449. Working page I.

by Virgil Nicula, Oct 1, 2016, 4:24 PM

Lemma. Sa se arate ca $\forall\ x\in \mathbb R$ exista inegalitatea $|\sin x|\le |x|\ .$

Dem. Fie primul cadran $\overarc{AB}$ al cercului trigonometric $w=\mathbb C(O,1)$ unde $A(0)$ si $B\left(\frac{\pi}2\right)\ .$ Se stie ca $\sin x$ este lungimea distantei lui $X(x)\in\overarc{AB}$ la $OA$ si $x$ este masura lui $\widehat{AOX}$ exprimata in radiani, adica lungimea arcului $\overarc{AX}\ .$ Deci $\sin x=\mathrm{pr}_{OA}(X)\le\mathrm{l}\left(\overarc{AX}\right)=x\ ,$ adica $\sin x\le x$ pentru orice $\underline{0\le x\le \frac {\pi}2}\ .$ Daca $\underline{x>\frac{\pi}2}$ atunci $|\sin x|<1<\frac {\pi}2<|x|\ ,$ adica $|\sin x|\le |x|\ .$ Daca $\underline{x<0}$ atunci notam $y=-x>0\ .$ Deci $|\sin x|=|\sin (-y)|=$ $|-\sin y|=|\sin y|\le |y|=$ $|-x|=|x|\ ,$ adica si in acest caz $|\sin x|<|x|\ .$ Deci $|\sin x|\le |x|\ ,\ \forall\ x\in (-\infty ,0)\cup\left[0,\frac {\pi}2\right]\cup \left(\frac {\pi}2,\infty\right)=\mathbb R\ .$

P0 .Sa se arate fara a folosi derivatele ca pentru orice $\forall\ x\in \mathbb R$ exista inegalitatea $\cos x\ge 1-\frac {x^2}2\ .$ Atentie: maine se va sterge!

Dem. $\cos x\ge 1-\frac {x^2}2\iff$ $\frac {x^2}2\ge 1-\cos x\iff$ $\frac {x^2}2\ge 2\sin^2\frac x2\iff$ $\left(\frac x2\right)^2\ge \sin ^2\frac x2\iff$ $\left|\frac x2\right|\ge \left|\sin\frac x2\right|$ ceea ce este adevarat (vezi lema precedenta).

TEMA. Sa se demonstreze fara derivate urmatoarele doua inegalitati: $\boxed{\sin x<x<\tan x}\ (1)\ ,\ \forall\ x\in\ \left(0,\frac {\pi}2\right)\ ;\ \boxed{|\sin nx|\le n\cdot |\sin x|}\ (2)\ ,\ \forall\ n\in\mathbb N\ ,\ n\ge 2$ si $\forall\ x\in\mathbb R\ .$

Demonstratie.

$1\blacktriangleright$ Fie primul cadran $\overarc{AB}$ al cercului trigonometric $w=\mathbb C(O,R)$ unde $R=1\ ,$ $A(0)$ si $B\left(\frac{\pi}2\right)$ si un punct $X(x)\in \overarc{AB}\ .$ Notam proiectia $P$ a lui $X$ pe $OA$ si punctul $T\in OX\cap t$ unde $t$ este tangenta la $w$ in $A\ .$ Prima parte a inegalitatii $(1)$ este demonstrata prin lema de mai sus. Se stie ca $:$ lungimea $l$ a arcului $\overarc{AB}$ este $l=R\cdot x=x$ unde $x$ este masura unghiului $\widehat{AOX}$ exprimata in radiani $;$ aria sectorului $\overarc{AOB}$ este $\frac {R\cdot l}2=\frac x2\ ;$ $AT=\tan x$ si aria $[OAT]=\tan x\ .$ Se observa ca $[OAX]<[\overline O\overarc{AX}\overline O]<[OAT]$ $\iff$ $\frac {OA\cdot XP}2<\frac {Rl}2<\frac {AO\cdot AT}2\ ,$ adica $\sin x<x<\tan x\ ,\ \forall\ x\in\ \left(0,\frac {\pi}2\right)\ .$

$2\blacktriangleright$ Vom folosi inductia completa relativ la $n\ge 2\ .$ Pentru $n:=2$ obtinem $|\sin 2x|=|2\sin x\cos x|=2\cdot |\sin x|\cdot|\cos x|\le 2|\sin x|\implies$ $|\sin 2x|\le 2\cdot |\sin x|\ .$ Presupunem ca exista $n\ge 2$ astfel incat $|\sin nx|\le n\cdot |\sin x|\ (*)\ .$ Deci $|\sin (n+1)|=$ $|\sin nx\cdot \cos x+\sin x\cdot \cos nx|\le$ $ |\sin nx|\cdot |\cos x|+|\sin x|\cdot |\cos nx|\ \stackrel{(*)}{\le}\ n\cdot |\sin x|\cdot 1+|\sin x|\cdot 1=$ $(n+1)\cdot |\sin x|\ ,$ adica $|\sin (n+1)|\le(n+1)\cdot |\sin x|\ .$ In concluzie, $|\sin nx|\le n\cdot |\sin x|\ ,\ \forall\ n\in\mathbb N\ ,\ n\ge 2$ si $\forall\ x\in\mathbb R\ .$


$$\bf\color{black}Rezolvarea\ unei\ inecuatii\ bilaterale\ peste\ R.$$Lemma 1. $(\forall )\ \{a,b\}\subset\mathbb R$ there is the chain of equivalencies $\boxed{\ x\in [a,b]\cup [b,a]\iff (x-a)(x-b)\le 0\iff \left|x-\frac {a+b}2\right|\le \frac{|a-b|}2\iff |x-a|+|x-b|=|a-b|\ }$

Lemma 2. Let $f(x)=ax^2+bx+c$ with $\{a,b,c\}\subset \mathbb R$ , where $a\ne 0$. Then $\left\{\begin{array}{cccccc}
(\exists ) & \alpha\in\mathbb R & \mathrm{so\ that} & a\cdot f(\alpha )\le 0 & \implies & \Delta\ge 0\\\\
(\exists )  & \{\alpha ,\beta\}\subset\mathbb R & \mathrm{so\ that} & f(\alpha )\cdot f(\beta )\le 0 & \implies & \Delta\ge 0\end{array}\right\|$


Example 0. Prove that $(\forall )\ x\in\mathbb R\ ,\ x>-1$ exists the equivalence $|x-3|<x+1\iff x>1\ .$

Proof. $0\le |x-3|<x+1\iff$ $x+1>0$ and $|x-3|^2<(x+1)^2\iff$ $\boxed{x>-1}$ and $(x-3)^2<(x+1)^2\iff$ $(x-3)^2-(x+1)^2<0\iff$

$[(x-3)+(x+1)]\cdot [(x-3)-(x+1)]<0\iff$ $(2x-2)\cdot (-4)<0\iff$ $8(x-1)>0\iff$ $x>1$ and $x>-1\iff$ $x>1\ .$


Example 1. Prove that $(\forall )\ x\in\mathbb R\ ,\ x\ne \frac 23$ exists the equivalence $1<\frac {2x+1}{3x-2} <3\iff 1<x<3\ .$

Proof. $\boxed{\ 1<\frac {2x+1}{3x-2}<3\iff\left(1-\frac {2x+1}{3x-2}\right)\left(3-\frac {2x+1}{3x-2}\right)<0\iff (x-3)(x-1)<0\iff 1<x<3\ }$ .

