351. Problems with areas.

by Virgil Nicula, Jul 23, 2012, 1:31 AM

PP11. Let an acute $\triangle ABC$ and a mobile point $D\in (AB)$ . Let $M$ , $N$ be the feet of the perpendiculars from $D$ to $BC$ , $AC$ respectively.

Let $H_1$ , $H_2$ be the orthocentres of triangles $MNC$ , $MND$ respectively. Prove that the area $[AH_1BH_2]$ is constant.


Proof. Observe that $H_1NDM$ and $H_2NCM$ are parallelograms. Apply an well-known property to them :

$\left\{\begin{array}{ccc}
H_1NDM\ : & \implies & \delta_{AB}(H_1)+\delta_{AB}(D)=\delta _{AB}(M)+\delta_{AB}(N)\\\\
H_2NCM\ : & \implies & \delta_{AB}(H_2)+\delta_{AB}(C)=\delta _{AB}(M)+\delta_{AB}(N)\end{array}\right|\implies$ $\delta_{AB}(H_1)+\delta_{AB}(H_2)=\delta_{AB}(C)\implies$ $[AH_1BH_2]=[ABC]$ .



PP12. Let $\triangle ABC$ with $AB=c=13$ , $AC=b=12$ and $[ABC]=S=72$ . Find $a=BC$ .

Proof 1 (without trig.). Appear two cases $B\in\left\{B_1,B_2\right\}$ , where $A$ is midpoint of $[B_1B_2]$ , i.e. $CA$ is median in $\triangle B_1CB_2$ . Suppose w.l.o.g. that $m\left(\widehat{CAB_1}\right)\le 90^{\circ}$ . Thus,

$AB_1=AB_2=c=13$ . Denote $\{X_1,X_2\}\subset AC$ such that $B_1X_1\perp AC$ and $B_2X_2\perp AC$ . Prove easily that $B_1X_1=B_2X_2=\frac {2S}{b}=12$ and $AX_1=AX_2=5\implies$

$CX_1=7\ ,\ CX_2=17\implies$ $\left\{\begin{array}{ccc}
a_1=CB_1=\sqrt {B_1X_1^2+CX_1^2}=\sqrt {12^2+7^2}=\sqrt {193}\\\\
a_2=CB_2=\sqrt {B_2X_2^2+CX_2^2}=\sqrt {12^2+17^2}=\sqrt {433}\end{array}\right|$ $\implies a=BC\in\left\{\sqrt {193},\sqrt {433}\right\}$ .

Proof 2 (metric - brute force). Denote the midpoint $M$ of $[AB]$ and the projection $D$ of $C$ on $AB$ . Thus, $CD\perp AB$ $\iff $ $CA^2-CB^2=DA^2-DB^2$ $\iff$ $2c\cdot MD=$ $\left|a^2-b^2\right|$ .

Therefore, $MC^2=CD^2+MD^2$ $\iff$ $m_c^2=h_c^2+MD^2$ $\iff$ $4c^2m_c^2=4c^2h_c^2+$ $\left(a^2-b^2\right)^2$ $\iff$ $c^2\left[2\left(a^2+b^2\right)-c^2\right]=$ $16S^2+\left(a^2-b^2\right)^2$ $\iff$

$\boxed{16S^2=2\left(a^2b^2+b^2c^2+c^2a^2\right)-\left(a^4+b^4+c^4\right)}$ $\iff$ $a^4-2a^2\left(b^2+c^2\right)+$ $16S^2+\left(b^2-c^2\right)^2=0$ . Observe that

$\Delta '=\left(b^2+c^2\right)^2-$ $16S^2-\left(b^2-c^2\right)^2$ $\iff$ $\Delta '=4b^2c^2-16S^2$ . In conclusion, $a^2\in\left\{b^2+c^2\pm 2\sqrt {(bc-2S)(bc+2s)}\right\}$ .

In our particular case obtain $a^2\in \left\{144+169\pm 2\sqrt {12\cdot 300}\right\}=$ $\left\{313\pm 120\right\}=$ $\{433,193\}$ , what means $a\in\{\sqrt {193},\sqrt{433}\}$ .

