449. Working page I.
by Virgil Nicula, Oct 1, 2016, 4:24 PM
Lemma. Sa se arate ca
exista inegalitatea 
Dem. Fie primul cadran
al cercului trigonometric
unde
si
Se stie ca
este lungimea distantei lui
la
si
este masura lui
exprimata in radiani, adica lungimea arcului
Deci
adica
pentru orice
Daca
atunci
adica
Daca
atunci notam
Deci
adica si in acest caz
Deci ![$|\sin x|\le |x|\ ,\ \forall\ x\in (-\infty ,0)\cup\left[0,\frac {\pi}2\right]\cup \left(\frac {\pi}2,\infty\right)=\mathbb R\ .$](//latex.artofproblemsolving.com/6/3/a/63a1b70591f78c9ecc808daebf308c7fe293d7f4.png)
P0 .Sa se arate fara a folosi derivatele ca pentru orice
exista inegalitatea
Atentie: maine se va sterge!
Dem.
ceea ce este adevarat (vezi lema precedenta).
TEMA. Sa se demonstreze fara derivate urmatoarele doua inegalitati:
si 
Demonstratie.
Fie primul cadran
al cercului trigonometric
unde
si
si un punct
Notam proiectia
a lui
pe
si punctul
unde
este tangenta la
in
Prima parte a inegalitatii
este demonstrata prin lema de mai sus. Se stie ca
lungimea
a arcului
este
unde
este masura unghiului
exprimata in radiani
aria sectorului
este
si aria
Se observa ca
adica 
Vom folosi inductia completa relativ la
Pentru
obtinem
Presupunem ca exista
astfel incat
Deci
adica
In concluzie,
si
Lemma 1.
there is the chain of equivalencies ![$\boxed{\ x\in [a,b]\cup [b,a]\iff (x-a)(x-b)\le 0\iff \left|x-\frac {a+b}2\right|\le \frac{|a-b|}2\iff |x-a|+|x-b|=|a-b|\ }$](//latex.artofproblemsolving.com/d/2/5/d256e601e2e338b8de509edf7f687873d813d068.png)
Lemma 2. Let
with
, where
. Then 
Example 0. Prove that
exists the equivalence 
Proof.
and
and

and
Example 1. Prove that
exists the equivalence 
Proof.
.
Example 2. Prove that
Proof.
what are truly.
Example 3. Denote
, where
. Prove that
and
. See here.
Example 4.
so that
and
have real roots.
Proof. First equation has coefficient
for
Thus,

In conclusion, exists
so that
and
i.e. the equation
has two real roots.
Second equation has coefficient
of
Thus,

In conclusion, exists
so that
and
i.e. the equation
has two real roots.
Remark.
. Thus,



P1 (clasa a VI - a). Fie paralelogramul
si
Sa se arate ca ![$[BCFG]+[PFDI]=2\cdot [AEF]\ .$](//latex.artofproblemsolving.com/6/1/7/6176894192d5e69ca2b336d8038c541e85c1816c.png)
Demonstratie. Vom folosi o proprietate cunoscuta care conserva aria unui triunghi
Prin urmare,
![$\left\{\begin{array}{ccccccc}
AG\parallel PE & \iff & [APE]=[GPE] & \iff & 2\cdot [APE]=2\cdot [GPE]=[GBEP] & \iff & 2\cdot [APE]=[GBEP]\\\\
EC\parallel PF & \iff & [EPF]=[CPF] & \iff & 2\cdot [EPF]=2\cdot [CPF]=[ECFP] & \iff & 2\cdot [EPF]=[ECFP]\\\\
AD\parallel PF & \iff & [APF]=[DPF] & \iff & 2\cdot [APF]=2\cdot [DPF]=[PFDI] & \iff & 2\cdot [APF]=[PFDI]\end{array}\right\|\ \bigoplus\implies$](//latex.artofproblemsolving.com/d/e/2/de2bf15583f54f389e462d275c9b4260eb02e42c.png)
P2. Prove that
with the circumcircle
and the Nagel point
there is the relation
.
Proof (metric). Let
. Is well-known that
,
and identity
.
I denoted
. Apply the Stewart's relation to the cevian
in
.
Since
and
obtain that

. Therefore,

. In conclusion,
and from the relation
obtain that
.
Remark.