Example 2. Prove that $(\forall )\ x\in\mathbb R\ ,\ |\sin x+\cos x|\le \sqrt 2\ \mathrm{and}\ (\forall )\ x\in\left[0,\frac {\pi}2\right]\ ,\ 1\le \sin x+\cos x\le \sqrt 2\ .$

Proof. $\left\{\begin{array}{ccccccccc}
x\in\mathbb R & : & |\sin x+\cos x|\le \sqrt 2 & \iff & (\sin x+\cos x)^2\le 2 & \iff & 1+\sin 2x\le 2 & \iff & \sin 2x\le 1\\\\
2x\in [0,\pi ] & : & 1\le \sin x+\cos x\le \sqrt 2 & \iff & 1\le (\sin x+\cos x)^2\le 2 & \iff & 1\le 1+\sin 2x\le 2 & \iff & 0\le \sin 2x\le 1\end{array}\right\|$ what are truly.

Example 3. Denote $f(x)=\frac {x^2-x+1}{x^2+x+1}$ , where $x\in\mathbb R$ . Prove that $\frac 13\le f(x) \le 3\ ,\ (\forall )\ x\in\mathbb R$ and $\mathbb Im(f)=\mathbb Pr_{Oy}\mathbb{G}_f=\left[\frac 13,1\right)\cup (1,3]$ . See here.

Example 4. $\{a,b,c,d\}\subset \mathbb R$ so that $a<b<c<d$ and $\{A,B,C\}\subset\mathbb R^*_+$ $\implies$ $\left\{\begin{array}{c}
h(x)=A(x-b)(x-c)+B(x-c)(x-a)+C(x-a)(x-b)=0\\\\
g(x)=(x-a)(x-c)+2(x-b)(x-d)=0\end{array}\right\|$ have real roots.

Proof. First equation has coefficient $A+B+C>0$ for $x^2.$ Thus, $\left\{\begin{array}{ccccc}
h(a)=A(a-b)(a-c)>0\\\\
h(b)=B(b-c)(b-a)<0\\\\
h(c)=C(c-a)(c-b)>0\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
h(a)h(b)<0 & \implies & (\exists )\ x_1\in (a,b)\ \mathrm{so\ that}\ h\left(x_1\right)=0\\\\
h(b)h(c)<0 & \implies &  (\exists )\ x_2\in (b,c)\ \mathrm{so\ that}\ h\left(x_2\right)=0\end{array}\right\|$

In conclusion, exists $\left\{x_1,x_2\right\}\subset\mathbb R$ so that $a<x_1<b<x_2<c$ and $h\left(x_1\right)=h\left(x_2\right)=0\ ,$ i.e. the equation $h(x)=0$ has two real roots.

Second equation has coefficient $3>0$ of $x^2.$ Thus, $\left\{\begin{array}{ccccc}
g(a)=2(a-b)(a-d)>0\\\\
g(b)=(b-a)(b-c)<0\\\\
g(c)=2(c-b)(c-d)<0\\\\
g(d)=(d-a)(d-c)>0\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
g(a)g(b)<0 & \implies & (\exists )\ x_1\in (a,b)\ \mathrm{so\ that}\ g\left(x_1\right)=0\\\\
g(c)g(d)<0 & \implies &  (\exists )\ x_2\in (c,d)\ \mathrm{so\ that}\ g\left(x_2\right)=0\end{array}\right\|$

In conclusion, exists $\left\{x_1,x_2\right\}\subset\mathbb R$ so that $a<x_1<b<c<x_2<d$ and $g\left(x_1\right)=g\left(x_2\right)=0\ ,$ i.e. the equation $g(x)=0$ has two real roots.

Remark. $h(x)=\sum A(x-b)(x-c)=$ $\sum A\left[x^2-x(b+c)+bc\right]=$ $x^2\cdot \sum A-x\cdot\sum A(b+c)+\sum Abc$ . Thus,

$\Delta =\left[\sum A(b+c)\right]^2-4\cdot\sum A\cdot\sum Abc=$ $\sum A^2(b+c)^2+2\sum  BC(a+b)(a+c)-4\cdot\sum A^2bc-4\cdot\sum BCa(b+c)=$

$\sum A^2\left[(b+c)^2-4bc\right]+2\cdot\sum BC\left[(a+b)(a+c)-2a(b+c)\right]=$ $\sum A^2(b-c)^2+$ $2\cdot \sum BC(a-b)(a-c)=$

$\left(B|a-c|+C|a-b|+A|b-c|\right)^2-4AC|(b-a)(b-c)|\ge$ $(A|b-c|+C|b-a|)^2-4AC|(b-a)(b-c)|=(A|b-c|-C|b-a|)^2\ge 0$



P1 (clasa a VI - a). Fie paralelogramul $ABCD$ si $\left\{\begin{array}{c}
G\in (AB)\ ;\ F\in (CD)\ :\ GF\parallel AD\\\\
E\in (BC)\ ;\ I\in (DA)\ :\ EI\parallel AB\end{array}\right\|\ ,\ P\in GF\cap EI\ .$ Sa se arate ca $[BCFG]+[PFDI]=2\cdot [AEF]\ .$

Demonstratie. Vom folosi o proprietate cunoscuta care conserva aria unui triunghi $[ABC]\ :\ \boxed{AX\parallel BC \iff [ABC]=[XBC]}\ (*)\ .$ Prin urmare,

$\left\{\begin{array}{ccccccc}
AG\parallel PE & \iff & [APE]=[GPE] & \iff & 2\cdot [APE]=2\cdot [GPE]=[GBEP] & \iff & 2\cdot [APE]=[GBEP]\\\\
EC\parallel PF & \iff & [EPF]=[CPF] & \iff & 2\cdot [EPF]=2\cdot [CPF]=[ECFP] & \iff & 2\cdot [EPF]=[ECFP]\\\\
AD\parallel PF & \iff & [APF]=[DPF] & \iff & 2\cdot [APF]=2\cdot [DPF]=[PFDI] & \iff & 2\cdot [APF]=[PFDI]\end{array}\right\|\ \bigoplus\implies$

$2\cdot [AEF]=2\cdot\left([APE]+[EPF]+[APF]\right)=$ $\left([GBEP]+[ECFP]\right)+[PFDI]=$ $[BCFG]+[PFDI]$ $\implies$ $2\cdot [AEF]=[BCFG]+[PFDI]\ .$



P2. Prove that $(\forall )\ ABC$ with the circumcircle $w=C(O,R)$ and the Nagel point $N$ there is the relation $\boxed{\ ON=R-2r\ }$ .

Proof (metric). Let $\left\{\begin{array}{cc}
D\in AN\cap BC\\\\
E\in BN\cap CA\\\\
F\in CN\cap AB\end{array}\right\|$ . Is well-known that $\left\{\begin{array}{c}
BF=CE=s-a\\\\
CD=AF=s-b\\\\
AE=BD=s-c\end{array}\right\|$ , $\boxed{\frac {NA}a=\frac {ND}{s-a}=\frac {AD}{s}}$ and identity $\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}\ (*)$ .

I denoted $\{A,L\}=\{A,N\}\cap w$ . Apply the Stewart's relation to the cevian $AD$ in $\triangle ABC\ :\ \boxed{a\cdot AD^2+a(s-b)(s-c)=c^2(s-b)+b^2(s-c)}\ (1)$ .

Since $\boxed{R^2-ON^2=NA\cdot NL}\ (2)$ and $DB\cdot DC=DA\cdot DL$ obtain that $NA\cdot NL=\frac as\cdot AD\cdot(ND+DL)=$ $\frac as\cdot AD\cdot \frac {s-a}{s}\cdot AD+\frac as\cdot DB\cdot DC=$

$\frac {s-a}{s^2}\cdot a\cdot AD^2+\frac {a(s-b)(s-c)}{s}$ . Therefore, $NA\cdot NL\stackrel{(1)}{=}$ $\frac {s-a}{s^2}\cdot \left[c^2(s-b)+b^2(s-c)-a(s-b)(s-c)\right]+$ $\frac {a(s-b)(s-c)}{s}=$ $\frac {1}{s^2}\cdot\sum a^2(s-b)(s-c)\stackrel{(*)}{=}$

$4r(R-r)$ . In conclusion, $NA\cdot NL=4r(R-r)$ and from the relation $(2)$ obtain that $ON^2=R^2-NA\cdot NL=$ $R^2-4r(R-r)=(R-2r)^2\implies$ $ON=R-2r$ .

