351. Problems with areas.
by Virgil Nicula, Jul 23, 2012, 1:31 AM
PP11. Let an acute
and a mobile point
. Let
,
be the feet of the perpendiculars from
to
,
respectively.
Let
,
be the orthocentres of triangles
,
respectively. Prove that the area
is constant.
Proof. Observe that
and
are parallelograms. Apply an well-known property to them :
.
PP12. Let
with
,
and
. Find
.
Proof 1 (without trig.). Appear two cases
, where
is midpoint of
, i.e.
is median in
. Suppose w.l.o.g. that
. Thus,
. Denote
such that
and
. Prove easily that
and 
.
Proof 2 (metric - brute force). Denote the midpoint
of
and the projection
of
on
. Thus,
.
Therefore,

. Observe that
. In conclusion,
.
In our particular case obtain
, what means
.
Proof 3 (trigonometric). Since
obtain that
. Since 
obtain that
.
Remark.
. I"ll use an well-known relation
.
In conclusion,
and
.
PP13. Let acute
with circumcentre
, centroid
and orthocenter
. Let
. Suppose that
. Find
.
Proof. Show easily
. Let
, where
.
From
obtain that

Thus,

. Nice problem !
PP14. Let
be a point on the circumcircle
of the given
. Denote
. From
perpendiculars are drawn
to
and
with feet
and
respectively. Find all points
such that quadrilateral
and triangle
have equal areas.
Proof. Denote
. Thus,
,
and
. Observe that
. Therefore,

![$2R\sin (C+x)\cdot \frac {2S}{a\sin (B+x)}\cdot\frac 12\left[\sin 2x+\sin 2(A-x)\right]=2S\iff$](//latex.artofproblemsolving.com/2/7/e/27eb8e3ec27e1e4b174a7825b7e4ec8a516b2a48.png)


. Thus,
, where
is diameter of
and ray
is bisector of
.
Verification.
. In this case
,
are trapezoids and
.
. In this case
and (an well-known property)
. Therefore, ![$2\cdot [AKP_2M]=$](//latex.artofproblemsolving.com/0/9/a/09a4ee9aa19804fbff9de435b58cc39a3ef63919.png)
.
PP15. Let
,
,
be the points on the sides of triangle
respectively such that
,
,
. Denote the intersections
,
,
. Prove that
and
.
Proof (Sunken Rock). Take
so that
,
so that
and
. So must prove
.
As constructed,
. Since
and
we get
, but
is cyclic, so
.
Thus
and
. So
. With
we got
. Since
we get the wanted
.
PP16. Let
be a rectangle and
,
so that
is an equilateral triangle. Prove that
.
Proof 1 (trigonometric). Suppose w.l.o.g. that
and denote
, where
. Thus, ![$[ABF]+[ADE]=[CEF]\iff$](//latex.artofproblemsolving.com/5/a/5/5a5515dcce9d63857b273a90a1fa3a3145fc56bf.png)
, what is truly.
Proof 2 (complex numbers). Denote
,
and
,
. Thus,
,
,
,
and
,
. Therefore,
is equilateral
. The first relation is for
the existence of the equilateral triangle
(compatibility of this problem) and the second relation is equivalently with the uor conclusion, i.e.
.
Remark. Construct outside of the rectangle the equilateral triangles
and
. The relation
means
the hypotesis is substantially.
Proof 3 (metric). Denote the midpoint
of
, the projections
,
of
on
,
respectively and
,
. Thus,
. Observe
that
,
are cyclical quadrilaterals and
. Therefore,
and

, what is true. Let
. Thus,
. Therefore,

. In conclusion, there is an equilateral
with
and

.
An easy extension. Let
be a rectangle and
,
so that
and
. Prove that
.
PP17. Let
be the interior point of
so that the interior segments through
and what are parallel to the sides have same length
. Find
.
Proof 1. Let
so that
. , where 
. Therefore,
.
Proof 2 (nice). Denote
so that
and
. Denote the area
and the distancies
,
,
of 
to the sidelines
,
,
respectively. Therefore,
and

