275. Some interesting algebraic equations and systems.

by Virgil Nicula, May 8, 2011, 1:34 PM

I. Exercises. Solve for $x\in\mathbb R$ the following equations : $\left\{\begin{array}{cc}
\mathrm{Eq.\ 1\ :} & 4x-x^2=3 \sqrt{4-3\sqrt{10-3x}}\ .\\\\
\mathrm{Eq.\ 2\ :} & \sqrt[3]{1-x}+\sqrt[3]{1+x}=\frac {x^2+2}{\sqrt{x^2+1}}\ .\end{array}\right\|$

Proof of Eq. 1. Observe that $\left\{\begin{array}{ccccccc}
4x-x^2\ge 0 & \iff & 0 & \le & x & \le & 4\\\\
10-3x\ge 0 & \iff & & & x & \le  & \frac {10}{3}\\\\
3\sqrt{10-3x}\le 4 & \iff & \frac {74}{27} & \le &  x & &\end{array}\right\|\ \implies\ 2<\frac {74}{27}\le x\le\frac {10}{3}<4$ . Denote

$f(x)=x^2-4x+3 \sqrt{4-3\sqrt{10-3x}}$ , where $x\in [2,4]$ . Observe that $f=g+h$ , where the functions $g(x)=x^2-4x$ , $h(x)=3 \sqrt{4-3\sqrt{10-3x}}$

are strict increasing on $[2,4]$ . Hence and the function $f$ is strict increasing. Since $f(3)=0$ obtain that our equation $f(x)=0$ has at most one zero , i.e. $x=3$ .

Proof of Eq. 2. Denote the solution-set $S$ of this equation. Observe that $x\in S\iff -x\in S$ . Thus, can suppose w.l.o.g. that $x\ge 0$ . From the A.M.-G.M. inequality

obtain that $\frac {x^2+2}{\sqrt{x^2+1}}=\sqrt{x^2+1}+\frac {1}{\sqrt{x^2+1}}\ge 2$ for any $x\in\mathbb R$ with equality iff $x=0$ . If $x\in (0,1)$ , then $\sqrt[3]{1-x}+\sqrt[3]{1+x}<2$ . Hence our equation

hasn't zeroes in $(-1,1)^*$ . For $x\ge 1$ we have $\frac {x^2+2}{\sqrt{x^2+1}}=$ $\sqrt{x^2+1}+\frac {1}{\sqrt{x^2+1}}>$ $\sqrt{x^2+1}>$ $\sqrt[3]{x^2+1}\ge$ $ \sqrt[3]{x+1}\ge $ $\sqrt[3]{x+1}+\sqrt[3]{1-x}$ , absurd.

In conclusion, our equation has only unique zero $x=0$ .



II. Exercises. Solve for $x\in\mathbb R$ the following equations : $\left\{\begin{array}{cc}
\mathrm{Eq.\ 3\ :} & 4^x-3^x=\tan\frac {\pi}{12}\ .\\\\
\mathrm{Eq.\ 4\ :} & 7^x=294x-539\ .\\\\
\mathrm{Eq.\ 5\ :} & 2^x+2^{\sqrt{1-x^2}}=3\ .\end{array}\right\|$ .

Proof of Eq. 3. Since $\tan\frac {\pi}{12}=2-\sqrt 3>0$ obtain that $4^x>3^x\iff x>0$ and $\frac 12\in\mathrm S$ - solution-set. Our equation begins $3^x\cdot\left[\left(\frac 43\right)^x-1\right]=2-\sqrt 3$ ,

where $x>0$ , $3^x>1$ and $\left(\frac 43\right)^x-1>0$ . Since the functions $f(x)=3^x$ and $g(x)=\left(\frac 43\right)^x-1$ are positive and strict increasing on $[0,\infty )$ obtain that and

their product $f\cdot g$ is positive and strict increasing on $[0,\infty )$ . In conclusion, our equation $f(x)\cdot g(x)=2-\sqrt 3$ has only the zero $x=\frac 12$ .

Proof of Eq. 4. Consider the functions $f(x)=7^x$ , $g(x)=294x-539$ (straight line) , where $x\in\mathbb R$ . Observe that our equation becomes $f(x)=g(x)$ , where

$f(2)=g(2)$ and $f(3)=g(3)$ . Since the function $f$ is convex obtain that for any $x\in (2,3)$ we have $f(x)<g(x)$ and for any $x\not \in [2,3]$ we have $f(x)>g(x)$ .