Proof 3 (trigonometric). Since $2S=bc\sin A$ obtain that $\sin A=\frac {2\cdot 72}{12\cdot 13}=\frac {12}{13}\iff$ $\cos A\in \left\{\pm\frac {5}{13}\right\}$ . Since $a^2=b^2+c^2-2bc\cos A$

obtain that $a^2=144+169\pm 2\cdot 12\cdot 13\cdot\frac {5}{13}\iff$ $a^2\in\{313\pm 120\}\iff$ $a\in\left\{\sqrt {193},\sqrt {433}\right\}$ .

Remark. $\boxed{\tan\frac A2=\frac {\sin A}{1+\cos A}}=$ $\frac {\frac {12}{13}}{1\pm\frac {5}{13}}\implies$ $\tan\frac A2\in\left\{\frac 23,\frac 32\right\}$ . I"ll use an well-known relation $\boxed{S=s(s-a)\tan\frac A2}$ .

In conclusion, $b+c=25$ and $\left\{\begin{array}{ccccccc}
\tan\frac A2=\frac 23 & \implies & s(s-a)=108 & \implies & (b+c)^2-a^2=432 & \implies & a=\sqrt {193}\\\\
\tan\frac A2=\frac 32 & \implies & s(s-a)=48 & \implies & (b+c)^2-a^2=192  & \implies & a=\sqrt {433}\end{array}\right|$ .



PP13. Let acute $\triangle ABC$ with circumcentre $O$ , centroid $G$ and orthocenter $H$ . Let $\left\{\begin{array}{ccc}
D\in BC & ; & OD\perp BC\\\
E\in CA & ; & HE\perp CA\\\
F\in (AB) & ; & FA=FB\end{array}\right|$ . Suppose that $[ODC]=[HEA]=[GFB]$ . Find $m\left(\widehat{ACB}\right)$ .

Proof. Show easily $4\cdot [ODC]=R^2\sin 2A\ ,\ [HEA]=$ $R^2\cos^2A\sin 2C\ ,\ 3\cdot [GFB]=$ $R^2\sin A\sin B\sin C$ . Let $\left\{\begin{array}{c}
\tan A=x\\\
\tan B=y\\\
\tan C=z\end{array}\right|$ , where $x+y+z=xyz$ .

From $ \mathrm{area} (ODC)=\mathrm{area}(HEA)=\mathrm{area}(GFB) $ obtain that $\mathrm{area}(ODC)=\mathrm{area}(GFB)\implies$ $3\cos A=2\sin B\sin C\implies$ $3(1-yz)+2yz=0\implies \boxed{yz=3}\ (1)\ .$

$[ODC]=[HEA]\implies$ $\sin A=2\cos A\sin 2C\implies$ $x=\frac {4z}{1+z^2}\implies$ $\boxed{4z=x(1+z^2)}\ (2)\ .$ Thus, $x+y+z=xyz\stackrel{(1)}{\implies}\ y$ $+z=2x\stackrel{(1\wedge 2)}{\implies}$

$\frac 3z$ $+z=\frac {8z}{1+z^2}\implies$ $(z^2+1)(z^2+3)=8z^2\implies$ $z^4-4z^2+3=0\implies$ $z^2\in\{1,3\}\implies$ $z\in\left\{1,\sqrt 3\right\}\implies$ $\boxed{C\in\left\{\frac {\pi}{4},\frac {\pi}{3}\right\}}$ . Nice problem !



PP14. Let $P$ be a point on the circumcircle $w=C(O,R)$ of the given $\triangle ABC$. Denote $Q\in AP\cap BC$ . From $Q$ perpendiculars are drawn

to $AB$ and $AC$ with feet $K$ and $M$ respectively. Find all points $P$ such that quadrilateral $AKPM$ and triangle $ABC$ have equal areas.