In the particular case when
obtain that
. Remark that
.
PP18. A circle of radius 2 is centered at
. Square
has side length 1 . Sides
and
are extended past
to meet the circle at 
and
respectively. What is the area of the shaded region in the figure, which is bounded by
,
and the minor arc connecting
and
?
![[asy]
defaultpen(linewidth(0.8));
pair O=origin, A=(1,0), C=(0,1), B=(1,1), D=(1, sqrt(3)), E=(sqrt(3), 1), point=B;
fill(Arc(O, 2, 0, 90)--O--cycle, mediumgray);
clip(B--Arc(O, 2, 30, 60)--cycle);
draw(Circle(origin, 2));
draw((-2,0)--(2,0)^^(0,-2)--(0,2));
draw(A--D^^C--E);
label("$A$", A, dir(point--A));
label("$C$", C, dir(point--C));
label("$O$", O, dir(point--O));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$B$", B, SW);[/asy]](//latex.artofproblemsolving.com/7/a/3/7a3f744b216ad2a628969e77f114d9ca5e96c109.png)
Proof.
. Shaded

. Let
be a circle and
so that 
(radians). Remark that the length of the arc
is
and the area of the sector
is
. See here
PP19. Let a convex
with
so that
. Prove that
.
Proof. Let
and
and
. Thus,
. Let
and
so that
. Thus,
, Prove easily that
![$[MSN]=\frac 12\cdot [MSNR]=\frac 12\cdot \left\{S-\left([MCS]+[NAR]+[SDN]+[MBR]\right)\right\}=$](//latex.artofproblemsolving.com/a/e/2/ae2fb07cc9d961a806ab3f0199e4d5f8dd72e9b5.png)
. In conclusion, ![$[MON]=[MOS]+[NOS]-[MSN]=$](//latex.artofproblemsolving.com/a/5/9/a59384138f7b7864572038eb15f9459eaad9b495.png)
. If denote
, then 
.
PP20. Let
be an
-right triangle with the incenter
and
. Prove that the area
.
Proof.

.
P21 (Nguyen Viet Hung, Vietnam) <= click.
Proof (elementary). Suppose w.l.o.g.
denote the midpoint
of
and
Thus,


With the van Aubel's theorem can prove easily 
Thus,
where ![$\ :\ \left\{\begin{array}{cccc}
\frac {[AKI]}{[ABC]}=\frac {[AKI]}{[ASD]}\cdot\frac {[ASD]}{[ABC]}=\frac {AK}{AS}\cdot\frac {AI}{AD}\cdot\frac {SD}{BC}\ \stackrel{3\wedge 6\wedge 7}{=}\ \frac {b^2+c^2}{a^2+b^2+c^2}\cdot\frac {b+c}{a+b+c}\cdot\frac {bc(b-c)}{(b+c)\left(b^2+c^2\right)} & \implies & \frac {[AKI]}{[ABC]}=\frac {bc(b-c)}{\sum a\cdot\sum a^2} & (8)\\\\
\frac {[AIG]}{[ABC]}=\frac {[AIG]}{[ADM]}\cdot\frac {[ADM]}{[ABC]}=\frac {AI}{AD}\cdot\frac {AG}{AM}\frac {DM}{BC}\ \stackrel{4\wedge 7}{=}\ \frac {b+c}{a+b+c}\cdot\frac 23\cdot\frac {b-c}{2(b+c)}=\frac {b-c}{3(a+b+c)} & \implies & \frac {[AIG]}{[ABC]}=\frac {b-c}{3\sum a} & (9)\\\\
\frac {[AKG]}{[ABC]}=\frac {[AKG]}{[ASM]}\cdot \frac {[ASM]}{[ABC]}=\frac {AK}{AS}\cdot\frac {AG}{AM}\cdot\frac {SM}{BC}\ \stackrel{5\wedge 6}{=}\ \frac {b^2+c^2}{a^2+b^2+c^2}\cdot \frac 23\cdot\frac {b^2-c^2}{2\left(b^2+c^2\right)}=\frac {b^2-c^2}{3\left(a^2+b^2+c^2\right)} & \implies & \frac {[AIG]}{[ABC]}=\frac {b^2-c^2}{3\sum a^2} & (10)\end{array}\right\|\ .$](//latex.artofproblemsolving.com/2/a/4/2a4bc9401e7937737ea4650e750c88d3041720d2.png)
The relation
implies