.
P3. Find
so that the equations
have at least a common root.
Proof. Observe that
. Apply the method of the elimination of the variable x between given equations until obtain two at most second degree equations and
put the condition so these equations have at least a common root

The last two equations have at least a common root

and in this case 
P4. Let
with the incircle
and the centroid
. Prove that
or 
Proof 1 (metric). Let
Thus,


Proof 2 (synthetic). Suppose w.l.o.g.
Let the midpoint
of
and the projections
,
,
of the points
,
,
on
Thus, 
i.e. 
Remark. Suppose w.l.o.g.
Therefore,


Proof 3 (synthetic). Keep the notations of the upper proof. Let
and
Suppose w.l.o.g.
Thus:


Apply the well-known Cristea's relation

Since
obtain that 
i.e.
In conclusion,

P5. Prove that
an acute
there are the inequalities 
Proof.![$\begin{array}{ccccccc}
\nearrow & \sum\frac {b+c}{\cos A}=\sum\frac {(b+c)^2}{(b+c)\cos A} & \stackrel{\mathrm{C.B.S}}{\ge} & \frac {\left[\sum(b+c)\right]^2}{\sum (b+c)\cos A}=\frac {(4s)^2}{\sum(b\cos C+c\cos B)}=\frac {16s^2}{\sum a}=8s=4(a+b+c) & \implies & \sum\frac {b+c}{\cos A}\ge 4(a+b+c) & \searrow\\\\
\searrow & \sum\frac a{\cos B+\cos C}=\sum\frac {a^2}{a(\cos B+\cos C)} & \stackrel{C.B.S}{\ge} & \frac {\left(\sum a\right)^2}{\sum [a(\cos B+\cos C)]}=\frac {4s^2}{\sum (b\cos C+c\cos B)}=\frac {4s^2}{\sum a}=2s=a+b+c & \implies & \sum\frac a{\cos B+\cos C}\ge a+b+c & \nearrow\end{array}\odot$](//latex.artofproblemsolving.com/2/b/4/2b40efff4899ee84293fe30d0e880d1978482959.png)
Remark.
there are the identities
(standard notations).
P6 (Adil Abdullayev). Let the circumcircle
of
and the circle
so that
and
is tangent to
at
Prove that
Proof. Let
be the incircle of
Prove easily that
and
where
Observe that
i.e. 
In conclusion,
Nice and easy problem!
P7. Let
with midpoint
of
altitude
where
and incircle
where
Prove that
(Zaslavsky).
Proof. Let
Suppose w.l.o.g.
Observe that
i.e.

and
From
obtain that 
i.e.
Thus,
Apply the Menelaus's theorem to 
i.e.
Apply Cristea's identity 
i.e.
Hence 

In conclusion,
I used and the identities
a.s.o.
An easy extension (own). For
denote
the midpoint
of the side
the point
so that
the incenter
for which denote
a point
for which denote
and
Prove that 
Proof. Denote the ratios
and
From the Aubel's relation obtain
and from the Menelaus' relation obtain that

Apply the Cristea's relation for
i.e. 
Menelaus' theorem

Apply the identities
to the relation
An difficult extension (own). For an interior point
of
denote
and
Prove that for any points
and 
there is the following equivalence
where
See the extension of the proposed problem P1 from here.
Remark. The previous extension is a particular case of the upper estension. Indeed,
and
In conclusion, 

P8 (M.O. Sanchez). Let
with
the midpoint
of
Find the ratio
Proof 1 (trigonometric). Denote
and
Thus,

Hence


Proof 2 (synthetic).
P9. Let
be the circumcenter and
the orthocenter of an acute triangle
. Prove that the area of one of the triangles
,
and
is equal to the sum of the areas of the other two.
Proof. Suppose w.l.o.g.
i.e.
Thus,
and 
Therefore,
a.s.o.
In conclusion,
![$\frac {[COH]}{\sin 2A-\sin 2B}=$](//latex.artofproblemsolving.com/2/6/a/26a3a0ca9a3b49b1e6ae0d917961896d7dae329f.png)
![$[BOH]=[AOH]+[COH]\ .$](//latex.artofproblemsolving.com/6/c/0/6c00f360b71fbef4db4fbd6bf90752374e12485d.png)
Remark 1.
a.s.o. So