In conclusion, our equation has only two zeroes , $x_1=2$ and $x_2=3$ .

Proof of Eq. 5. Prove easily that $\{0,1\}\subset S\subset [0,1]$ , where $S$ is the solution-set.

For $x\in (0,1)$ apply the A.M.-G.M.-inequality : $\left\{\begin{array}{c}
2^x+2^{\sqrt {1-x^2}}=2\cdot 2^{x-1}+2^{\sqrt {1-x^2}}>3\cdot \sqrt[3]{2^{2(x-1)+\sqrt{1-x^2}}}\equiv 3\cdot u(x)\\\\
2^x+2^{\sqrt {1-x^2}}=2^x+2\cdot 2^{\sqrt {1-x^2}-1}>3\cdot \sqrt[3]{2^{x+2\left(\sqrt{1-x^2}-1\right)}}\equiv 3\cdot v(x)\end{array}\right\|$ . Observe that

$\left\{\begin{array}{ccccc}
u(x)\ge 1 & \iff & \sqrt{1-x^2}\ge 2(1-x) & \iff & \frac 35\le x<1\\\\
v(x)\ge 1 & \iff & 2\cdot \sqrt{1-x^2}\ge 2-x & \iff & 0<x<\frac 45\end{array}\right\|$ $\implies$ $2^x+2^{\sqrt {1-x^2}}>3$ for any $x\in \left(0,\frac 45\right)\cup\left(\frac 35,1\right)=(0,1)$ .



III. Exercises. Solve for $x\in\mathbb R$ the following equations : $\left\{\begin{array}{cc}
\mathrm{Eq.\ 6\ :} & (a+x)^{\log_ab}-(b+x)^{\log_ba}=b-a\ ,\ \mathrm{where}\ a>1\ \mathrm{and}\ b\ge 2a\ .\\\\
\mathrm{Eq.\ 7\ :} & a^x+a^{\frac 1x}=\lambda\ ,\ x>0\ ,\ \mathrm{where}\ a>1\ ,\ \lambda\in\mathbb R\ .\\\\
\mathrm{Eq.\ 8\ :} & 4^x\cdot 9^{\frac 1x}+4^{\frac 1x}\cdot 9^x=210\ .\end{array}\right\|$ .

Proof of Eq. 6. Apply the substitutions $\log_a(a+x)=u$ and $\log_b(b+x)=v$ , i.e. $a+x=a^u$ and $b+x=b^v$ . Our equation becomes $b^u-a^v=b-a\ (*)$

and obtain the following system : $(1)\ \left\{\begin{array}{c}
a+x=a^u\\\
b+x=b^v\\\
b^u-a^v=b-a\end{array}\right\|$ . Thus, $x=a^u-a=b^v-b$ from where results $x\ .s.s.\ (a-1)(u-1)$ and

$x\ .s.s.\ (b-1)(v-1)$ . From $a>1$ , $b>1$ obtain $\boxed{x(u-1)\ge 0}$ and $x(v-1)\ge 0$ . From the first equations of the system $(1)$ obtain that $b-a=b^v-b^u$ .

Thus, the initial equation $(*)$ becomes $b^u-a^v=b^v-a^u$ , i.e. $b^u-b^v=a^v-a^u$ . Since $\left(b^u-b^v\right)\ .s.s.\ (b-1)(u-v)$ and

$\left(a^v-a^u\right)\ .s.s.\ (a-1)(v-u)$ , $a>1$ and $b>1$ obtain that $(u-v)\ .s.s.\ (v-u)$ , i.e. $-(u-v)^2\ge 0$ $\iff$ $u=v$ . Observe that $\frac {a+x}{b+x}=\frac {a^u}{b^v}=\left(\frac ab\right)^u$

and $\frac {a+x}{b+x}-\frac ab=\left(\frac ab\right)^u-\frac ab$ . Denote $E=\frac {a+x}{b+x}-\frac ab$ and $F=\left(\frac ab\right)^u-\frac ab$ . From $E=F$ , $E\ .s.s.\ x(b-a)$ and $F\ .s.s.\ (a-b)(u-1)$ obtain that

$-(a-b)^2x(u-1)\ge 0$ , i.e. $\boxed{x(u-1)\le 0}$ . Thus, $x(u-1)=0$ , i.e. $x=0$ or $u=v=1\implies x=0$ . In conclusion, our equation has only zero $x=0$ .