$(*)$ Remark. $\sum a^2(s-b)(s-c)=\sum a^2\left[bc-s(s-a)\right]=$ $abc\sum a-s\cdot\sum a^2(s-a)=$ $8Rs^2r-s^2\cdot \sum a^2+$ $s\cdot\sum a^3=$

$8Rs^2r-s^2\cdot 2\left(s^2-r^2-4Rr\right)+s\left[8s^3-6s\left(s^2+r^2+4Rr\right)+12Rsr\right]=$ $4Rs^2r-4s^2r^2\implies$ $\boxed{\sum a^2(s-b)(s-c)=4s^2r(R-r)}$ .



P3. Find $m\in\mathbb R$ so that the equations $\boxed{\ \begin{array}{c}
x^3-mx^2-4=0\\\\
x^3+mx+2=0\end{array}\ }$ have at least a common root.

Proof. Observe that $m\ne 0$ . Apply the method of the elimination of the variable x between given equations until obtain two at most second degree equations and

put the condition so these equations have at least a common root $:\ \left|\begin{array}{ccc}
x^3-mx^2-4 & \odot & -1\\\\
x^3+mx+2 & \odot & 1\end{array}\right|\ \oplus\implies$ $\left|\begin{array}{ccc}
\underline{mx^2+mx+6} & \odot & x\\\\
x^3+mx+2 & \odot & -m\end{array}\right|\ \oplus\implies$

$\left|\begin{array}{ccc}
\underline{mx^2+\left(6-m^2\right)x-2m}\\\\
mx^2+mx+6\end{array}\right|\ .$ The last two equations have at least a common root $\iff$ $\left|\begin{array}{cc}
m & -2m\\\\
m & 6\end{array}\right|^2=$ $\left|\begin{array}{cc}
m & 6-m^2\\\\
m & m\end{array}\right|\cdot$ $\left|\begin{array}{cc}
6-m^2 & -2m\\\\
m & 6\end{array}\right|\iff$

$m(m+3)^2\left(m^2-4m+6\right)=0$ $\implies$ $m=-3$ and in this case $\left\{\begin{array}{ccc}
x^3+3x^2-4=0 & \implies & x\in\{+1,-2,-2\}\\\\
x^3-3x+2=0 & \implies & x\in\{+1,+1,-2\}\end{array}\right\|\ .$


P4. Let $\triangle ABC$ with the incircle $w=\mathbb C(I,r)$ and the centroid $G$. Prove that $IG\perp BC\iff b+c=3a$ or $b=c.$

Proof 1 (metric). Let $D\in BC\cap w.$ Thus, $IG\perp BC\iff$ $DG\perp BC\iff$ $DB^2-DC^2=GB^2-GC^2$ $\iff$ $(s-b)^2-(s-c)^2=$

$\frac 49\cdot\left(m_b^2-m_c^2\right)$ $\iff$ $9a(c-b)=$ $\left[2\left(a^2+c^2\right)-b^2\right]-$ $\left[2\left(a^2+b^2\right)-c^2\right]$ $\iff$ $9a(c-b)=3\left(c^2-b^2\right)\iff$ $b=c\ \vee\ b+c=3a.$

Proof 2 (synthetic). Suppose w.l.o.g. $b\ne c.$ Let the midpoint $M$ of $[BC]$ and the projections $K$ , $D$ , $S$ of the points $A$ , $I$ , $G$ on $BC.$ Thus, $IG\perp BC\iff$

$\mathrm{pr}_{BC}(I)=\mathrm{pr}_{BC}(G)\iff$ $D\equiv S\iff$ $DM=SM=\frac 13\cdot KM\ \stackrel{(*)}{\iff}\  \frac {|b-c|}2=\frac 13\cdot \frac {|b^2-c^2|}{2a}\iff$ $b+c=3a,$ i.e. $\boxed{IG\perp BC\iff b+c=3a}\ .$

Remark. Suppose w.l.o.g. $K\in (BM).$ Therefore, $AK\perp BC\iff$ $AB^2-AC^2=KB^2-KC^2\iff$ $c^2-b^2=(KB+KC)(KB-KC)\iff$

$c^2-b^2=a\cdot \left[(MB-MK)-(MC+MK)\right]\iff$ $b^2-c^2=2a\cdot MK\iff$ $\boxed{MK=\frac {b^2-c^2}{2a}}\ (*).$

Proof 3 (synthetic). Keep the notations of the upper proof. Let $E\in CA\cap w,$ $F\in AB\cap w,$ $R\in MI\cap AK$ and $L\in AM\cap EF.$ Suppose w.l.o.g. $b>c.$ Thus:

$\blacktriangleright\ ID\parallel AK\iff$ $\frac {MD}{MK}=\frac {ID}{KR}\iff$ $\frac {\frac {b-c}2}{\frac {b^2-c^2}{2a}}=$ $\frac {r}{KR}\iff$ $\frac a{b+c}=\frac {r}{KR}\iff$ $KR=\frac {r(b+c)}a\iff$ $AR=AK-KR=$ $h_a-\frac {r(b+c)}a=$

$\frac {ah_a-r(b+c)}a=$ $\frac {2sr-r(b+c)}a=$ $\frac ra\cdot [2s-(b+c)]=r\implies$ $\boxed{\ AR\ =\ r\ }\ (1).$

$\blacktriangleright$ Apply the well-known Cristea's relation $:\ \frac {LM}{LA}\cdot BC=\frac{FB}{FA}\cdot MC+\frac {EC}{EA}\cdot MB\iff$ $\frac {LM}{LA}\cdot a=\frac {s-b}{s-a}\cdot \frac a2+\frac {s-c}{s-a}\cdot\frac a2\iff$

$\frac {LM}{LA}=\frac {(s-b)+(s-c)}{2(s-a)}=$ $\frac{2s-(b+c)}{2(s-a)}=\frac a{b+c-a}\implies$ $\boxed{\frac {ML}{MA}=\frac a{b+c}}\ .$ Since $\frac {MD}{MK}=\frac a{b+c}$ obtain that $\frac {ML}{MA}=\frac {MD}{MK}\ ,$

i.e. $LD\parallel AK\iff \boxed{\ L\in ID\ }\ .$ In conclusion, $IG\perp BC\iff L\equiv G\iff$ $\frac 13=\frac {MG}{MA}=\frac a{b+c}\iff$ $b+c=3a.$



P5. Prove that $(\forall )$ an acute $\triangle ABC$ there are the inequalities $\left\{\begin{array}{cccc}
\sum\frac {b+c}{\cos A} & \ge & 4(a+b+c) & (1)\\\\
\sum\frac {a}{\cos B+\cos C} & \ge & a+b+c & (2)\end{array}\right\|\ .$

Proof. $\begin{array}{ccccccc}
\nearrow & \sum\frac {b+c}{\cos A}=\sum\frac {(b+c)^2}{(b+c)\cos A} & \stackrel{\mathrm{C.B.S}}{\ge} & \frac {\left[\sum(b+c)\right]^2}{\sum (b+c)\cos A}=\frac {(4s)^2}{\sum(b\cos C+c\cos B)}=\frac {16s^2}{\sum a}=8s=4(a+b+c) & \implies & \sum\frac {b+c}{\cos A}\ge 4(a+b+c) & \searrow\\\\
\searrow & \sum\frac a{\cos B+\cos C}=\sum\frac {a^2}{a(\cos B+\cos C)} & \stackrel{C.B.S}{\ge} & \frac {\left(\sum a\right)^2}{\sum [a(\cos B+\cos C)]}=\frac {4s^2}{\sum (b\cos C+c\cos B)}=\frac {4s^2}{\sum a}=2s=a+b+c & \implies & \sum\frac a{\cos B+\cos C}\ge a+b+c & \nearrow\end{array}\odot$

Remark. $(\forall )\ \triangle ABC$ there are the identities $\left\{\begin{array}{ccccccccc}
HO^2=9\cdot OG^2 & = & 9R^2-\left(a^2+b^2+c^2\right) & ; & OI^2 & = & R^2-2Rr\\\\
IN^2=9\cdot IG^2 & = & s^2+5r^2-16Rr & ; & OI_a^2 & = & R^2+2Rr_a\\\\
IH^2 & = & 4R^2+4Rr+3r^2-s^2 & ; & ON & = & R-2r\end{array}\right\|$ (standard notations).