![$[BOH]=[AOH]+[COH]\ .$](//latex.artofproblemsolving.com/6/c/0/6c00f360b71fbef4db4fbd6bf90752374e12485d.png)
Remark 2. If
then
P10 (Cosmin Pohoata). Let
be positive real number such that
. Prove that the equation
has no real solutions.
Proof I (generally). Show easily that
is strict
. Thus
, i.e.
has at most one positive root. Observe that for
there is the
relation
, i.e.
. In conclusion, the single root
. The equation
has no real roots iff
, what is truly.
Proof II.
so that
. But
, what is falsely.
Thus
and
, what is falsely. Hence
. Thus,
and
has no real
roots iff
, what is truly. Hencr
. If
then

, what is falsely. In conclusion,
a.s.o.
P11. Let
with
. The bisectors of
meet
at
respectively. Let
be the incentre of
and
Find all possible values of 
Proof. Let
Thus,

.
An easy extension. Let
with the incentre
. Denote
,
and the incentre
of
. Prove that
.
Proof.

.
.

P12. Let
with the
-excircle
what touches
at
and the midpoints
of
respectively. Prove that 
Proof. Denote
and
where is well-known that
Apply the Menelaus' theorem to the transversal 
and
Observe that 
Let
and
and
Observe that

Remark.
is an harmonical division

P13. What is greater between
and
Answer : 
Proof. In conclusion,
P14 (Kunihiko Chikaya). Let
be the five positive constants. Find the range of the function
where
and 
Proof.
Particular case. For
obtain that

P15 (Generalization). Let
with
and
so that
and
Prove that 
Proof.
and
where

Apply the generalized Pythagoras' theorem to
Observe that
I"ll use identity
for any 

![$\left[3b(c+2)+3c(b+2)-(b+2)(c+2)+3bc\right]\tan\phi +$](//latex.artofproblemsolving.com/8/4/c/84cd04c2591010b82a5e58854769892bc4bc303d.png)

Particular cases.
Remark. If in the last particular case
then
i.e.
See the proposed problem P14 from (here).
P16 (Nelson Deza Velasquez). Let
with the incentre
and the
-excentre
Prove that
(standard notations).
Proof. Can prove that
Cyclic
has diameter
Thus, 
In conclusion,
Otherwise. If
are the projections on
of
then
a.s.o.
Remark. I"ll prove the equivalence
If denote
then
Hence 
Hence 
P17 (Adil Abdullayev). Prove
there is the following inequality
(standard notations).
Proof.
where
and 
Thus,
and

From
and
obtain that

Must to prove only
Hence 
what is the remarkable Blundon & Gerretsen's inequality (<= click).
P18 (Ruben AUQUI, Peru). Let an O-rightangled
and construct the squares
so that
Let
Prove that 
Proof. Denote
so that
Prove easily that 
and
Apply the Ceva's relation to the interior point
of




Dem. Fie primul cadran






















![$|\sin x|\le |x|\ ,\ \forall\ x\in (-\infty ,0)\cup\left[0,\frac {\pi}2\right]\cup \left(\frac {\pi}2,\infty\right)=\mathbb R\ .$](http://latex.artofproblemsolving.com/6/3/a/63a1b70591f78c9ecc808daebf308c7fe293d7f4.png)
P0 .Sa se arate fara a folosi derivatele ca pentru orice


Dem.





TEMA. Sa se demonstreze fara derivate urmatoarele doua inegalitati:


Demonstratie.

























![$[OAT]=\tan x\ .$](http://latex.artofproblemsolving.com/9/c/c/9cc0210e71bfb3952d0aec4de9b514f2297d6b91.png)
![$[OAX]<[\overline O\overarc{AX}\overline O]<[OAT]$](http://latex.artofproblemsolving.com/2/7/7/277ab9b9b42fdae9d29405124bd649d1d6857cc7.png)



















![$\boxed{\ x\in [a,b]\cup [b,a]\iff (x-a)(x-b)\le 0\iff \left|x-\frac {a+b}2\right|\le \frac{|a-b|}2\iff |x-a|+|x-b|=|a-b|\ }$](http://latex.artofproblemsolving.com/d/2/5/d256e601e2e338b8de509edf7f687873d813d068.png)
Lemma 2. Let




Example 0. Prove that


Proof.