Proof. Denote $m\left(\widehat{BAP}\right)=x$ . Thus, $m\left(\widehat{CAP}\right)=A-x$ , $\boxed{AP=2R\sin(C+x)}$ and $a\cdot AQ\sin (B+x)=2S$ $\implies$ $\boxed{AQ=\frac {2S}{a\sin (B+x)}}$ . Observe that

$\left\{\begin{array}{ccc}
AK & = & AQ\cos x\\\
AM & = & AQ\cos (A-x)\end{array}\right|$ . Therefore, $[AKPM]=[ABC]\iff$ $[AKP]+[AMP]=S\iff$ $AP\cdot AK\cdot \sin x+AP\cdot AM\cdot\sin (A-x)=2S\iff$

$AP\cdot AQ\cdot \left[\cos x\sin x+\cos (A-x)\sin (A-x)\right]=2S\iff$ $2R\sin (C+x)\cdot \frac {2S}{a\sin (B+x)}\cdot\frac 12\left[\sin 2x+\sin 2(A-x)\right]=2S\iff$

$\sin (C+x)\sin A\cos (2x-A)=\sin A\sin(B+x)\iff$ $\sin (C+x)\cos (2x-A)=\sin(B+x)\iff$ $\sin (C-A+3x)+\sin (A+C-x)=$

$2\sin (B+x)\iff$ $\sin (C-A+3x)=\sin (B+x)\iff$ $C-A+3x=B+x\ \ \vee\ \ (C-A+3x)+(B+x)=180^{\circ}\iff$

$2x=A+B-C\ \ \vee\ \ 4x=180^{\circ}+A-B-C\iff$ $x=90^{\circ}-C\ \ \vee\ \ x=\frac A2$ . Thus, $P\in \{P_1,P_2\}$ , where $[AP_1]$ is diameter of $w$ and ray $[AP_2$ is bisector of $\widehat{BAC}$ .

Verification.

$\blacktriangleright\ P:=P_1$ . In this case $BKQP$ , $CMQP$ are trapezoids and $\left\{\begin{array}{ccccc}
PB\perp AB & \iff & QK\parallel PB & \iff & [ABQ]=[APK]\\\\
PC\perp AC & \iff & QM\parallel PC & \iff & [ACQ]=[APM]\end{array}\right|$ $\bigoplus\implies [AKPM]=[ABC]$ .

$\blacktriangleright\ P:=P_2$ . In this case $AK=AM=AQ\cos\frac A2$ and (an well-known property) $AQ\cdot AP_2=bc$ . Therefore, $2\cdot [AKP_2M]=$

$2\cdot \left([AKP_2]+[AMP_2]\right)=$ $AP_2\cdot AK\sin \frac A2+AP_2\cdot AM\cdot\sin\frac A2=$ $2\cdot AP_2\cdot AQ\cos\frac A2\sin\frac A2=bc\sin A=2S$ .



PP15. Let $D$ , $E$ , $F$ be the points on the sides of triangle $\Delta ABC$ respectively such that $DE\perp CA$ , $EF\perp AB$ , $FD\perp BC$ . Denote the intersections

$M=AD\cap BE$ , $N=BE\cap CF$ , $P=CF\cap AD$ . Prove that $\frac{BD}{BC}+\frac{CE}{CA}+\frac{AF}{AB}=1$ and $[BMD]+[CNE]+[APF]=[MNP]$ .


Proof (Sunken Rock). Take $X\in AB$ so that $DX\bot DE$ , $Y\in AB$ so that $EY\parallel BC\implies$ $\frac{BD}{BC}=\frac{BX}{AB}\ (\ 1\ )$ and $\frac{CE}{AC}=\frac{BY}{AB}\ (\ 2\ )$ . So must prove $BY=FX\ (*)$ .

As constructed, $\Delta DEF\sim\Delta CAB\implies \frac{EF}{DE}=\frac{AB}{AC}\ (\ 3\ )$ . Since $DX\bot DE$ and $FD\bot BC$ we get $\angle CDE=\angle FDX$ , but $DEFX$ is cyclic, so $\angle FDX=\angle FEX$ .

Thus $\angle FEX=\angle CDE$ and $\Delta FEX\sim\Delta EDC$ . So $\frac{CE}{FX}=\frac{DE}{EF}\ (\ 4\ )$ . With $(3)$ we got $\frac{FX}{AB}=\frac{CE}{AC}$ . Since $\frac{BX+BY+AF}{AB}=1$ we get the wanted $(*)$ .



PP16. Let $ABCD$ be a rectangle and $E\in (CD)$ , $F\in (BC)$ so that $AEF$ is an equilateral triangle. Prove that $[ABF]+[ADE]=[CEF]$ .