![$\boxed{\frac{[GIK]}{[ABC]}=\frac{|(a-b)(b-c)(c-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}}\ .$](//latex.artofproblemsolving.com/d/6/5/d6598bae0c28a566d206aefe2d82dcd19efb30cc.png)







Let




![$[AH_1BH_2]$](http://latex.artofproblemsolving.com/1/3/4/134a3ba1a5eaddf9939e93f34b83e91bd565f1f0.png)
Proof. Observe that




![$[AH_1BH_2]=[ABC]$](http://latex.artofproblemsolving.com/b/4/7/b47b906443b572653029c4052a82103b5490d36b.png)
PP12. Let



![$[ABC]=S=72$](http://latex.artofproblemsolving.com/8/5/6/85689fe42448c1187063e69aa1e1ff1eeab42cd9.png)

Proof 1 (without trig.). Appear two cases


![$[B_1B_2]$](http://latex.artofproblemsolving.com/c/b/2/cb27b2e53a724c8b81e6618d8f1ec21e2b2c9d84.png)












Proof 2 (metric - brute force). Denote the midpoint

![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)









Therefore,







![$c^2\left[2\left(a^2+b^2\right)-c^2\right]=$](http://latex.artofproblemsolving.com/0/1/2/01270bb478f0aea9e9ccc054c878046f8df61cb4.png)











In our particular case obtain




Proof 3 (trigonometric). Since




obtain that



Remark.




In conclusion,


PP13. Let acute





![$[ODC]=[HEA]=[GFB]$](http://latex.artofproblemsolving.com/b/c/2/bc20689eec15b997f32bad05b1831f15b7002e30.png)

Proof. Show easily
![$4\cdot [ODC]=R^2\sin 2A\ ,\ [HEA]=$](http://latex.artofproblemsolving.com/8/5/b/85be3ec83a48c7a72c157864d31fef2b1d9d5c64.png)
![$R^2\cos^2A\sin 2C\ ,\ 3\cdot [GFB]=$](http://latex.artofproblemsolving.com/0/b/c/0bc661628519e47313fb586597706d52870776b4.png)



From




![$[ODC]=[HEA]\implies$](http://latex.artofproblemsolving.com/a/6/3/a637f8f0c1f29c84910400bab01a91d70d7cf585.png)












PP14. Let





to







Proof. Denote







![$[AKPM]=[ABC]\iff$](http://latex.artofproblemsolving.com/d/2/4/d2442928e9e8d14959fb7e026eb6df53aa083274.png)
![$[AKP]+[AMP]=S\iff$](http://latex.artofproblemsolving.com/0/a/e/0ae940d0ca43b9474cd737e62ab43d61585a7fe6.png)

![$AP\cdot AQ\cdot \left[\cos x\sin x+\cos (A-x)\sin (A-x)\right]=2S\iff$](http://latex.artofproblemsolving.com/8/7/c/87cb0a69340c28376111a01728020cab8a4db4df.png)
![$2R\sin (C+x)\cdot \frac {2S}{a\sin (B+x)}\cdot\frac 12\left[\sin 2x+\sin 2(A-x)\right]=2S\iff$](http://latex.artofproblemsolving.com/2/7/e/27eb8e3ec27e1e4b174a7825b7e4ec8a516b2a48.png)









![$[AP_1]$](http://latex.artofproblemsolving.com/3/2/c/32c24e64a875f855aa3ae468896029f91c7aed9e.png)



Verification.