![$[(x-3)+(x+1)]\cdot [(x-3)-(x+1)]<0\iff$](http://latex.artofproblemsolving.com/3/a/6/3a60e9e3c054eefff8b0e17e79c3e68621071829.png)





Example 1. Prove that


Proof.

Example 2. Prove that
![$(\forall )\ x\in\mathbb R\ ,\ |\sin x+\cos x|\le \sqrt 2\ \mathrm{and}\ (\forall )\ x\in\left[0,\frac {\pi}2\right]\ ,\ 1\le \sin x+\cos x\le \sqrt 2\ .$](http://latex.artofproblemsolving.com/e/d/d/edd3587f41bb8fc306f3adb6ff224e00ce0c227f.png)
Proof.
![$\left\{\begin{array}{ccccccccc}
x\in\mathbb R & : & |\sin x+\cos x|\le \sqrt 2 & \iff & (\sin x+\cos x)^2\le 2 & \iff & 1+\sin 2x\le 2 & \iff & \sin 2x\le 1\\\\
2x\in [0,\pi ] & : & 1\le \sin x+\cos x\le \sqrt 2 & \iff & 1\le (\sin x+\cos x)^2\le 2 & \iff & 1\le 1+\sin 2x\le 2 & \iff & 0\le \sin 2x\le 1\end{array}\right\|$](http://latex.artofproblemsolving.com/f/0/7/f07724c2cdcabc31cf14e9ef3963126fb4a2045f.png)
Example 3. Denote



![$\mathbb Im(f)=\mathbb Pr_{Oy}\mathbb{G}_f=\left[\frac 13,1\right)\cup (1,3]$](http://latex.artofproblemsolving.com/4/5/7/4574bafa49d651afb9c1c4d30cf2d5fcd2cf7abe.png)
Example 4.





Proof. First equation has coefficient





In conclusion, exists




Second equation has coefficient





In conclusion, exists




Remark.

![$\sum A\left[x^2-x(b+c)+bc\right]=$](http://latex.artofproblemsolving.com/3/3/5/33534ef8de0d193bdbfcf46af79411e3e7e95884.png)

![$\Delta =\left[\sum A(b+c)\right]^2-4\cdot\sum A\cdot\sum Abc=$](http://latex.artofproblemsolving.com/c/9/5/c954ef1b1c8da3ba08ed4994d2a5747348cfea64.png)

![$\sum A^2\left[(b+c)^2-4bc\right]+2\cdot\sum BC\left[(a+b)(a+c)-2a(b+c)\right]=$](http://latex.artofproblemsolving.com/7/3/a/73a94ba3433c017f2c343d6cb571e0b213b05fd9.png)




P1 (clasa a VI - a). Fie paralelogramul


![$[BCFG]+[PFDI]=2\cdot [AEF]\ .$](http://latex.artofproblemsolving.com/6/1/7/6176894192d5e69ca2b336d8038c541e85c1816c.png)
Demonstratie. Vom folosi o proprietate cunoscuta care conserva aria unui triunghi
![$[ABC]\ :\ \boxed{AX\parallel BC \iff [ABC]=[XBC]}\ (*)\ .$](http://latex.artofproblemsolving.com/c/3/d/c3d62f3c3c55fada1fd51bc693cbba4fa9443c44.png)
![$\left\{\begin{array}{ccccccc}
AG\parallel PE & \iff & [APE]=[GPE] & \iff & 2\cdot [APE]=2\cdot [GPE]=[GBEP] & \iff & 2\cdot [APE]=[GBEP]\\\\
EC\parallel PF & \iff & [EPF]=[CPF] & \iff & 2\cdot [EPF]=2\cdot [CPF]=[ECFP] & \iff & 2\cdot [EPF]=[ECFP]\\\\
AD\parallel PF & \iff & [APF]=[DPF] & \iff & 2\cdot [APF]=2\cdot [DPF]=[PFDI] & \iff & 2\cdot [APF]=[PFDI]\end{array}\right\|\ \bigoplus\implies$](http://latex.artofproblemsolving.com/d/e/2/de2bf15583f54f389e462d275c9b4260eb02e42c.png)
![$2\cdot [AEF]=2\cdot\left([APE]+[EPF]+[APF]\right)=$](http://latex.artofproblemsolving.com/2/1/7/21762466edc342270aca04d5920647fd66e41c28.png)
![$\left([GBEP]+[ECFP]\right)+[PFDI]=$](http://latex.artofproblemsolving.com/3/9/0/3907631d721ede6f50df54758b37a0a396dbed04.png)
![$[BCFG]+[PFDI]$](http://latex.artofproblemsolving.com/9/a/1/9a120c56146971a7103ce1a48fd6b66d9f2d6f2c.png)