P6 (Adil Abdullayev). Let the circumcircle $w=\mathbb C(O,R)$ of $\triangle ABC$ and the circle $w_a=\mathbb C\left(O_a,\rho\right)$ so that $O_a\in (OA)$ and $w_a$ is tangent to $BC$ at $D.$ Prove that $\frac R{R-\rho}\ge \frac {4bc}{a^2}.$

Proof. Let $I$ be the incircle of $\triangle ABC.$ Prove easily that $D\in AI,$ $O_aD=O_aA=\rho$ and $O_aD\parallel OS,$ where $AI\cap w=\{A,S\}.$ Observe that $\triangle ABS\sim\triangle ADC,$ i.e. $\frac {AB}{AD}=\frac {AS}{AC}\iff$

$\boxed{AD\cdot AS=AB\cdot AC}\ (1).$ In conclusion, $\frac R{R-\rho}=$ $\frac {OA}{OA-O_aA}=$ $\frac {OA}{O_aO}=$ $\frac {SA}{SD}=$ $\frac {AS\cdot AD}{SD\cdot AD}\ \stackrel{(1)}{=}\ \frac {AB\cdot AC}{DB\cdot DC}=$ $\frac {\cancel b\cancel c}{\frac {\cancel ca}{b+c}\cdot\frac {\cancel ba}{b+c}}=$ $\frac {(b+c)^2}{a^2}\ge\frac {4bc}{a^2}$ $\implies$ $\frac R{R-\rho}\ge \frac {4bc}{a^2}.$ Nice and easy problem!



P7. Let $\triangle ABC$ with midpoint $M$ of $[BC],$ altitude $AD$ where $D\in (BC)$ and incircle $\mathbb C(I,r)$ where $E\in BI\cap AC,$ $F\in CI\cap AB.$ Prove that $MI\cap EF\cap AD\ne \emptyset\iff A=90^{\circ}$ (Zaslavsky).

Proof. Let $R\in MI\cap AD,$ $S\in EF\cap AD,$ $J\in AI\cap BC.$ Suppose w.l.o.g. $b>c.$ Observe that $\frac {JB}c=\frac {JC}b=\frac a{b+c},$ $\frac {IA}{IJ}=\frac {BA}{BJ}=\frac c{\frac {ac}{b+c}}=\frac {b+c}a,$ i.e. $\frac {IA}{IJ}=\frac {b+c}a,$ $MB=MC=\frac a2$

and $MJ=MB-JB=$ $\frac a2-\frac {ac}{b+c}=$ $\frac {a(b-c)}{2(b+c)} \implies \boxed{MJ=\frac {a(b-c)}{2(b+c)}}\ (1).$ From $AD\perp BC\iff AC^2-AB^2=DC^2-DB^2$ obtain that $b^2-c^2=(DC+DB)(DC-DB)=$

$a\left[(MD+MC)-(MB-MD)\right]=$ $2a\cdot MD,$ i.e. $\boxed{MD=\frac {b^2-c^2}{2a}}\ (2).$ Thus, $\boxed{\frac {MJ}{MD}\ \stackrel{1\wedge 2}{=}\ \left(\frac a{b+c}\right)^2}\ (*)\ .$ Apply the Menelaus's theorem to $\overline{MIR}/\triangle ADJ\ :\ \frac {MJ}{MD}\cdot\frac {RD}{RA}\cdot\frac {IA}{IJ}=1\ \stackrel{*}{\iff}$

$\frac {a^2}{(b+c)^2}\cdot \frac {RD}{RA}\cdot \frac {b+c}a=1$ $\iff$ $\frac {RA}{RD}=\frac a{b+c}$ $\iff$ $\frac {RA}a=\frac {RD}{b+c}=$ $\frac {h_a}{2s}=\frac {ah_a}{2as}=$ $\frac {2rs}{2as}=\frac ra,$ i.e. $\boxed{RA=r}\ (3).$ Apply Cristea's identity $\boxed{\frac {SD}{SA}\cdot BC=\frac {FB}{FA}\cdot DC+\frac {EC}{EA}\cdot DB}$

i.e. $\frac {SD}{SA}\cdot a=\frac ab\cdot DC+\frac ac\cdot DB\iff$ $\frac {SD}{SA}=\frac {DC}b+\frac {DB}c=\cos C+\cos B\implies$ $\frac {h_a}{SA}=1+\cos B+\cos C\iff$ $\boxed{SA=\frac {h_a}{1+\cos B+\cos C}}\ (4).$ Hence $MI\cap EF\cap AD\ne \emptyset\iff$

$S\equiv R\iff$ $SA=RA\iff$ $h_a=r(1+\cos B+\cos C)\iff$ $2sr=ar(1+\cos B+\cos C)\iff$ $b+c=a(\cos B+\cos C)\
 \stackrel{5}{\iff}\ (\underline{\underline{a\cos C}}+c\cos A)+$ $(\underline{a\cos B}+b\cos A)=$

$a(\underline{\cos B}+\underline{\underline{\cos C}})$ $\iff$ $(b+c)\cos A=0$ $\iff$ $A=90^{\circ}\ .$ In conclusion, $MI\cap EF\cap AD\ne \emptyset\iff A=90^{\circ}\ .$ I used and the identities $\boxed{a=b\cdot\cos C+c\cdot\cos B}\ (5)$ a.s.o.


An easy extension (own). For $\triangle ABC$ denote $:$ the midpoint $M$ of the side $[BC]\ ;$ the point $D\in (BC)$ so that $AD\perp BC\ ;$ the incenter $I$ for which denote

$J\in AI\cap BC\ ;$ a point $X\in (AJ)$ for which denote $E\in BX\cap AC\ ,$ $F\in CX\cap AB$ and $S\in EF\cap AD\ .$ Prove that $X\in MS\iff  A=90^{\circ}\ .$


Proof. Denote the ratios $\frac {XA}{XJ}=k,$ $\frac {EA}{EC}=u$ and $\frac {FA}{FB}=v.$ From the Aubel's relation obtain $u+v=k$ and from the Menelaus' relation obtain that $\frac {JB}{JC}\cdot\frac {EC}{EA}\cdot \frac {FA}{FB}=1$ $\iff$ $\frac cb\cdot \frac vu=1\iff$

$\boxed{\frac uc=\frac vb=\frac k{b+c}}\ (1)\ .$ Apply the Cristea's relation for $S\in EF\cap AD\ :\ \frac {SD}{SA}\cdot BC=\frac {FB}{FA}\cdot DC+\frac {EC}{EA}\cdot DB,$ i.e. $\frac {SD}{SA}\cdot a=\frac {b\cdot\cos C}v\cdot DC+\frac {c\cdot\cos C}u=\frac {b+c}k\cdot\left(\cos B+\cos C\right)\iff$