![$\left\{\begin{array}{ccccc}
PB\perp AB & \iff & QK\parallel PB & \iff & [ABQ]=[APK]\\\\
PC\perp AC & \iff & QM\parallel PC & \iff & [ACQ]=[APM]\end{array}\right|$](http://latex.artofproblemsolving.com/9/f/3/9f3458664acf4244cdc6773b7b4234bc629e7d6c.png)
![$\bigoplus\implies [AKPM]=[ABC]$](http://latex.artofproblemsolving.com/8/d/a/8dae617e3d95a7c016837d61337bc4cc9a29447c.png)



![$2\cdot [AKP_2M]=$](http://latex.artofproblemsolving.com/0/9/a/09a4ee9aa19804fbff9de435b58cc39a3ef63919.png)
![$2\cdot \left([AKP_2]+[AMP_2]\right)=$](http://latex.artofproblemsolving.com/3/f/9/3f900b848b86c3bb0af7635b72f637b27e6c7556.png)


PP15. Let











![$[BMD]+[CNE]+[APF]=[MNP]$](http://latex.artofproblemsolving.com/5/8/a/58a24e0735433bbcd12d0ab65229d34cb6c31c06.png)
Proof (Sunken Rock). Take







As constructed,






Thus







PP16. Let




![$[ABF]+[ADE]=[CEF]$](http://latex.artofproblemsolving.com/1/4/d/14df73df22616270b8fb517b70a59cca73778c0b.png)
Proof 1 (trigonometric). Suppose w.l.o.g. that



![$[ABF]+[ADE]=[CEF]\iff$](http://latex.artofproblemsolving.com/5/a/5/5a5515dcce9d63857b273a90a1fa3a3145fc56bf.png)



Proof 2 (complex numbers). Denote














the existence of the equilateral triangle

![$[ADE]+[ABF]=[CEF]$](http://latex.artofproblemsolving.com/7/4/3/743a7799dc7d5ae27789e5f75c079e988d38cbd9.png)
Remark. Construct outside of the rectangle the equilateral triangles




Proof 3 (metric). Denote the midpoint

![$[EF]$](http://latex.artofproblemsolving.com/7/6/3/763239c0ce4fccc63411d3d6cb0011f7f6cc3a31.png)








that




![$[ABF]+[ADE]=[ECF]\iff$](http://latex.artofproblemsolving.com/2/9/d/29d606df17c6df08890a8f81fd3f44d7b0e4c3a0.png)


















An easy extension. Let





![$[ABF]+[ADE]=[CEF]\cdot\cot\phi\cdot\cot 2\phi$](http://latex.artofproblemsolving.com/3/6/f/36f960782a5914a3d056e328e9b7682d498cca44.png)
PP17. Let





Proof 1. Let







Proof 2 (nice). Denote



![$S=[ABC]$](http://latex.artofproblemsolving.com/b/3/a/b3ae3d445111e4dd28be75922309d3270079368c.png)




to the sidelines













PP18. A circle of radius 2 is centered at






and





![[asy]
defaultpen(linewidth(0.8));
pair O=origin, A=(1,0), C=(0,1), B=(1,1), D=(1, sqrt(3)), E=(sqrt(3), 1), point=B;
fill(Arc(O, 2, 0, 90)--O--cycle, mediumgray);
clip(B--Arc(O, 2, 30, 60)--cycle);
draw(Circle(origin, 2));
draw((-2,0)--(2,0)^^(0,-2)--(0,2));
draw(A--D^^C--E);
label("$A$", A, dir(point--A));
label("$C$", C, dir(point--C));
label("$O$", O, dir(point--O));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$B$", B, SW);[/asy]](http://latex.artofproblemsolving.com/7/a/3/7a3f744b216ad2a628969e77f114d9ca5e96c109.png)
Proof.

![$BDE = \mathrm{area\ sector}\ DOE\ -\ 2\cdot [OBE]=$](http://latex.artofproblemsolving.com/3/e/b/3eb54fb07f9c0f8940407c3cdb1546f746b7c5e8.png)








(radians). Remark that the length of the arc




PP19. Let a convex



![$[MON]=[POQ]=\frac {MB\cdot MC}{BC^2}\cdot [ABCD]$](http://latex.artofproblemsolving.com/d/1/3/d13c919e302897c8da3073062534fba4b1b14119.png)
Proof. Let
![$S=[ABCD]$](http://latex.artofproblemsolving.com/d/7/c/d7c0f0918fa7f2eaf7f90ca234333d338468e9cb.png)