I denoted $X\ .s.s.\ Y\ \iff\ X=$ $Y=0\ \vee\ XY>0\ \iff\ \mathrm{sign}(X)=\mathrm{sign}(Y)\ \iff$ the real numbers $X$ , $Y$ have same sign.

Proof of Eq. 7. I"ll study the monotony of the function $f(x)=a^x+a^{\frac 1x}$ , $x>0$ with the parameter $a>1$ . Denote $\phi (x)=x+\frac 1x$ , $\psi (x)=x-\frac 1x$ and $b=\sqrt a$ .

Observe that $b>1$ , the function $\phi\ :\ (0,\infty )\rightarrow [2,\infty )$ is strict decreasing on $(0,1]$ and strict increasing on $(1,\infty )$ and the function $\psi\ :\ (0,\infty )\rightarrow\mathbb R$ is strict

increasing. Observe that $f(x)=a^x+a^{\frac 1x}=$ $b^{2x}+b^{\frac 2x}=$ $b^{x+\frac 1x}\left(b^{x-\frac 1x}+b^{\frac 1x-x}\right)=$ $b^{\phi (x)}\left[b^{\psi (x)}+b^{-\psi (x)}\right]$ . Hence $f(x)=b^{\phi (x)}\cdot \phi \left[b^{\psi (x)}\right]$ , where

$x>0$ . If denote $h(x)=b^x$ , where $x>0$ , then $f(x)=h[\phi (x)]\cdot \phi \{h[\psi (x)]\}$ , where the functions $h\circ \phi$ and $\phi\circ h\circ \psi$ are positive.

Since for $x\in (0,1]$ these functions are strict decreasing and positive obtain that and its product $f$ is strict decreasing. Since for $x\in [1,\infty )$ these functions

are strict increasing and positive obtain that and its product $f$ is strict increasing. Therefore, $f(x)\ge 2a$ for any $x>0$ , i.e. $\mathrm{Im}(f)=[2a,\infty )$ .

In conclusion : if $\lambda <2a$ our equation hasn't real zeroes ; if $\lambda =2a$ , then $x=1$ ; if $\lambda >2a$ , then our equation has only two real zeroes.


Proof of Eq. 8. Denote $f(x)=4^x\cdot 9^{\frac 1x}+4^{\frac 1x}\cdot 9^x=210$ , where $x\ne 0$ . Prove easily that for any $x<0$ we have $f(x)<2<210$ . If $x>0$ and $f(x)=210$ ,

then and $f\left(\frac 1x\right)=210$ . Thus can suppose w.l.o.g. that $x>1$ . Observe that $f(2)=f\left(\frac 12\right)=210$ . Our equation becomes $48\cdot \left(4^{x-2}\cdot 3^{\frac {2-x}{x}}-1\right)=$

$162\cdot\left(1-2^{\frac {2-x}{x}}\cdot 9^{x-2}\right)$ , i.e. $8\cdot m(x)=27\cdot n(x)$ , where $m(x)=\left(\frac {4}{3^{\frac 1x}}\right)^{x-2}-1$ and $n(x)=1-\left(\frac {9}{2^{\frac 1x}}\right)^{x-2}$ . Observe that

$m(x)\ .s.s.\ (x-2)\left(4-3^{\frac 1x}\right)\ ,\ n(x)\ .s.s.\ (2-x)\left(9-2^{\frac 1x}\right)$ and the functions $4-3^x$ and $9-2^{\frac 1x}$ are strict increasing. Therefore,

$4-3^{\frac 1x}\ge 4-3=1>0$ and $9-2^{\frac 1x}\ge 9-2=7>0$ . Hence $m(x)\ .s.s.\ x-2$ and $n(x)\ .s.s.\ (2-x)$ .for any $x\ge 1$ , what

means $m(x)=n(x)=0$ and $x=2\in [1,\infty )$ . In conclusion, the solutions of this equation are only $x_1=\frac 12$ and $x_2=2$ .



\[\underline{\overbrace{\alpha\ <\ x_1\ \le\ x_2\ <\ \beta}}\]Lemma. Let $f(x)\equiv ax^2+bx+c=0\ (*)$ be an equation with real coefficients and $a\ne 0$ . Given are two real numbers $\alpha <\beta$ .

Prove that the roots $x_1$ , $x_2$ of $(*)$ are really and $\{x_1,x_2\}\subset (\alpha , \beta )$ $\iff$ $\left\{\begin{array}{c}
\Delta\ge 0\\\\
af(\alpha )>0\\\\
af(\beta )>0\\\\
\alpha<\frac S2<\beta\end{array}\right\|$ , where $\left\{\begin{array}{c}
\Delta=b^2-4ac\\\\
S=x_1+x_2=-\frac ba\end{array}\right\|$ .