![$2\cdot [AEF]=[BCFG]+[PFDI]\ .$](http://latex.artofproblemsolving.com/7/3/c/73c0ce9f8568f3d5374395795046a553b7bb03f7.png)
P2. Prove that




Proof (metric). Let




I denoted



Since






![$\frac {s-a}{s^2}\cdot \left[c^2(s-b)+b^2(s-c)-a(s-b)(s-c)\right]+$](http://latex.artofproblemsolving.com/9/9/a/99af5d03d6365738d1cf14e59d0cf1fbf0ab402b.png)









![$\sum a^2(s-b)(s-c)=\sum a^2\left[bc-s(s-a)\right]=$](http://latex.artofproblemsolving.com/7/2/1/72164697fbe130a813bb87d80392c0b85de58f00.png)



![$8Rs^2r-s^2\cdot 2\left(s^2-r^2-4Rr\right)+s\left[8s^3-6s\left(s^2+r^2+4Rr\right)+12Rsr\right]=$](http://latex.artofproblemsolving.com/d/3/0/d30f13d066635c4d65c26c7b30a08b194ffca812.png)


P3. Find


Proof. Observe that

put the condition so these equations have at least a common root











P4. Let





Proof 1 (metric). Let









![$\left[2\left(a^2+c^2\right)-b^2\right]-$](http://latex.artofproblemsolving.com/b/6/e/b6ec605347acf64b89b3820ab10e3e8efd4f4f9d.png)
![$\left[2\left(a^2+b^2\right)-c^2\right]$](http://latex.artofproblemsolving.com/e/6/f/e6fe73c341a23d9680a76e26ef37d78249607c03.png)



Proof 2 (synthetic). Suppose w.l.o.g.


![$[BC]$](http://latex.artofproblemsolving.com/e/a/1/ea1d44f3905940ec53e7eebd2aa5e491eb9e3732.png)













Remark. Suppose w.l.o.g.




![$c^2-b^2=a\cdot \left[(MB-MK)-(MC+MK)\right]\iff$](http://latex.artofproblemsolving.com/9/7/2/972f35187b045937198ff77a909946e04eb47df5.png)


Proof 3 (synthetic). Keep the notations of the upper proof. Let















![$\frac ra\cdot [2s-(b+c)]=r\implies$](http://latex.artofproblemsolving.com/5/b/c/5bc2985c20f1ce3a16d202ce6770ba64d3192365.png)









i.e.




P5. Prove that



Proof.
![$\begin{array}{ccccccc}
\nearrow & \sum\frac {b+c}{\cos A}=\sum\frac {(b+c)^2}{(b+c)\cos A} & \stackrel{\mathrm{C.B.S}}{\ge} & \frac {\left[\sum(b+c)\right]^2}{\sum (b+c)\cos A}=\frac {(4s)^2}{\sum(b\cos C+c\cos B)}=\frac {16s^2}{\sum a}=8s=4(a+b+c) & \implies & \sum\frac {b+c}{\cos A}\ge 4(a+b+c) & \searrow\\\\
\searrow & \sum\frac a{\cos B+\cos C}=\sum\frac {a^2}{a(\cos B+\cos C)} & \stackrel{C.B.S}{\ge} & \frac {\left(\sum a\right)^2}{\sum [a(\cos B+\cos C)]}=\frac {4s^2}{\sum (b\cos C+c\cos B)}=\frac {4s^2}{\sum a}=2s=a+b+c & \implies & \sum\frac a{\cos B+\cos C}\ge a+b+c & \nearrow\end{array}\odot$](http://latex.artofproblemsolving.com/2/b/4/2b40efff4899ee84293fe30d0e880d1978482959.png)
Remark.


P6 (Adil Abdullayev). Let the circumcircle








Proof. Let


















P7. Let


![$[BC],$](http://latex.artofproblemsolving.com/0/f/0/0f0051fd91203595eadcb640cf7d778f1ee74438.png)






Proof. Let








and





![$a\left[(MD+MC)-(MB-MD)\right]=$](http://latex.artofproblemsolving.com/2/b/a/2baeea891d50eef9f80e031f525f03a4643a5c58.png)













i.e.


