$\boxed{\frac {SD}{SA}=\frac {(b+c)\left(\cos B+\cos C\right)}{ka}}\ (2)\ .$ Menelaus' theorem $:\ X\in MS\iff$ $\frac {MJ}{MD}\cdot \frac {SD}{SA}\cdot\frac {XA}{XJ}=1$ $\iff$ $\frac {a^{\cancel 2}}{(b+c)^{\cancel 2}}\cdot \frac {(\cancel{b+c})\left(\cos B+\cos C\right)}{\cancel k\cancel a}\cdot \cancel k=1\iff$ $\boxed{a(\cos B+\cos C)=b+c}\ (3).$

Apply the identities $\boxed{a=b\cdot\cos C+c\cdot\cos B}$ to the relation $(3)\ :\ a\cdot\cos B+a\cdot \cos C=b+c\iff$ $(\cancel c-b\cdot \cos A)+(\cancel b-c\cdot \cos A)=\cancel{b+c}\iff\cos A=0\iff A=90^{\circ}\ .$


An difficult extension (own). For an interior point $X$ of $\triangle ABC$ denote $J\in AX\cap BC,$ $E\in BX\cap AC$ and $F\in CX\cap AB.$ Prove that for any points $D\in (JB)$ and $M\in (JC)$

there is the following equivalence $\boxed{X\in MS\iff \frac {DB}{DC}\cdot\frac {MB}{MC}=\left(\frac {JB}{JC}\right)^2}\ ,$ where $S\in EF\cap AD.$
See the extension of the proposed problem P1 from here.

Remark. The previous extension is a particular case of the upper estension. Indeed, $\frac {DB}{DC}=\frac {c\cdot\cos B}{b\cdot\cos C}\ ,$ $MB=MC$ and $\frac {JB}{JC}=\frac cb.$ In conclusion, $X\in MS\iff$

$\frac {c\cdot\cos B}{b\cdot\cos C}=\left(\frac cb\right)^2\iff$ $b\cdot\cos B=c\cdot\cos C\iff$ $\sin 2B=\sin 2C\iff$ $B=C\ \vee\ 2B+2C=180^{\circ}\iff$ $B=C\ \vee\ B+C=90^{\circ}\iff b=c\ \vee\ A=90^{\circ}\ .$



P8 (M.O. Sanchez). Let $:\ \triangle ABC$ with $AB\perp AC\ ;$ $D\in BC\ ,$ $AD\perp BC\ ;$ the midpoint $M$ of $[AB]\ ;$ $E\in AD\cap CM\ ;$ $m\left(\widehat{ACM}\right)=2\cdot m\left(\widehat{BCM}\right).$ Find the ratio $\frac {DB}{DC}\ .$

Proof 1 (trigonometric). Denote $m\left(\widehat{BCM}\right)=x\implies$ $m\left(\widehat{ACM}\right)=2x$ and $C=3x\ .$ Thus, $MA=MB\iff$ $b\cdot\sin 2x=a\sin x\iff$ $\frac ba\cdot 2\sin x\cos x=\sin x\iff$

$\boxed{2\cos 3x\cos x=1}\ (1)\iff$ $\cos 4x+\cos 2x=1$ $\iff$ $2\cos ^22x+\cos 2x-2=0\iff$ $\boxed{\cos 2x=\frac {-1+\sqrt {17}}4}\ (2)\ .$ Hence $\frac {DB}{DC}=\frac {a\cdot DB}{a\cdot DC}=$ $\left(\frac cb\right)^2=$ $\tan^2C=$

$\tan^23x=$ $\frac 1{\cos^23x}-1\ \stackrel{(1)}{=}\ 4\cos^2x-1=$ $2(1+\cos 2x)-1=$ $1+2\cos 2x\ \stackrel{(2)}{=}\ 1+2\cdot \frac {-1+\sqrt {17}}4=$ $1+\frac {-1+\sqrt {17}}2=$ $\frac {1+\sqrt {17}}2\implies$ $\boxed{\frac {DB}{DC}=\frac {1+\sqrt {17}}2}\ ;\ $

Proof 2 (synthetic).


P9. Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Prove that the area of one of the triangles $AOH$, $BOH$ and $COH$ is equal to the sum of the areas of the other two.

Proof. Suppose w.l.o.g. $a\le b\le c\ ,$ i.e. $A\le B\le C\ .$ Thus, $m\left(\widehat{OAB}\right)=m\left(\widehat{HAC}\right)=90^{\circ}-C$ and $m\left(\widehat{OAH}\right)=A-m\left(\widehat{OAB}\right)-m\left(\widehat{HAC}\right)=A-2\cdot \left(90^{\circ}-C\right)=C-B\implies$

$\boxed{m\left(\widehat{OAH}\right)=C-B}\ (*)\ .$ Therefore, $[AOH]=\frac 12\cdot AO\cdot AH\cdot \sin \widehat {OAH}=$ $\frac 12\cdot R\cdot 2R\cos A\cdot \sin(C-B)=$ $R^2 \cdot\cos(B+C)\cdot\sin (B-C)=$ $\frac 12\cdot R^2\cdot (\sin 2B-\sin 2C)$ a.s.o.

In conclusion, $a\le b\le c\implies$ $A\le B\le C<90^{\circ}\implies$ $180^{\circ}-2A\ge 180^{\circ}-2B\ge 180^{\circ}-2C>0\implies$ $\frac {R^2}2=\frac {[AOH]}{\sin 2B-\sin 2C}=$ $\frac {[BOH]}{\sin 2A-\sin 2C}=$ $\frac {[COH]}{\sin 2A-\sin 2B}=$

$\frac {[AOH]+[COH]}{\sin 2A-\sin 2C}$ $\implies$ $[BOH]=[AOH]+[COH]\ .$

Remark 1. $16S[AOH]=\left(b^2+c^2-a^2\right)\cdot \left|b^2-c^2\right|$ a.s.o. So $a<b<c\implies$ $\left\{\begin{array}{ccc}
\left(b^2+c^2-a^2\right)\left(c^2-b^2\right)=16S[AOH]\\\\
\left(c^2+a^2-b^2\right)\left(c^2-a^2\right)=16S[BOH]\\\\
\left(a^2+b^2-c^2\right)\left(b^2-a^2\right)=16S[COH]\end{array}\right\|\implies$ $\frac {[AOH]+[COH]-[BOH]}{16S}=$ $\left(b^2+c^2-a^2\right)\left(c^2-b^2\right)+$

$\left(a^2+b^2-c^2\right)\left(b^2-a^2\right)- \left(c^2+a^2-b^2\right)\left(c^2-a^2\right)=$ $\left(c^4-b^4\right)+a^2\left(b^2-c^2\right)+\left(b^4-a^4\right)+c^2\left(a^2-b^2\right)-\left(c^4-a^4\right)+b^2\left(c^2-a^2\right)=0\implies$ $[BOH]=[AOH]+[COH]\ .$


Remark 2. If $a<b<c\ ,$ then $\left\{\begin{array}{cc}
\bullet & [AOH]=[AOC]-[AOB]\\\\
\bullet & [BOH]=[BOC]-[AOB]\\\\
\bullet & [COH]=[BOC]-[AOC]\end{array}\right\|\implies [AOH]+[COH]=$ $(\cancel{[AOC]}-[AOB])+([BOC]-\cancel{[AOC]})=$ $[BOC]-[AOB]=[BOH]\ .$



P10 (Cosmin Pohoata). Let $a$ be positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+ax+a^{2}-6=0$ has no real solutions.

