116. The length of AE (nine methods !).

by Virgil Nicula, Sep 12, 2010, 9:47 PM

Quote:
The $A$-bisector $\triangle ABC$ meets again the circumcircle $w=C(O,R)$ of the triangle $ ABC$ at $E$ . Ascertain the length of the segment $[AE]$ .

Method 1. Observe that $a= 2\cdot BE\cdot\cos\frac A2$ . Apply the Ptolemeus' relation to the cyclical

quadrilateral $ ABEC\ \ : \ \ a\cdot AE= BE\cdot (b+c)$ because $EB=EC=EI$ . In conclusion, $ \boxed {\ AE = \frac {b + c}{2\cos\frac A2}\ }$ .

Method 2. Suppose w.l.o.g. that $ B > C$ . Denote $ \left\|\begin{array}{c} X\in AB\ ,\ EX\perp AB \\
\ Y\in AC\ ,\ EY\perp AC\end{array}\right\|$ . Observe that $ B\in (AX)$ , $ Y\in (AC)$

and $ \triangle EBX\equiv\triangle ECY$ because they are right and $ EB = EC$ , $ EX = EY$ . Thus, $ BX = CY$ , $ AX = AY$ and

$ c+b=(c+BX) + (b-CY)=AX+AY=2\cdot AX=2\cdot AE\cdot\cos\frac A2$ . In conclusion, $ \boxed {\ AE = \frac {b + c}{2\cos\frac A2}\ }$ .

Method 3. Denote the diameter $ [AS]$ of the circle $ w$ and $ M\in BS\cap AE$ , $ N\in CS\cap AE$ . Observe that $ \widehat {SMN}\equiv\widehat {SNM}$

with common value $ \frac {B + C}{2}$ , i.e. the triangle $ SMN$ is $ S$ - isosceles. Since $ SE\perp MN$ obtain $ EM = EN$ , i.e.

$ 2\cdot AE = AM + AN$ . Since $ c = AM\cdot\cos\frac A2$ , $ b = AN\cdot\cos\frac A2$ obtain $ 2\cdot AE\cdot \cos\frac A2 = b + c$ , i.e. $ \boxed {\ AE = \frac {b + c}{2\cos\frac A2}\ }$ .

Method 4. IF $ D\in AE\cap BC$ , then $ \triangle ABE\sim\triangle ADC$ . Thus, $ \frac {AB}{AD} = \frac {EA}{CA}$ ,

i.e. $ \boxed{\boxed{AD\cdot AE = bc}}$ . But $ AD = \frac {2bc\cdot\cos\frac A2}{b + c}$ . In conclusion, $ \boxed {\ AE = \frac {b + c}{2\cos \frac {A}{2}}\ }$ .

Method 5. $ AE = 2R\sin \left(B + \frac A2\right)$ $ \implies$ $ AE\cdot 2\cos \frac A2 =$ $ 2R\cdot 2\sin\left(B + \frac A2\right)\cos \frac A2$ .

Thus, $ AE\cdot 2\cos \frac A2 = 2R(\sin C + \sin B) = b + c$ . In conclusion, $ \boxed {\ AE = \frac {b + c}{2\cos \frac {A}{2}}\ }$ .

Method 6. $ AD\cdot DE = DB\cdot DC$ $ \implies$ $ AE = AD + DE = AD + \frac {DB\cdot DC}{AD}$ $ \implies$

$ AE = \frac {2bc\cos\frac A2}{b + c} + \frac {a^2bc}{(b + c)^2}\cdot \frac {b + c}{2bc\cos\frac A2}$ $ \implies$ $ AE = \frac {2bc\cos\frac A2}{b + c} + \frac {a^2}{2(b + c)\cos\frac A2} =$ $ \frac {4bc\cos^2\frac A2 + a^2}{2(b + c)\cos\frac A2}$ $ \implies$

$ AE = \frac {2bc(1 + \cos A) + a^2}{2(b + c)\cos\frac A2} = \frac {2bc + b^2 + c^2 - a^2 + a^2}{2(b + c)\cos\frac A2}$ $ \implies$ $ AE = \frac {(b + c)^2}{2(b + c)\cos\frac A2}$ , i.e. $ \boxed {\ AE = \frac {b + c}{2\cos \frac {A}{2}}\ }$ .

Method 7. Denote $ N\in OE$ for which $ NA\perp AE$ . Thus, $ N\in w$ and $ AE = NE\cdot\cos\frac {B - C}{2}$ , i.e. $ AE = 2R\cos\frac {B - C}{2}$ .

Therefore, $ AE\cdot 2\cos\frac A2 = 2R\cdot 2\cos\frac {B - C}{2}\sin\frac {B + C}{2} = 2R(\sin B + \sin C) = b + c$ . In conclusion, $ \boxed {\ AE = \frac {b + c}{2\cos \frac {A}{2}}\ }$ .

Method 8. Denote $ U\in (BA$ for which $ AU = AC$ . Observe that $ UB = b + c$ and $ UC = 2b\cos\frac A2$ .

Since $ \triangle AEC\sim\triangle UBC$ obtain $ \frac {AE}{UB} = \frac {AC}{UC}$ $ \implies$ $ \frac {AE}{b + c} = \frac {b}{2b\cos\frac A2}$ , i.e. $ \boxed {\ AE = \frac {b + c}{2\cos \frac {A}{2}}\ }$ .

Method 9. Denote $ K\in (AC)$ for which $ AK = AB$ . Observe that $ EK = EB = EC$ what means the triangle $ ECK$ is $ E$ - isosceles. Thus,

for the midpoint $ M$ of $ [CK]$ we have $ EM\perp KC$ and $ 2\cdot AM = AC + AK$ $ \implies$ $ AM = \frac {b + c}{2}$ and $ AM = EA\cdot\cos\frac A2$ $ \implies$ $ \boxed {\ AE = \frac {b + c}{2\cos \frac {A}{2}}\ }$ .

Remark. You can obtain directly the relation $ AE =2R\sin\left(B+\frac A2\right)=2R\sin\left(C+\frac A2\right)=  2R\cdot\cos\frac {B - C}{2}$ from the $ O$ - isosceles triangle $ AOE$ !

See
length of angle-bisector (<== click).
This post has been edited 7 times. Last edited by Virgil Nicula, Nov 23, 2015, 7:47 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a