An easy extension (own). For



![$[BC]\ ;$](http://latex.artofproblemsolving.com/2/c/e/2cee46ce04305480ad31681565572a638aaf48b5.png)









Proof. Denote the ratios
















Apply the identities



An difficult extension (own). For an interior point







there is the following equivalence


Remark. The previous extension is a particular case of the upper estension. Indeed,









P8 (M.O. Sanchez). Let





![$[AB]\ ;$](http://latex.artofproblemsolving.com/e/e/b/eebbfc5f3a16247cdad15483c5ae381a89c531b6.png)



Proof 1 (trigonometric). Denote





















Proof 2 (synthetic).
P9. Let






Proof. Suppose w.l.o.g.





![$[AOH]=\frac 12\cdot AO\cdot AH\cdot \sin \widehat {OAH}=$](http://latex.artofproblemsolving.com/c/6/5/c6538c193e9456d6d0d4e345b69e031f1542bc83.png)



In conclusion,



![$\frac {R^2}2=\frac {[AOH]}{\sin 2B-\sin 2C}=$](http://latex.artofproblemsolving.com/3/a/4/3a4d3c581fd80eb132a18f68f9d6480b9392c21d.png)
![$\frac {[BOH]}{\sin 2A-\sin 2C}=$](http://latex.artofproblemsolving.com/c/0/7/c07cc4a2a0df3378a0a50fbd51f7325b30957fb9.png)
![$\frac {[COH]}{\sin 2A-\sin 2B}=$](http://latex.artofproblemsolving.com/2/6/a/26a3a0ca9a3b49b1e6ae0d917961896d7dae329f.png)
![$\frac {[AOH]+[COH]}{\sin 2A-\sin 2C}$](http://latex.artofproblemsolving.com/a/f/7/af7cdc6f106afbaf4867cb99690ea1b6159f3137.png)

![$[BOH]=[AOH]+[COH]\ .$](http://latex.artofproblemsolving.com/6/c/0/6c00f360b71fbef4db4fbd6bf90752374e12485d.png)
Remark 1.
![$16S[AOH]=\left(b^2+c^2-a^2\right)\cdot \left|b^2-c^2\right|$](http://latex.artofproblemsolving.com/b/c/2/bc28e6529ce6041dea67f4de75df94740034df60.png)

![$\left\{\begin{array}{ccc}
\left(b^2+c^2-a^2\right)\left(c^2-b^2\right)=16S[AOH]\\\\
\left(c^2+a^2-b^2\right)\left(c^2-a^2\right)=16S[BOH]\\\\
\left(a^2+b^2-c^2\right)\left(b^2-a^2\right)=16S[COH]\end{array}\right\|\implies$](http://latex.artofproblemsolving.com/3/d/8/3d876e18ea309c88762864962986a4a5e199c77e.png)
![$\frac {[AOH]+[COH]-[BOH]}{16S}=$](http://latex.artofproblemsolving.com/6/9/8/698c8deee349a35745afd9823fcaac0b22a0ae79.png)



![$[BOH]=[AOH]+[COH]\ .$](http://latex.artofproblemsolving.com/6/c/0/6c00f360b71fbef4db4fbd6bf90752374e12485d.png)
Remark 2. If

![$\left\{\begin{array}{cc}
\bullet & [AOH]=[AOC]-[AOB]\\\\
\bullet & [BOH]=[BOC]-[AOB]\\\\
\bullet & [COH]=[BOC]-[AOC]\end{array}\right\|\implies [AOH]+[COH]=$](http://latex.artofproblemsolving.com/4/0/6/40681ee61cea16bce26ef8b831ffca306c8501b7.png)
![$(\cancel{[AOC]}-[AOB])+([BOC]-\cancel{[AOC]})=$](http://latex.artofproblemsolving.com/7/5/a/75a4a8741b7738ea30a873993cf4dc9f68c63993.png)
![$[BOC]-[AOB]=[BOH]\ .$](http://latex.artofproblemsolving.com/2/0/4/204effe23d97951cb60d5a151657e2d224eadea6.png)
P10 (Cosmin Pohoata). Let



Proof I (generally). Show easily that





relation





Proof II.