Proof I (generally). Show easily that $\left \{\begin{array}{c}f\ : \ (0,\infty )\rightarrow\mathcal R\\\\ f(x)=x^{2}(x+1)\end{array}\right\|$ is strict $(\uparrow )$. Thus $ f\left(\frac{1}{a}\right)=\frac{1}{6}$, i.e. $ a^{3}=6(a+1)$ has at most one positive root. Observe that for $ \left\{\begin{array}{c}g\ : \ (0,\infty )\rightarrow \mathcal R\\\\ g(a)=a^{3}-6(a+1)\end{array}\right\|$ there is the

relation $ g(2\sqrt 2)=2(2\sqrt 2-3)<0<3=g(3)$, i.e. $ g(2\sqrt 2)<0<g(3)$. In conclusion, the single root $ a\in (2\sqrt 2, 3)$. The equation $ x^{2}+ax+a^{2}-6=0$ has no real roots iff $ a^{2}> 8$, what is truly.

Proof II. $ f(a)=a^{3}-6(a+1)$ $ \implies$ $ f(0)\cdot f(3)<0$ $ \implies$ $ (\exists)\ a>0$ so that $ a^{3}=6(a+1)$. But $ 0<a\le 2\sqrt 2$ $ \implies$ $ a^{2}\le 8\implies a^{3}\le 8a$ $ \implies 6(a+1)\le 8a\implies 3\le a$, what is falsely.

Thus $ a>2\sqrt 2$ and $ a\ge 3\implies$ $ a^{3}\ge 3a^{2}\implies$ $ 6(a+1)\ge 3a^{2}\implies$ $ 3a\le a^{2}\le 2(a+1)\implies$ $ a\le 2$, what is falsely. Hence $ a<3$. Thus, $ a\in \left(2\sqrt 2,3\right)$ and $ x^{2}+ax+a^{2}-6=0$ has no real

roots iff $ a^{2}> 8$, what is truly. Hencr $ a^{3}-8=6a+6-8=2(3a-1)\implies \left(a-2\sqrt 2\right)(3a-1)>0$ $ \implies a\in \left(0,\frac{1}{3}\right)\cup \left(2\sqrt 2,\infty \right)$. If $ a\in \left(0,\frac{1}{3}\right)$ then $ 6<6(a+1)=a^{3}<\frac{1}{27}$ $ \implies$

$ 6<\frac{1}{27}$, what is falsely. In conclusion, $ a>2\sqrt 2$ a.s.o.



P11. Let $ \triangle ABC$ with $b=c$ . The bisectors of $\widehat{CAB},$ $\widehat{ABC}$ meet $ BC,$ $CA$ at $ D,$ $E$ respectively. Let $ K$ be the incentre of $\triangle ADC$ and $m\left(\widehat{BEK}\right)=45^{\circ}.$ Find all possible values of $m\left(\widehat{CAB}\right).$

Proof. Let $ \boxed {\ A = 4x\ }.$ Thus, $ \left\|\begin{array}{cc} \triangle IDC\ : & \frac {KI}{KC} = \frac {DI}{DC} = \tan \widehat {DCI} = \tan \left(45^{\circ} - x\right) \\
 \\
\triangle IEC\ : & \frac {KI}{KC} = \frac {\sin\widehat {ECI}}{\sin\widehat {EIC}}\cdot \frac {\sin\widehat {KEI}}{\sin\widehat {KEC}} = \frac {\sin\left(45^{\circ} - x\right)}{\sin \left(90^{\circ} - 2x\right)}\cdot\frac {\sin 45^{\circ}}{\sin 3x}\end{array}\right\|\ \implies$ $ \cos\left(45^{\circ} - x\right)\sin 45^{\circ} =$ $ \sin 3x\cos 2x\ \Longleftrightarrow\ \cos x + \sin x =$

$ 2\sin 3x\cos 2x = \sin 5x + \sin x\ \Longleftrightarrow$ $ \cos x = \cos\left(90^{\circ} - 5x\right)\ \Longleftrightarrow\ \left(\ x = 90^{\circ} - 5x\ \right)\ \ \vee\ \ \left(\ x + 90^{\circ} - 5x = 0\ \right)$ $ \stackrel{(A=4x)}{\ \Longleftrightarrow\ }\boxed {\ A\ \in\ \{\ 60^{\circ}\ ,\ 90^{\circ}\ \}\ }$ .


An easy extension. Let $ \triangle ABC$ with the incentre $ I$ . Denote $ D\in AI\cap BC$ , $ E\in BI\cap AC$ and the incentre $ K$ of $ \triangle ADC$ . Prove that $ \widehat {B E K}\equiv\widehat {ADK}\ \implies\ A\ \in\ \{B\ ,\ 2C\ \}$ .

Proof. $ \left\|\begin{array}{cc} \triangle IDC\ : & \frac {KI}{KC} = \frac {DI}{DC} = \frac {\sin \widehat {DCI}}{\sin\widehat {DIC}}=\frac {\sin \frac C2}{\sin\left(90^{\circ}-\frac B2\right)}\\
 \\
\triangle IEC\ : &{ \frac {KI}{KC} = \frac {\sin\widehat {ECI}}{\sin\widehat {EIC}}\cdot \frac {\sin\widehat {KEI}}{\sin\widehat {KEC}} = \frac {\sin\frac C2}{\sin\frac {B+C}{2}}\cdot\frac {\sin \frac {A+2B}{4}}{\sin \frac {3A}{4}}}\end{array}\right\|\ \implies$ $ \cos\frac B2\sin\left(\frac A4+\frac B2\right)=\cos \frac A2\sin\frac {3A}{4}\ \Longleftrightarrow\ \cos\left(\frac A4+B\right)+\sin\frac A4=$

$ \sin\frac {5A}{4}+\sin\frac A4 \Longleftrightarrow$ $ \cos\left(\frac A4+B\right)=$ $ \sin\frac {5A}{4}$ $ \Longleftrightarrow$ $ \left(\frac A4+B=\frac {5A}{4}\right)\ \ \vee\ \ \left(\frac A4+B+\frac {5A}{4}=180^{\circ}\right)$ $ \Longleftrightarrow$ $ \boxed {\ A\ \in\ \left\{\ B\ ,\ 2C\ \right\}\ }$
.


$\boxed{\begin{array}{c}
\underline{\mathrm{Proposed\ problem}}.\ \mathrm{Prove\ that}\ \forall\ \{a,b,c\}\subset\mathbb R^*_+\ \mathrm{and}\ a+b+c=1\ \implies\ \frac{a^2+a}{a+bc}+\frac{b^2+b}{b+ca}+\frac{c^2+c}{c+ab}=3\\\\
\underline{\mathrm{Proof}}.\ \mathrm{I"ll\ use\ the\ following\ identities\ :}\ a+bc=a(a+b+c)+bc=(a+b)(a+c)\ (1)\ \mathrm{and}\ \sum a^2(b+c) = \sum bc(b+c)\ (2).\ \mathrm{Hence:}\\\\ 
\sum \left(\frac {a^2+a}{a+bc}-1\right)\ \stackrel {(1)}{=}\ \sum \frac {a^2-bc}{(a+b)(a+c)}=\frac 1{\prod (b+c)}\cdot \sum \left(a^2-bc\right)(b+c)=\frac 1{\prod (b+c)}\cdot \left[\sum a^2(b+c)-\sum bc(b+c)\right]\ \stackrel{(2)}{=}\ 0\ \end{array}}$.