Example. $x^2+4x+\lambda =0$ and $\left\{\begin{array}{c}
\alpha=-3\\\
\beta=3\end{array}\right\|\ :\ \left\{\begin{array}{c}
\Delta'(\lambda )=4-\lambda \ge 0\iff \lambda\le 4\\\\
af(-3)=-3+\lambda >0\iff \lambda >3\\\\
af(3)=21+\lambda >0\iff \lambda >-21\\\\
-3<\frac S2<3\iff -6<-4<6\iff \lambda\in \mathbb R\end{array}\right\|\implies$ $\lambda\in (3,4]$ .


IV Exercise. Given positive reals $\{a, b, c\}$ , find all real solutions $(x, y, z)$ of the system $\left\{\begin{array}{c}
ax + by = (x - y)^2\\\\
by + cz = (y - z)^2\\\\
cz + ax = (z - x)^2\end{array}\right\|$ .

Proof. $(x-y)^2+(y-z)^2-(z-x)^2=(ax+by)+(by+cz)-(cz+ax)\iff$ $y^2-2xy-yz+xz=by\iff$ $(y-x)(y-z)=by$ . Our system becomes

$\left\{\begin{array}{c}
(y-x)(y-z)=by\\\\
(z-y)(z-x)=cz\\\\
(x-z)(x-y)=ax\end{array}\right\|\ \bigodot\ \implies\ -(x-y)^2(y-z)^2(z-x)^2=abcxyz$ . Observe that $xyz\le 0$ . Suppose w.l.o.g. $x=\min \{x,y,z\}$ .

Hence $x\le 0$ . If $x<0$ , then $0\le (x-y)(x-z)=ax<0$, what is false. In conclusion, $x=0$ , i.e. $x=y=z=0$ .

Remark. It is the proposed problem nr.13.3/pag.115 (Cap. II - Functii reale de vaiabila reala) from my book

"Analiza Matematica pentru clasa a XI - a. Teorie, exercitii si probleme" - Editura TEORA Educational Bucuresti, 1999.



V. Exercise. $\{a,b,c\}\subset\mathbb R^*_+$ such that $ a(1-b) = b(1-c) = c(1-a)>0\implies$ $a=b=c\ .$

Proof 1. Observe that $\{a,b,c\}\subset (0,1)$ . Appear two cases:

$1.1\blacktriangleright\ \underline{a\le b} \implies 1-b\ge$ $ 1-c \implies  \underline{b\le c} \implies $ $1-c\ge 1-a \implies \underline{c\le a} \implies $ $a\le b\le c\le a \implies \boxed{a=b=c}\ .$

$1.2\blacktriangleright\ \underline{a\ge b} \implies 1-b\le 1-c \implies $ $\underline{b\ge c} \implies 1-c\le 1-a \implies \underline{c\ge a}$ $\implies a\ge b\ge c\ge a \implies \boxed{a=b=c}\ .$

Proof 2. Suppose $a\ne b\ne c\ne a$ . Thus our system becomes $\left\{\begin{array}{c}
(a-b)=b(a-c)\\\
(b-c)=c(b-a)\\\
(c-a)=a(c-b)\end{array}\right|\implies$ $(a-b)(b-c)(c-a)=abc(a-c)(b-a)(c-b)\implies$ $abc=-1$ , false.



VI. Exercise. Solve the following system of equation $\left\{ \begin{array}{c}
   2a+\frac{3}{a}=2b+\frac{3}{b}=2c+\frac{3}{c}\\\\
   a+b+c=4 \end{array}\right\|$ .

Proof. Exists $m\in\mathbb C$ so that $2b+\frac{3}{b}=2a+\frac{3}{a}=2c+\frac{3}{c}=m$ , i.e. $2x^2-mx+3=0\odot\begin{array}{ccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \nearrow\\\\
\searrow & c\end{array}\odot\implies$

at least two from $\{a,b,c\}$ are equally. Suppose w.l.o.g. that $a\ne b=c\implies$ $\left\{\begin{array}{c}
a+2b=4\\\\
a+b=\frac m2\\\\
ab=\frac 32\end{array}\right|\implies$ $\left\{\begin{array}{c}
a=m-4\\\\
b=4-\frac m2\\\\
\left(4-\frac m2\right)\left(m-4\right)=\frac 32\end{array}\right|$ $\implies$

$m^2-12m+35=0$ $\implies$ $m\in\left\{\ 5\ ;\ 7\ \right\}$ . In conclusion, $\{a,b,c\}=\left\{\frac 43\right\}\ \ \vee\ \ \{a,b,c\}=\left\{1;\frac 32\right\}\ \ \vee\ \ \{a,b,c\}=\left\{3;\frac 12\right\}$ .