![$\left\{\begin{array}{ccc}
\nearrow\ [AOB]=a & ; & [BOC]=b\\\\
\searrow\ [COD]=c & ; & [DOA]=d\end{array}\right\|$](http://latex.artofproblemsolving.com/f/4/8/f482072e4e00c65be90ceda8bae5c2e2c34a0baa.png)




![$\left\{\begin{array}{ccccc}
\nearrow\ \frac {[MOS]}{[BCD]}=\frac {MS\cdot\delta_{BD}(M)}{BD\cdot\delta_{BD}(C)} & \implies & \frac {[MOS]}{[BCD]}=\frac {MS}{BD}\cdot\frac {BM}{BC}=\frac {CM}{CB}\cdot \frac {BM}{BC} & \implies & \frac {[MOS]}{[BCD]}=\frac {m}{(m+1)^2}\\\\
\searrow\ \frac {[NOS]}{[ACD]}=\frac {NS\cdot\delta_{AC}(S)}{AC\cdot\delta_{AC}(D)} & \implies & \frac {[NOS]}{[ACD]}=\frac {NS}{AC}\cdot\frac {CS}{CD}=\frac {BM}{BC}\cdot \frac {CM}{CB} & \implies & \frac {[NOS]}{[ACD]}=\frac {m}{(m+1)^2}\end{array}\right\|$](http://latex.artofproblemsolving.com/e/7/f/e7f90c1fa361da23c6651fc18c9db301a983cbc8.png)
![$\left\{\begin{array}{ccc}
\nearrow\ \frac {[MCS]}{[BCD]}=\frac {[NAR]}{[DAB]}=\frac 1{(m+1)^2} & \implies & [MCS]+[NAR]=\frac S{(m+1)^2}\\\\
\searrow\ \frac {[SDN]}{[CDA]}=\frac {[MBR]}{[CBA]}=\frac {m^2}{(m+1)^2} & \implies & [SDN]+[MBR]=\frac {m^2S}{(m+1)^2}\end{array}\right\|$](http://latex.artofproblemsolving.com/5/f/3/5f3fcadceaeb88a65af16b1ac90a47425056260a.png)

![$[MSN]=\frac 12\cdot [MSNR]=\frac 12\cdot \left\{S-\left([MCS]+[NAR]+[SDN]+[MBR]\right)\right\}=$](http://latex.artofproblemsolving.com/a/e/2/ae2fb07cc9d961a806ab3f0199e4d5f8dd72e9b5.png)
![$\frac 12\cdot \left[S-\frac S{(m+1)^2}-\frac {m^2S}{(m+1)^2}\right]=$](http://latex.artofproblemsolving.com/a/2/6/a263425c15e3373c3af0aa156c20064d3c108315.png)
![$\frac S2\cdot\left[1-\frac 1{(m+1)^2}-\frac {m^2}{(m+1)^2}\right]\implies$](http://latex.artofproblemsolving.com/9/d/3/9d3713941eeee93fc9ccd31783c9a24dee25ec25.png)
![$[MSN]=\frac {mS}{(m+1)^2}$](http://latex.artofproblemsolving.com/6/3/e/63ed840cf10dcd59911b0efbd5d43597a3d14fc4.png)
![$[MON]=[MOS]+[NOS]-[MSN]=$](http://latex.artofproblemsolving.com/a/5/9/a59384138f7b7864572038eb15f9459eaad9b495.png)
![$\frac {m}{(m+1)^2}\cdot\left([BCD]+[ACD]-S\right)\implies$](http://latex.artofproblemsolving.com/a/0/7/a07b1cd76f3b250139b91685403ba5ee908a5888.png)
![$[MON]=\frac {m}{(m+1)^2}\cdot\left|[OCD]-[OAB]\right|$](http://latex.artofproblemsolving.com/e/9/d/e9d02bb929daf7f239b31d52a182224f4df55c4d.png)


![$\boxed{[MON]=[POQ]= \frac {m}{(m+1)^2}\cdot\left|[OCD]-[OAB]\right|}$](http://latex.artofproblemsolving.com/4/7/a/47a070d51806c1d74476ecdb9547df11a44f0988.png)
PP20. Let




![$[DIC]=r^2\iff B=30^{\circ}$](http://latex.artofproblemsolving.com/b/3/6/b361682cd045cb050ad30e66ebfdf99e72aa6b8e.png)
Proof.
![$[DIC]=r^2\iff$](http://latex.artofproblemsolving.com/3/c/4/3c4a785fa9ca1d1dc882033c4d3dc585243214f7.png)







P21 (Nguyen Viet Hung, Vietnam) <= click.
Proof (elementary). Suppose w.l.o.g.