$\boxed{\begin{array}{ccc}
\mathrm{E.N.} & \mathrm{A-right}\ \triangle ABC\ ,\ \left|\begin{array}{ccc}
D\in BC & \mathrm{so\ that} & AD\perp BC\\\\
E\in AB &  \mathrm{so\ that} & DE\perp AB\end{array}\right|\ \mathrm{and}\ AD=h\ .\ \mathrm{Then\ there\ is\ the\ relation}\  h^2=b\cdot DE\ .\\\\
\mathrm{Proof.} & \mathrm{Indeed,}\ \triangle ADE\sim \triangle CAD\ \iff\ \frac {AD}{CA}=\frac {DE}{AD}\ \iff\ \frac hb=\frac {DE}h\ \iff\ h^2=b\cdot DE\ \ \mathrm{(sesiunea\ 2017)\ .}\end{array}}$


P12. Let $\triangle$ $ABC$ with the $A$-excircle $w_a=\mathbb C\left(I_a,r_a\right)$ what touches $AB$ at $T$ and the midpoints $M\ ,\ S$ of $[AB]\ ,\ [CT]$ respectively. Prove that $I_a\in MS\
 .$

Proof. Denote $P\in MS\cap BC,$ $D\in AI\cap BC$ and $F\in CI\cap AB,$ where is well-known that $\boxed{\frac {IC}{IF}=\frac {a+b}c}\ (*).$ Apply the Menelaus' theorem to the transversal $\overline{MPS}/\triangle BCT :$

$\frac {MB}{MT}\cdot \frac {\cancel{ST}}{\cancel{SC}}\cdot \frac {PC}{PB}=1\iff$ $\frac {PC}{PB}=\frac {MT}{MB}=\frac{s-\frac c2}{\frac c2}=\frac {a+b}c\ \stackrel{(*)}{=}\ \frac {IC}{IF}\implies PI\parallel AB$ and $\frac {PB}c=\frac {PC}{a+b}=\frac a{a+b+c}\ .$ Observe that $PI\parallel AB\implies\frac {PB}{PD}\ \stackrel {(*)}{=}\ \frac {IA}{ID}=\frac {b+c}a\ .$

Let $\triangle ABD$ and $M\in AB\ ,\ P\in BD$ and $I_a\in DA.$ Observe that $\frac {I_aD}{I_aA}\cdot\frac {\cancel{MA}}{\cancel{MB}}\cdot\frac {PB}{PD}=$ $\frac {r_a}{h_a+r_a}\cdot\frac {b+c}a=$ $\frac {r_a(b+c)}{ah_a+ar_a}=\frac {\cancel{r_a}(b+c)}{2\cancel{r_a}(s-a)+a\cancel{r_a}}=\frac {b+c}{2(s-a)+a}=1\implies I_a\in MP\equiv MS\ .$

Remark. $(A,D;I,I_a)$ is an harmonical division $\iff$ $\boxed{\frac {AI}{AI_a}=\frac {DI}{DI_a}\iff \frac {s-a}{s}=\frac r{r_a}}\iff$ $\boxed{\frac {IA}{ID}=\frac {I_aA}{I_aD}\iff\frac {b+c}a=\frac {r_a+h_a}{r_a}}\iff$ $\boxed{\widehat{IBA} \equiv \widehat{IBD}\ \mathrm{and}\ BI_a \perp BI}\ .$



P13. What is greater between $a=\sqrt 3^{{\sqrt 5}^{\sqrt 5}}$ and $b=\sqrt 5^{{\sqrt 3}^{\sqrt 3}}\ ?$ Answer : $a\ >\ b\ .$

Proof. In conclusion, $a=\sqrt 3^{{\sqrt 5}^{\sqrt 5}}\ \ \wedge\ \ b=\sqrt 5^{{\sqrt 3}^{\sqrt 3}}\ \implies\ 
a\ >\ b\ \mathrm{(with\ derivatives).}$


P14 (Kunihiko Chikaya). Let $\{a,b,c,d,k\}\in\mathbb R_+^*$ be the five positive constants. Find the range of the function $f(x,y)=ax+by,$ where $(x,y)\in \mathbb R^2$ and $cx^2+dy^2=k\ .$

Proof. $(ax+by)^2=\left(\frac a{\sqrt c}\cdot x\sqrt c +\frac b{\sqrt d}\cdot y\sqrt d\right)\ \stackrel{C.B.S}{\le}\ \left[\left(\frac a{\sqrt c}\right)^2+\left(\frac b{\sqrt d}\right)^2\right]\cdot\left[\left(x\sqrt c\right)^2+\left(y\sqrt d\right)^2\right]=$ $\left(\frac {a^2}c+\frac {b^2}d\right)\cdot\left(cx^2+dy^2\right)\iff$ $|ax+by|\le \sqrt {k\cdot\left(\frac {a^2}c+\frac {b^2}d\right)}\ .$ Particular case. For $k=cd$ obtain that $\frac {x^2}d+\frac {y^2}c=1\implies$ $|ax+by|\le \sqrt {da^2+cb^2}\ .$


P15 (Generalization). Let $\triangle ABC$ with $AB=1$ and ${M,N}$ so that $\left\{\begin{array}{ccc}
B\in (MC) & ; & MB=b\\\\
C\in (BN) & ; & CN=c\end{array}\right\|$ and $m\left(\widehat{MAN}\right)=\phi\ge 60^{\circ}\ .$ Prove that $\boxed{(2bc+b+c-1)\tan\phi +(b+c+1)\sqrt 3=0}\ (*)\ .$


Proof. $S=[ABC]\ \stackrel{AB=1}{\implies}\  S=\frac {\sqrt 3}4$ and $\left\{\begin{array}{ccc}
AM=u & ; & m\left(\widehat{BAM}\right)=x\\\\
AN=v & ; & m\left(\widehat{CAN}\right)=y\end{array}\right\|\ ,$ where $x+y+\left(60^{\circ}-\phi\right)=0$ $\implies$ $\boxed{\tan x+\tan y+\tan\left(60^{\circ}-\phi\right)=\tan x\cdot \tan y\cdot\tan\left(60^{\circ}-\phi\right)}\ (1)\ .$

Apply the generalized Pythagoras' theorem to $:\ \left\{\begin{array}{ccc}
\triangle ABM\ : & u^2=b^2+b+1\\\\
\triangle ACN\ : & v^2=c^2+c+1\end{array}\right\|\ (2)\ .$ Observe that $\frac {S_1}b=\frac {S_2}c=S=\frac {\sqrt 3}4\ (3)\ .$ I"ll use identity $\boxed{4S=\left(b^2+c^2-a^2\right)\tan A}$ for any $\triangle ABC\ :$

$\left\{\begin{array}{cccccc}
\triangle ABM\ : & 4S_1=\left(u^2+1-b^2\right)\tan x & \stackrel{2\wedge 3}{\implies} & \cancel 4\cdot\frac {b\sqrt 3}{\cancel 4}=(b+2)\tan x & \implies & \tan x=\frac {b\sqrt 3}{b+2}\\\\
\triangle ACN \ : & 4S_2=\left(v^2+1-c^2\right)\tan y & \stackrel{2\wedge 3}{\implies}  & \cancel 4\cdot\frac {c\sqrt 3}{\cancel 4}=(c+2)\tan y & \implies  & \tan y=\frac {c\sqrt 3}{c+2}\end{array}\right\|\ \stackrel{(1)}{\implies}\ \frac {b\sqrt 3}{b+2}+\frac {c\sqrt 3}{c+2}+\frac {\sqrt 3-\tan\phi}{1+\sqrt 3\tan\phi}=$ $\frac {b\sqrt 3}{b+2}\cdot \frac {c\sqrt 3}{c+2}\cdot\frac {\sqrt 3-\tan\phi}{1+\sqrt 3\tan\phi}$ $\implies$

$b\sqrt 3(c+2)\left(1+\sqrt 3\tan\phi\right)+c\sqrt 3(b+2)\left(1+\sqrt 3\tan\phi\right)+(b+2)(c+2)\left(\sqrt 3-\tan\phi\right)=3bc\left(\sqrt 3-\tan\phi\right)\implies$ $\left[3b(c+2)+3c(b+2)-(b+2)(c+2)+3bc\right]\tan\phi +$