Proof 1 (trigonometric). Suppose w.l.o.g. that $AE=EF=FA=1$ and denote $\left\{\begin{array}{c}
m\left(\widehat{BAF}\right)=x\\\
m\left(\widehat{DAE}\right)=y\end{array}\right|$ , where $x+y=30^{\circ}$ . Thus, $[ABF]+[ADE]=[CEF]\iff$

$\cos x\sin x+\cos y\sin y=\cos \left(x+30^{\circ}\right)\cos\left(y+30^{\circ}\right)\iff$ $\sin 2x+\sin 2y=\cos 90^{\circ}+\cos (x-y)\iff$ $2\sin (x+y)\cos (x-y)=\cos (x-y)$ , what is truly.

Proof 2 (complex numbers). Denote $AD=BC=a$ , $AB=CD=b$ and $BF=n$ , $CE=m$ . Thus, $A(bi)$ , $B(0)$ , $C(a)$ , $D(a+bi)$ and $F(n)$ , $E(a+mi)$ . Therefore,

$AEF$ is equilateral $\iff$ $(bi)^2+(a+mi)^2+n^2=n\cdot bi+n\cdot (a+mi)+bi\cdot (a+mi)\iff$ $\left\{\begin{array}{cc}
a^2-an+n^2=b^2-bm+m^2 & (1)\\\\
a(b-m)+bn=m(a-n) & (2)\end{array}\right|$ . The first relation is for

the existence of the equilateral triangle $AEF$ (compatibility of this problem) and the second relation is equivalently with the uor conclusion, i.e. $[ADE]+[ABF]=[CEF]$ .

Remark. Construct outside of the rectangle the equilateral triangles $BCX$ and $CDY$ . The relation $(1)$ means $FX=EY\iff$ the hypotesis is substantially.

Proof 3 (metric). Denote the midpoint $P$ of $[EF]$ , the projections $M$ , $N$ of $P$ on $BC$ , $CD$ respectively and $CF=2m$ , $CE=2n$ . Thus, $\left\{\begin{array}{c}
PN=FM=MC=m\\\\
PM=NC=EN=n\end{array}\right|$ . Observe

that $ADEP$ , $ABFP$ are cyclical quadrilaterals and $\left\{\begin{array}{ccccccc}
m\left(\widehat{PDN}\right)=30^{\circ} & \implies & \cot\widehat{PDN}=\frac {DN}{PN} & \implies & DN=m\sqrt 3 & \implies & DE=m\sqrt 3-n\\\\
m\left(\widehat{PBM}\right)=30^{\circ} & \implies & \cot\widehat{PBM}=\frac {BM}{PM} & \implies & BM=n\sqrt 3 & \implies & BF=n\sqrt 3-m\end{array}\right|$ . Therefore,

$\left\{\begin{array}{c}
AD=BC=n\sqrt 3+m\\\\
AB=CD=m\sqrt 3+n\end{array}\right|$ and $[ABF]+[ADE]=[ECF]\iff$ $AB\cdot BF+AD\cdot DE=CE\cdot CF\iff$ $\left(m\sqrt 3+n\right)\left(n\sqrt 3-m\right)+$ $\left(n\sqrt 3+m\right)\left(m\sqrt 3-n\right)=$

$4mn$ , what is true. Let $\left\{\begin{array}{c}
AD=BC=a\\\\
AB=CD=b\end{array}\right|$ . Thus, $\left\{\begin{array}{c}
m+n\sqrt 3=a\\\\
m\sqrt 3+n=b\end{array}\right|\implies$ $\left\{\begin{array}{c}
m=\frac {b\sqrt 3-a}{2}\\\\
n=\frac {a\sqrt 3-b}{2}\end{array}\right|$ . Therefore, $\left\{\begin{array}{c}
0<2m<a\\\\
0<2n<b\end{array}\right|\iff$ $\left\{\begin{array}{c}
0<b\sqrt 3-a<a\\\\
0<a\sqrt 3-b<b\end{array}\right|\iff$

