 \\
P\in CF\cap XY\end{array}\ }$ $ \implies$

$ \boxed {\ [MNP] =\frac {(1 + xyz)(1 + mnpxyz)}{[mz(1 + y) + (1 + z)]\cdot [nx(1 + z) + (1 + x)]\cdot [py(1 + x) + (1 + y)]}\cdot [ABC]\ }$ .

Particular case. $ x = y = z = 1\ \implies\ 4\cdot [MNP] = [DEF]$ (the Pohoatza's problem).


Proof. Apply the Routh's relation :

$ \left\|\begin{array}{ccccc} M\in YZ\cap AD & \implies & \frac {MY}{MZ} = \frac {DC}{DB}\cdot\frac {AY}{AZ}\cdot \frac {AB}{AC} & \implies & u = \frac {MY}{MZ} = \frac {1 + z}{mz(1 + y)} \\
 \\
N\in ZX\cap BE & \implies & \frac {NZ}{NX} = \frac {EA}{EC}\cdot\frac {BZ}{BX}\cdot \frac {BC}{BA} & \implies & v = \frac {NZ}{NX} = \frac {1 + x}{nx(1 + z)} \\
 \\
P\in XY\cap CF & \implies & \frac {PX}{PY} = \frac {FB}{FA}\cdot\frac {CX}{CY}\cdot \frac {CA}{CB} & \implies & w = \frac {PX}{PZ} = \frac {1 + y}{py(1 + x)}\end{array}\right\|$ $ \implies\ uvw = \frac {1}{mnpxyz}$ and

$ [MNP] = \frac {1 + uvw}{(1 + u)(1 + v)(1 + w)}\cdot [XYZ] =$ $ \frac {1 + uvw}{(1 + u)(1 + v)(1 + w)}\cdot\frac {1 + xyz}{(1 + x)(1 + y)(1 + z)}\cdot [ABC] \ \implies$

$ [MNP] =$ $ \frac {1 + \frac {1}{mnpxyz}}{\frac {[mz(1 + y) + (1 + z)]\cdot [nx(1 + z) + (1 + x)]\cdot [py(1 + x) + (1 + y)]}{mnpxyz(1 + x)(1 + y)(1 + z)}}\cdot\frac {1 + xyz}{(1 + x)(1 + y)(1 + z)}\ \implies$

$ [MNP] =$ $ \frac {(1 + xyz)(1 + mnpxyz)}{[mz(1 + y) + (1 + z)]\cdot [nx(1 + z) + (1 + x)]\cdot [py(1 + x) + (1 + y)]}\cdot [ABC]$ .

See
here
This post has been edited 2 times. Last edited by Virgil Nicula, Nov 19, 2015, 4:20 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a