$\sqrt 3\left[b(c+2)+c(b+2)+(b+2)(c+2)-3bc\right]=0\implies$ $\left[8bc+4(b+c)-4\right]\tan\phi +4\sqrt 3(b+c+1)=0\implies$ $(2bc+b+c-1)\tan\phi +\sqrt 3(b+c+1)=0\ .$

Particular cases. $\left\|\begin{array}{ccccc}
1\blacktriangleright\ \phi =90^{\circ} & \implies & x+y=30^{\circ} & \implies &
 2bc+b+c=1\\\\
2\blacktriangleright\ \phi =120^{\circ} & \implies & x+y=60^{\circ} & \implies &
 bc=1\end{array}\right\|\ \ \wedge\ \ \left\|\begin{array}{ccccc} 
3\blacktriangleright\ \phi =135^{\circ} & \implies & x+y=75^{\circ} & \implies &
\frac {b+c+1}{bc-1}=\sqrt 3+1\\\\  
4\blacktriangleright\ \phi =150^{\circ} & \implies & x+y=90^{\circ} & \implies &
 b+c+2=bc\end{array}\right\|\ .$

Remark. If in the last particular case $c=2b\ ,$ then $2b^2-3b-2=0\implies (b-2)(2b+1)=0\implies b=2\ ,$ i.e. $MB=2\cdot AB\ .$ See the proposed problem P14 from (
here).


P16 (Nelson Deza Velasquez). Let $\triangle ABC$ with the incentre $I$ and the $B$-excentre $I_b\ .$ Prove that $II_b=2c\iff B=2C$ (standard notations).

Proof. Can prove that $\boxed{B=2C\iff b^2=c(c+a)}\ (*)\ .$ Cyclic $AICI_b$ has diameter $[II_b]\implies$ $b=II_b\sin\widehat{AI_bC}\implies$ $\boxed{b=II_b\cdot\cos\frac B2}\ (1)\ .$ Thus, $II_b=2c\ \stackrel{(*)}{\iff}\ b=2c\cdot\cos\frac B2\iff$

$b^2=4c^2\cdot\frac {s(s-b)}{ac}\iff$ $ab^2=4cs(s-b)\iff$ $ab^2=c\left[(a+c)^2-b^2\right]\iff$ $ab^2=c(a+c)^2-b^2c\iff$ $b^2(a+c)=c(a+c)^2\iff$ $b^2=c(a+c)\ \stackrel{(*)}{\iff}\ B=2C\ .$ In conclusion,

$II_b=2c\iff B=2C\ .$ Otherwise. If $X\ ,$ $Y$ are the projections on $AB$ of $I\ ,$ $I_b\ ,$ then $XY=BY-BX=s-(s-b)=b\ ,\ XY=II_b\cos\widehat{ABI_b}\implies$ $\boxed{b=II_b\cos\frac B2}$ a.s.o.

Remark. I"ll prove the equivalence $(*)\ .$ If denote $E\in BI\cap AC\ ,$ then $\frac {EA}c=\frac {EC}a=\frac b{c+a}\implies$ $EC=\frac {ab}{a+c}\ (1)\ .$ Hence $B=2C\iff $

$\triangle BEC\sim\triangle CBA\iff$ $\frac {BC}{CA}=\frac {EC}{BA}\iff$ $\frac ab=\frac {EC}c\ \stackrel{(1)}{\iff}\ \frac {\cancel a}b=\frac {\cancel ab}{c(a+c)}\iff\ b^2=c(a+c)\ .$ Hence $B=2C\iff b^2=c(a+c)\ .$



P17 (Adil Abdullayev). Prove $(\forall )\ \triangle ABC$ there is the following inequality $:\ \boxed{\frac {bc}{r_br_c}+\frac {ca}{r_cr_a}+\frac {ab}{r_ar_b}\ge 5-\frac {2r}R}\ (*)\ .$ (standard notations).


Proof. $\frac {bc}{r_br_c}=$ $abc\cdot \frac 1{ar_br_c}=$ $abc\cdot\frac {(s-b)(s-c)}{aS^2}=$ $4Rr\cancel s\cdot\frac 1{a\cancel s(s-a)}=$ $\frac {4Rr}s\cdot \left(\frac 1a+\frac 1{s-a}\right)\implies$ $\boxed{S_0=\frac {4Rr}s\cdot\left(S_1+S_2\right)}\ (1)\ ,$ where $S_0=\sum\frac {bc}{r_br_c}\ ,$ $S_1\equiv\sum \frac 1a$ and $S_2\equiv \sum \frac 1{s-a}\ .$

Thus, $S_1=\sum \frac 1a=\frac {ab+bc+ca}{abc}=\frac {s^2+r^2+4Rr}{4Rrs}\implies$ $\boxed{S_1=\sum \frac 1a=\frac {s^2+r^2+4Rr}{4Rrs}}\ (2)$ and $S_2=\sum\frac 1{s-a}=$ $\frac {\sum (s-b)(s-c)}{\prod (s-a)}=$ $\frac {r(4R+r)}{sr^2}=$ $\frac {4R+r}{sr}\implies$ $\boxed{S_2=\frac {4R+r}{sr}}\ (3)$

From $(2)$ and $(3)$ obtain that $S_0=S_1+S_2=\frac {s^2+r(4R+r)}{4Rrs}+\frac {4R+r}{sr}=$ $\frac {s^2+r(4R+r)+4R(4R+r)}{4Rrs}=\frac {s^2+(4R+r)^2}{4Rrs}\implies$ $S_0=\frac {\cancel{4Rr}}s\cdot\frac{s^2+(4R+r)^2}{\cancel{4Rr}s}=$

$\frac {s^2+(4R+r)^2}{s^2}=1+\left(\frac {4R+r}s\right)^2\implies$ $\boxed{S_0=1+\left(\frac {4R+r}s\right)^2}\ .$ Must to prove only $\boxed{\left(\frac {4R+r}s\right)^2+\frac {2r}R\ge 4}\ (4)\ .$ Hence $\left(\frac {4R+r}s\right)^2+\frac {2r}R\ge 4\iff$

$\frac {(4R+r)^2}{s^2}\ge\frac {2(2R-r)}R\iff$ $s^2\le \frac {R(4R+r)^2}{2(2R-r)}\ ,$ what is the remarkable
Blundon & Gerretsen's inequality (<= click).


P18 (Ruben AUQUI, Peru). Let an O-rightangled $\triangle COD$ and construct the squares $OCBA\ ,$ $ODEF$ so that $O\in (AD)\cap (CF)\ .$ Let $I\in BD\cap CE\ .$ Prove that $OI\perp CD\ .$

Proof. Denote $OA=a\ ,$ $OD=b\ ;\ X\in BD\cap OC\ ,$ $Y\in CE\cap OD\ ;\ P\in OI\cap CD\ ,$ $R\in CD$ so that $OR\perp CD\ .$ Prove easily that $\boxed{\ \frac {XC}{XO}=\frac ab=\frac {YO}{YD}\ }\ (*)$

and $\boxed{\ \frac {RC}{RD}=\frac {a^2}{b^2}\ }\ (1)\ .$ Apply the Ceva's relation to the interior point $I$ of $\triangle COD\ :\ \frac {XC}{XO}\cdot\frac {YO}{YD}\cdot\frac {PD}{PC}=1\stackrel{*}{\iff} \frac {PC}{PD}=\frac {a^2}{b^2}\stackrel{(1)}{=}\frac {RC}{RD}\iff P\equiv R\iff$ $OI\perp CD.$

$$\mathrm{END}$$
This post has been edited 504 times. Last edited by Virgil Nicula, Mar 14, 2019, 3:01 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404427
  • Total comments: 37
Search Blog
a