$\left\{\begin{array}{c}
a<b\sqrt 3<2a\\\\
b<a\sqrt 3<2b\end{array}\right|\iff$ $\frac {1}{\sqrt 3}<\frac {\sqrt 3}{2}<\frac ab<\frac {2}{\sqrt 3}<\sqrt 3\implies$ $\frac {AD}{AB}\in \left(\frac {\sqrt 3}{2},\frac {2}{\sqrt 3}\right)$ . In conclusion, there is an equilateral $\triangle AEF$ with $E\in (CD)$ and $F\in (BC)$ $\iff$

$\frac {AD}{AB}\in\left(\frac {\sqrt 3}{2},\frac {2}{\sqrt 3}\right)\iff$ $\tan\widehat{ABD}\in\left(\frac {\sqrt 3}{2},\frac {2}{\sqrt 3}\right)$ .


An easy extension. Let $ABCD$ be a rectangle and $E\in (CD)$ , $F\in (BC)$ so that $AE=AF$ and $m\left(\widehat{EAF}\right)=2\phi$ . Prove that $[ABF]+[ADE]=[CEF]\cdot\cot\phi\cdot\cot 2\phi$ .


PP17. Let $P$ be the interior point of $\triangle ABC$ so that the interior segments through $P$ and what are parallel to the sides have same length $d$ . Find $d$ .

Proof 1. Let $\left\{\begin{array}{cc}
\{E,F\}\subset (BC)\\\\
\{G,H\}\subset (CA)\\\\
\{I,J\}\subset (AB)\end{array}\right|$ so that $\left\{\begin{array}{c}
P\in JG\cap IF\cap HE\\\\
JG\parallel BC\ ;\ EF=x\\\\
FI\parallel CA\ ;\ FC=y\\\\
HE\parallel AB\ ;\ BE=z\end{array}\right|$ . , where $\left\{\begin{array}{c}
x+y+z=a\\\\
JG=IF=HE=d\\\\
PEF\sim HPG\sim IJP\sim ABC\end{array}\right|\implies$

$y+z=\frac ba\cdot (z+x)=\frac ca\cdot (x+y)=d$ . Therefore, $ad=\frac {y+z}{\frac 1a}=\frac {z+x}{\frac 1b}=\frac {x+y}{\frac 1c}=$ $\frac {2a}{\frac 1a+\frac 1b+\frac 1c}\implies$ $\boxed{d=\frac {2}{\frac 1a+\frac 1b+\frac 1c}}$ .

Proof 2 (nice). Denote $\left\{\begin{array}{cc}
\{E,F\}\subset (BC)\\\\
\{G,H\}\subset (CA)\\\\
\{I,J\}\subset (AB)\end{array}\right|$ so that $P\in JG\cap IF\cap HE$ and $\left\{\begin{array}{c}
JG\parallel BC\\\\
FI\parallel CA\\\\
HE\parallel AB\end{array}\right|$ . Denote the area $S=[ABC]$ and the distancies $u$ , $v$ , $w$ of $P$

to the sidelines $BC$ , $CA$ , $AB$ respectively. Therefore, $\boxed{au+bv+cw=2S}\ (*)$ and $\frac {GJ}{a}+\frac {FI}{b}+\frac {EH}{c}=$ $\sum \frac {h_a-u}{h_a}=$ $\sum\left(1-\frac {u}{h_a}\right)=$ $3-\sum\frac {au}{ah_a}=$

$3-\frac {au+bv+cw}{2S}\stackrel{(*)}{\implies}$ $\boxed{\frac {GJ}{a}+\frac {FI}{b}+\frac {EH}{c}=2}\ .$ In the particular case when $GJ=FI=EH=d$ obtain that $\boxed{\frac 2d=\frac 1a+\frac 1b+\frac 1c}$ . Remark that $d\le \frac 29\cdot (a+b+c)$ .



PP18. A circle of radius 2 is centered at $ O$ . Square $ OABC$ has side length 1 . Sides $ \overline{AB}$ and $ \overline{CB}$ are extended past $ b$ to meet the circle at $ D$

and $ E$ respectively. What is the area of the shaded region in the figure, which is bounded by $ \overline{BD}$ , $ \overline{BE}$ and the minor arc connecting $ D$ and $ E$ ?