PP7. Solve the system of equations $:\ \begin{cases} a^3+b^3+ab\sqrt{ab}=73\\a^3+c^3+ac\sqrt{ac}=757\\b^3+c^3+bc\sqrt{bc}=1009\end{cases}$ .

Proof. By substitutions $\left\{\begin{array}{c}
a\sqrt a=x>0\\\
b\sqrt b=y>0\\\
c\sqrt c=z>0\end{array}\right\|$ our system becomes $:\ \begin{cases} x^2+y^2+xy=73\\x^2+z^2+xz=757\\y^2+z^2+yz=1009\end{cases}$ $\implies$ $\left\{\begin{array}{c}
(y-x)(x+y+z)=252\\\\
(z-y)(x+y+z)=684\end{array}\right\|$ $\implies$ $\frac {y-x}{7}=$ $\frac {z-y}{19}=$ $\frac {z-x}{26}=$

$\frac {36}{x+y+z}=k\implies$ $\left\{\begin{array}{c}
y=7k+x\\\
z=26k+x\end{array}\right\|$ $\implies$ $36=k(x+y+z)=k(3x+33k)$ $\implies$ $12=k(11k+x)$ $\implies$ $\boxed{x=\frac {12-11k^2}{k}\odot\begin{array}{cc}
\nearrow & y=\frac {12-4k^2}{k}\\\\
\searrow & z=\frac {12+15k^2}{k}\end{array}}$ , where

$k\in \left(0\ ,\sqrt{\frac {12}{11}}\right)$ . Therefore, $x^2+y^2+xy=73$ $\iff$ $\left(12-11k^2\right)^2+\left(12-4k^2\right)^2+\left(12-11k^2\right)\left(12-4k^2\right)=73k^2$ $\iff$ $181k^4-613k^2+432=0$ $\iff$

$k\in\left\{\pm 1;\pm12\sqrt{\frac {3}{181}}\right\}\cup\left(0,\sqrt{\frac {12}{11}}\right)$ $\implies$ $k=1\implies$ $\boxed{\begin{array}{ccc}
x=1 & \implies & a=1\\\\
y=8 & \implies & a=4\\\\
z=27 & \implies & c=9\end{array}}$ .

Remark. Let $\triangle ABC$ and $T$ so that $\left\{\begin{array}{ccc}
BC=u & ; & TA=x\\\\
CA=v & ; & TB=y\\\\
AB=w & ; & TC=z\end{array}\right\|$ . Sum $x+y+z$ is minimum iff $\widehat{BTC}\equiv\widehat{CTA}\equiv\widehat{ATB}$ . In this case $\left\{\begin{array}{ccccc}
y^2+z^2+yz & = & u^2 & = & 1009\\\\
z^2+x^2+zx & = & v^2 & = & 757\\\\
x^2+y^2+xy & = & w^2 & = & 73\end{array}\right\|$

and $T$ is named the Fermat point w.r.t. $\triangle ABC$ . Since the minimum point is unique we can solve with geometry this system. I"ll use the relations $\left\{\begin{array}{c}
16S^2=2\sum v^2w^2-\sum u^4\\\\
2(x+y+z)^2=\sum u^2+4S\sqrt 3\end{array}\right\|$ ,

where $S=[ABC]$ - the area of $\triangle ABC$ . Indeed, prove easily that $u^4+v^4+w^4=1839$ and $16S^2=189003\implies$ $S=\frac {251\sqrt 3}{4}\implies$ $4S\sqrt 3=753$ . In conclusion,

$2(x+y+z)^2=1839+753\implies$ $\boxed{x+y+z=36}\ (*)$ . From the upper chain $\frac {y-x}{7}=\frac {z-y}{19}=\frac {z-x}{26}=\frac {36}{x+y+z}$ obtain that $\boxed{\begin{array}{ccc}
x=1 & \implies & a=1\\\\
y=8 & \implies & b=4\\\\
z=27 & \implies & c=9\end{array}}$ .
This post has been edited 126 times. Last edited by Virgil Nicula, Nov 22, 2015, 7:52 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a