Thus









roots iff








P11. Let












Proof. Let







An easy extension. Let







Proof.









![$\boxed{\begin{array}{c}
\underline{\mathrm{Proposed\ problem}}.\ \mathrm{Prove\ that}\ \forall\ \{a,b,c\}\subset\mathbb R^*_+\ \mathrm{and}\ a+b+c=1\ \implies\ \frac{a^2+a}{a+bc}+\frac{b^2+b}{b+ca}+\frac{c^2+c}{c+ab}=3\\\\
\underline{\mathrm{Proof}}.\ \mathrm{I"ll\ use\ the\ following\ identities\ :}\ a+bc=a(a+b+c)+bc=(a+b)(a+c)\ (1)\ \mathrm{and}\ \sum a^2(b+c) = \sum bc(b+c)\ (2).\ \mathrm{Hence:}\\\\
\sum \left(\frac {a^2+a}{a+bc}-1\right)\ \stackrel {(1)}{=}\ \sum \frac {a^2-bc}{(a+b)(a+c)}=\frac 1{\prod (b+c)}\cdot \sum \left(a^2-bc\right)(b+c)=\frac 1{\prod (b+c)}\cdot \left[\sum a^2(b+c)-\sum bc(b+c)\right]\ \stackrel{(2)}{=}\ 0\ \end{array}}$](http://latex.artofproblemsolving.com/7/7/d/77d84e40c675c1beea14340542dd2c09a17a1b50.png)

P12. Let







![$[AB]\ ,\ [CT]$](http://latex.artofproblemsolving.com/3/4/4/344669b869e285f873e29ec09f2f353ed3008f4c.png)

Proof. Denote









Let






Remark.





P13. What is greater between



Proof. In conclusion,

P14 (Kunihiko Chikaya). Let




Proof.
![$(ax+by)^2=\left(\frac a{\sqrt c}\cdot x\sqrt c +\frac b{\sqrt d}\cdot y\sqrt d\right)\ \stackrel{C.B.S}{\le}\ \left[\left(\frac a{\sqrt c}\right)^2+\left(\frac b{\sqrt d}\right)^2\right]\cdot\left[\left(x\sqrt c\right)^2+\left(y\sqrt d\right)^2\right]=$](http://latex.artofproblemsolving.com/a/e/8/ae843670fb1e5fed145f28c90192406fa8f74c4b.png)





P15 (Generalization). Let






Proof.
![$S=[ABC]\ \stackrel{AB=1}{\implies}\ S=\frac {\sqrt 3}4$](http://latex.artofproblemsolving.com/8/1/a/81a0cc20eef46a5264bd057c7a4ad20261156c46.png)




Apply the generalized Pythagoras' theorem to








![$\left[3b(c+2)+3c(b+2)-(b+2)(c+2)+3bc\right]\tan\phi +$](http://latex.artofproblemsolving.com/8/4/c/84cd04c2591010b82a5e58854769892bc4bc303d.png)
![$\sqrt 3\left[b(c+2)+c(b+2)+(b+2)(c+2)-3bc\right]=0\implies$](http://latex.artofproblemsolving.com/4/8/9/489f561fc6fd515696d62f168f4e2417baadf36f.png)
![$\left[8bc+4(b+c)-4\right]\tan\phi +4\sqrt 3(b+c+1)=0\implies$](http://latex.artofproblemsolving.com/0/e/7/0e7483a267116eb54f866eb4baa744a6825bcd4d.png)

Particular cases.

Remark. If in the last particular case



P16 (Nelson Deza Velasquez). Let





Proof. Can prove that


![$[II_b]\implies$](http://latex.artofproblemsolving.com/c/a/d/cadd01bb79870decfbf428f13be7f4e03c903f58.png)





![$ab^2=c\left[(a+c)^2-b^2\right]\iff$](http://latex.artofproblemsolving.com/6/2/0/620263d9565584a50eaf71cb302c8b2054558c68.png)











Remark. I"ll prove the equivalence









P17 (Adil Abdullayev). Prove


Proof.









Thus,







From











P18 (Ruben AUQUI, Peru). Let an O-rightangled






Proof. Denote






and





This post has been edited 504 times. Last edited by Virgil Nicula, Mar 14, 2019, 3:01 PM