[asy]
defaultpen(linewidth(0.8));
pair O=origin, A=(1,0), C=(0,1), B=(1,1), D=(1, sqrt(3)), E=(sqrt(3), 1), point=B;
fill(Arc(O, 2, 0, 90)--O--cycle, mediumgray);
clip(B--Arc(O, 2, 30, 60)--cycle);
draw(Circle(origin, 2));
draw((-2,0)--(2,0)^^(0,-2)--(0,2));
draw(A--D^^C--E);
label("$A$", A, dir(point--A));
label("$C$", C, dir(point--C));
label("$O$", O, dir(point--O));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$B$", B, SW);[/asy]


Proof. $\left\{\begin{array}{c}
CE=\sqrt 3\\\\
BE=\sqrt 3-1\\\\
m\left(\widehat{COE}\right)=60^{\circ}\end{array}\right|$ . Shaded $BDE = \mathrm{area\ sector}\ DOE\ -\ 2\cdot [OBE]=$ $\frac 12\cdot r^2\cdot m\left(\widehat{DOE}\right)-$ $2\cdot \frac {OC\cdot BE}2=$

$\frac 12\cdot 4\cdot \frac {\pi}{6}-\left(\sqrt 3-1\right)=$ $\frac {\pi}{3}-\left(\sqrt 3-1\right)=$ $1+\frac {\pi}{3}-\sqrt 3$ . Let $w=C(O,\rho)$ be a circle and $\{X,Y\}\subset w$ so that $m\left(\widehat{XOY}\right)=\phi$

(radians). Remark that the length of the arc $XY$ is $\boxed{l(\phi )=\rho\phi}$ and the area of the sector $XOY$ is $\boxed{s(\phi )=\frac {l(\phi )\rho}{2}=\frac {\rho^2\phi}{2}}$ . See
here


PP19. Let a convex $ABCD$ with $\left\{\begin{array}{ccc}
O\in AC\cap BD\\\\
\{M,P\}\subset (AB)\\\\
\{N,Q\}\subset (A,D)\end{array}\right\|$ so that $\frac {MB}{MC}=\frac {PC}{PB}=\frac {ND}{NA}=\frac {QA}{QD}$ . Prove that $[MON]=[POQ]=\frac {MB\cdot MC}{BC^2}\cdot [ABCD]$ .

Proof. Let $S=[ABCD]$ and $\frac {MB}{m}=\frac {MC}{1}=\frac {BC}{m+1}$ and $\left\{\begin{array}{ccc}
\nearrow\ [AOB]=a & ; & [BOC]=b\\\\
\searrow\ [COD]=c & ; & [DOA]=d\end{array}\right\|$ . Thus, $a+b+c+d=S$ . Let $R\in (AB)$ and $S\in (CD)$ so that

$\left\{\begin{array}{c}
\nearrow\ MR\parallel AC\parallel NS\\\\
\searrow\ NR\parallel BD\parallel MS\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccccc}
\nearrow\ \frac {[MOS]}{[BCD]}=\frac {MS\cdot\delta_{BD}(M)}{BD\cdot\delta_{BD}(C)} & \implies & \frac {[MOS]}{[BCD]}=\frac {MS}{BD}\cdot\frac {BM}{BC}=\frac {CM}{CB}\cdot \frac {BM}{BC} & \implies & \frac {[MOS]}{[BCD]}=\frac {m}{(m+1)^2}\\\\
\searrow\ \frac {[NOS]}{[ACD]}=\frac {NS\cdot\delta_{AC}(S)}{AC\cdot\delta_{AC}(D)} & \implies & \frac {[NOS]}{[ACD]}=\frac {NS}{AC}\cdot\frac {CS}{CD}=\frac {BM}{BC}\cdot \frac {CM}{CB} & \implies & \frac {[NOS]}{[ACD]}=\frac {m}{(m+1)^2}\end{array}\right\|$ , Prove easily that