![$[BC]\ ,$](http://latex.artofproblemsolving.com/6/5/6/6563ca77d31eb676ef646fa9c37ea181b812d864.png)












Thus,
![$\boxed{\ [GIK]=[AKI]+[AIG]-[AKG]\ }\ (*)\ ,$](http://latex.artofproblemsolving.com/7/8/f/78fd01270b2c7332a4149e4ca797ab5cc92b44bf.png)
![$\ :\ \left\{\begin{array}{cccc}
\frac {[AKI]}{[ABC]}=\frac {[AKI]}{[ASD]}\cdot\frac {[ASD]}{[ABC]}=\frac {AK}{AS}\cdot\frac {AI}{AD}\cdot\frac {SD}{BC}\ \stackrel{3\wedge 6\wedge 7}{=}\ \frac {b^2+c^2}{a^2+b^2+c^2}\cdot\frac {b+c}{a+b+c}\cdot\frac {bc(b-c)}{(b+c)\left(b^2+c^2\right)} & \implies & \frac {[AKI]}{[ABC]}=\frac {bc(b-c)}{\sum a\cdot\sum a^2} & (8)\\\\
\frac {[AIG]}{[ABC]}=\frac {[AIG]}{[ADM]}\cdot\frac {[ADM]}{[ABC]}=\frac {AI}{AD}\cdot\frac {AG}{AM}\frac {DM}{BC}\ \stackrel{4\wedge 7}{=}\ \frac {b+c}{a+b+c}\cdot\frac 23\cdot\frac {b-c}{2(b+c)}=\frac {b-c}{3(a+b+c)} & \implies & \frac {[AIG]}{[ABC]}=\frac {b-c}{3\sum a} & (9)\\\\
\frac {[AKG]}{[ABC]}=\frac {[AKG]}{[ASM]}\cdot \frac {[ASM]}{[ABC]}=\frac {AK}{AS}\cdot\frac {AG}{AM}\cdot\frac {SM}{BC}\ \stackrel{5\wedge 6}{=}\ \frac {b^2+c^2}{a^2+b^2+c^2}\cdot \frac 23\cdot\frac {b^2-c^2}{2\left(b^2+c^2\right)}=\frac {b^2-c^2}{3\left(a^2+b^2+c^2\right)} & \implies & \frac {[AIG]}{[ABC]}=\frac {b^2-c^2}{3\sum a^2} & (10)\end{array}\right\|\ .$](http://latex.artofproblemsolving.com/2/a/4/2a4bc9401e7937737ea4650e750c88d3041720d2.png)
The relation

![$\frac{[GIK]}{[ABC]}=\left|\ \frac {[AKI]}{[ABC]}+\frac {[AIG]}{[ABC]}-\frac{[AKG]}{[ABC]}\ \right|\ \stackrel{8\wedge 9\wedge 10}{=}\ \left|\ \frac {bc(b-c)}{\sum a\cdot\sum a^2}+\frac {b-c}{3\sum a}-\frac {b^2-c^2}{3\sum a^2}\ \right|=$](http://latex.artofproblemsolving.com/e/8/b/e8bb8207c33ccc34ae1b011b1f19baeafe0bf7c6.png)





![$\boxed{\frac{[GIK]}{[ABC]}=\frac{|(a-b)(b-c)(c-a)|}{3(a+b+c)\left(a^2+b^2+c^2\right)}}\ .$](http://latex.artofproblemsolving.com/d/6/5/d6598bae0c28a566d206aefe2d82dcd19efb30cc.png)
This post has been edited 238 times. Last edited by Virgil Nicula, Jan 21, 2018, 8:59 AM