$\left\{\begin{array}{ccc}
\nearrow\ \frac {[MCS]}{[BCD]}=\frac {[NAR]}{[DAB]}=\frac 1{(m+1)^2} & \implies & [MCS]+[NAR]=\frac S{(m+1)^2}\\\\
\searrow\ \frac {[SDN]}{[CDA]}=\frac {[MBR]}{[CBA]}=\frac {m^2}{(m+1)^2} & \implies & [SDN]+[MBR]=\frac {m^2S}{(m+1)^2}\end{array}\right\|$ $\implies$ $[MSN]=\frac 12\cdot [MSNR]=\frac 12\cdot \left\{S-\left([MCS]+[NAR]+[SDN]+[MBR]\right)\right\}=$

$\frac 12\cdot \left[S-\frac S{(m+1)^2}-\frac {m^2S}{(m+1)^2}\right]=$ $\frac S2\cdot\left[1-\frac 1{(m+1)^2}-\frac {m^2}{(m+1)^2}\right]\implies$ $[MSN]=\frac {mS}{(m+1)^2}$ . In conclusion, $[MON]=[MOS]+[NOS]-[MSN]=$

$\frac {m}{(m+1)^2}\cdot\left([BCD]+[ACD]-S\right)\implies$ $[MON]=\frac {m}{(m+1)^2}\cdot\left|[OCD]-[OAB]\right|$ . If denote $f(m)=\frac m{(m+1)^2}$ , then $f\left(\frac 1m\right)=f(m)\implies$

$\boxed{[MON]=[POQ]= \frac {m}{(m+1)^2}\cdot\left|[OCD]-[OAB]\right|}$ .



PP20. Let $ABC$ be an $A$-right triangle with the incenter $I$ and $D\in AI\cap BC$ . Prove that the area $[DIC]=r^2\iff B=30^{\circ}$ .

Proof. $[DIC]=r^2\iff$ $r\cdot DC=2r^2\iff$ $DC=2r\iff$ $\frac {ab}{b+c}=b+c-a\iff$ $ab=(b+c)^2-a(b+c)\iff$

$ab=a^2+2bc-a(b+c)\iff$ $a^2-(2b+c)a+2bc=0\iff$ $(a-c)(a-2b)=0\left\{\begin{array}{cccc}
\nearrow & a=c & \implies & \emptyset\\\\
\searrow & a=2b & \implies & B=30^{\circ}\end{array}\right\|$ .



P21 (Nguyen Viet Hung, Vietnam) <= click.

Proof (elementary). Suppose w.l.o.g. $c<b\ ,$ denote the midpoint $M$ of $[BC]\ ,$ $D\in AI\cap BC$ and $S\in AK\cap BC\ .$ Thus, $\left\{\begin{array}{cccc}
\frac {SB}{c^2}=\frac {SC}{b^2}=\frac a{b^2+c^2} & \implies & \boxed{\ SB=\frac {ac^2}{b^2+c^2}\ }
 & (1)\\\\
\frac {DB}c=\frac {DC}b=\frac a{b+c} & \implies & \boxed{\ DB=\frac {ac}{b+c}\ } & (2)\end{array}\right\|$ $\implies$

$\left\{\begin{array}{cccc}
SD=BD-BS\ \stackrel{1\wedge 2}{=}\ \frac {ac}{b+c}-\frac {ac^2}{b^2+c^2} & \implies & \boxed{\ SD=\frac {abc(b-c)}{(b+c)\left(b^2+c^2\right)}\ } & (3)\\\\
DM=BM-BD\ \stackrel{2}{=}\ \frac a2-\frac {ac}{b+c} & \implies & \boxed{\ DM=\frac {a(b-c)}{2(b+c)}\ } & (4)\end{array}\right\|$ $\implies$ $SM=SD+DM\ \stackrel{3\wedge 4}{=}\ \frac {abc(b-c)}{(b+c)\left(b^2+c^2\right)}+\frac {a(b-c)}{2(b+c)}=$ $\frac {a(b-c)}{b+c}\cdot\left(\frac {bc}{b^2+c^2}+\frac 12\right)=$

$\frac {a(b-c)(b+c)^2}{2(b+c)\left(b^2+c^2\right)}=$ $\frac {a\left(b^2-c^2\right)}{2\left(b^2+c^2\right)}\implies$ $\boxed{\ SM=\frac {a\left(b^2-c^2\right)}{2\left(b^2+c^2\right)}\ }\ (5)\ .$ With the van Aubel's theorem can prove easily $\left\{\begin{array}{cccc}
\frac {KA}{b^2+c^2}=\frac {KS}{a^2}=\frac {AS}{a^2+b^2+c^2} & \implies & \boxed{\ \frac {AK}{AS}=\frac {b^2+c^2}{a^2+b^2+c^2}\ } & (6)\\\\
\frac {IA}{b+c}=\frac {ID}a=\frac {AD}{a+b+c} & \implies & \boxed{\ \frac {AI}{AD}=\frac {b+c}{a+b+c}\
 } & (7)\end{array}\right\|\ .$

Thus, $\boxed{\ [GIK]=[AKI]+[AIG]-[AKG]\ }\ (*)\ ,$ where $\ :\ \left\{\begin{array}{cccc}
\frac {[AKI]}{[ABC]}=\frac {[AKI]}{[ASD]}\cdot\frac {[ASD]}{[ABC]}=\frac {AK}{AS}\cdot\frac {AI}{AD}\cdot\frac {SD}{BC}\ \stackrel{3\wedge 6\wedge 7}{=}\ \frac {b^2+c^2}{a^2+b^2+c^2}\cdot\frac {b+c}{a+b+c}\cdot\frac {bc(b-c)}{(b+c)\left(b^2+c^2\right)} & \implies & \frac {[AKI]}{[ABC]}=\frac {bc(b-c)}{\sum a\cdot\sum a^2} & (8)\\\\
\frac {[AIG]}{[ABC]}=\frac {[AIG]}{[ADM]}\cdot\frac {[ADM]}{[ABC]}=\frac {AI}{AD}\cdot\frac {AG}{AM}\frac {DM}{BC}\ \stackrel{4\wedge 7}{=}\ \frac {b+c}{a+b+c}\cdot\frac 23\cdot\frac {b-c}{2(b+c)}=\frac {b-c}{3(a+b+c)} & \implies & \frac {[AIG]}{[ABC]}=\frac {b-c}{3\sum a} & (9)\\\\
\frac {[AKG]}{[ABC]}=\frac {[AKG]}{[ASM]}\cdot \frac {[ASM]}{[ABC]}=\frac {AK}{AS}\cdot\frac {AG}{AM}\cdot\frac {SM}{BC}\ \stackrel{5\wedge 6}{=}\ \frac {b^2+c^2}{a^2+b^2+c^2}\cdot \frac 23\cdot\frac {b^2-c^2}{2\left(b^2+c^2\right)}=\frac {b^2-c^2}{3\left(a^2+b^2+c^2\right)} & \implies & \frac {[AIG]}{[ABC]}=\frac {b^2-c^2}{3\sum a^2} & (10)\end{array}\right\|\ .$

The relation $(*)$ implies $\frac{[GIK]}{[ABC]}=\left|\ \frac {[AKI]}{[ABC]}+\frac {[AIG]}{[ABC]}-\frac{[AKG]}{[ABC]}\ \right|\ \stackrel{8\wedge 9\wedge 10}{=}\ \left|\ \frac {bc(b-c)}{\sum a\cdot\sum a^2}+\frac {b-c}{3\sum a}-\frac {b^2-c^2}{3\sum a^2}\ \right|=$ $\frac {|b-c|\cdot\left|3bc+a^2+b^2+c^2-(b+c)(a+b+c)\right|}{3(a+b+c)\left(a^2+b^2+c^2\right)}=$

$\frac {|b-c|\cdot\left|3bc+a^2+b^2+c^2-(b+c)^2-a(b+c)\right|}{3(a+b+c)\left(a^2+b^2+c^2\right)}=$ $\frac {|b-c|\cdot\left|a^2-a(b+c)+bc\right|}{3(a+b+c)\left(a^2+b^2+c^2\right)}=$ $\frac {|b-c|\cdot\left|(a-b)(a-c)\right|}{3(a+b+c)\left(a^2+b^2+c^2\right)}$ $\implies$ $\boxed{\frac{[GIK]}{[ABC]}=\frac{|(a-b)(b-c)(c-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}}\ .$
This post has been edited 238 times. Last edited by Virgil Nicula, Jan 21, 2018, 8:59 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a