237. Some problems with ... problems.

by Virgil Nicula, Mar 4, 2011, 9:37 AM

PP1. Let $ABC$ be a triangle and let $D\in (BC)$ be a point for which $\widehat{DAB}\equiv\widehat {DAC}$ . For a point $P\in (AD)$ define

the points $E\in BP\cap AC$ , $F\in CP\cap AB$ and $X\in BE\cap DF$ , $Y\in CF\cap DE$ . Prove that $\widehat {DAX}\equiv\widehat {DAY}$ .


Proof. Denote $\left\|\begin{array}{c}
\frac {EA}{EC}=n\\\
\frac {FA}{FB}=m\end{array}\right\|$ and $\left\|\begin{array}{c}
 m(\widehat{XAB})=x \\\
 m(\widehat{YAC})=y\end{array}\right\|$ . Prove easily that $\left\|\begin{array}{ccc}
 DB=\frac {ac}{b+c} & ; & DC=\frac {ab}{b+c}\\\
 EC=\frac {b}{n+1} & ; & EA=\frac {nb}{n+1}\\\
 FA=\frac {mc}{m+1} & ; & FB=\frac {c}{m+1}\end{array}\right\|$ . Applying the Ceva's theorem to the point $P$

in $\triangle ABC$ obtain that $mc=nb$ . Therefore, $\frac {AE}{AF}=$ $\frac {m+1}{n+1}$ and $\left\|\begin{array}{c}
 \frac {AD}{AF}\cdot \frac {\sin\left(\frac A2-x\right)}{\sin x}=\frac {XD}{XF}=\frac {EC}{EA}\cdot\frac {BD}{BF}\cdot \frac {BA}{BC}=\frac 1n\cdot\frac {a(m+1)}{b+c}\cdot\frac ca=\frac {(m+1)c}{n(b+c)}\\\\
 \frac {AD}{AE}\cdot\frac {\sin\left(\frac A2-y\right)}{\sin y}=\frac {YD}{YE}=\frac {FB}{FA}\cdot\frac {CD}{CE}\cdot\frac {CA}{CB}=\frac 1m\cdot\frac {(n+1)a}{b+c}\cdot \frac ba=\frac {(n+1)b}{m(b+c)}\end{array}\right\|$ $\Longrightarrow$

$\left\|\begin{array}{c}
 \frac {AD}{AF}\cdot \frac {\sin\left(\frac A2-x\right)}{\sin x}=\frac {(m+1)c}{n(b+c)}\\\\
 \frac {AD}{AE}\cdot\frac {\sin\left(\frac A2-y\right)}{\sin y}=\frac {(n+1)b}{m(b+c)}\end{array}\right\|$ $\Longrightarrow\ \frac {AE}{AF}\cdot \frac {\sin\left(\frac A2-x\right)}{\sin x}\cdot\frac {\sin y}{\sin\left(\frac A2-y\right)}=\frac {m(m+1)c}{n(n+1)b}=\frac {m+1}{n+1}$ $\Longrightarrow$

$\sin\left(\frac A2-x\right)\cdot \sin y=\sin\left(\frac A2-y\right)\cdot\sin x$ $\Longrightarrow$ $\cos\left(\frac A2+y-x\right)=$ $\cos\left(\frac A2+x-y\right)$ $\Longrightarrow x=y\ .$



PP2. Let $ABC$ be a triangle with the circumcircle $w$ . Let $\{P,Q\}\subset w$ be two points so that $PQ\parallel BC$ and the line $BC$

separates $A$ , $P$ . Prove that $\left\|\ \begin{array}{c}
 AP\cdot AQ=AB\cdot AC+PB\cdot PC\\\
 AP^2=AB^\cdot AC+PB\cdot PC\ \Longleftrightarrow\  AB=AC\ \ \vee\ \ \widehat {PAB}\equiv\widehat {PAC}\end{array}\ \right\|\ .$


Proof. Suppose w.l.o.g. $PB\le PC\ .$ Denote $m(\angle PAB)=m(\angle PAC)=x\ .$ Observe that $\left\|\begin{array}{ccc}
 m(\angle APQ) & = & B+x\\\
 m(\angle AQP) & = & C+x\end{array}\right\|$

and $AP\cdot AQ=AB\cdot AC+PB\cdot PC$ $\Longleftrightarrow$ $\sin (C+x)\cdot\sin (B+x)=$ $\sin C\cdot\sin B+\sin x\cdot\sin (A-x)$ $\Longleftrightarrow$

$\cos(C-B)-\cos (B+C+2x)=$ $\cos (C-B)-\cos (C+B)+\cos (2x-A)-\cos A$ $\Longleftrightarrow$ $\cos(C-B)+\cos (2x-A)=$

$\cos (C-B)+\cos A+\cos (2x-A)-\cos A$ , what is truly. Prove easily that the mentioned (in conclusion) equivalence is also truly.



PP3. Let $ ABCD$ be a convex quadrilateral , $ AC\not\perp BD$ and $ X\in (BD)$ so that $ XB^2\cdot (DC^2 - DA^2) - XD^2\cdot (BC^2 - BA^2)=$

$AB^2\cdot CD^2 - AD^2\cdot BC^2\ \ (*)$ . Denote reflection $R$ of $ A$ w.r.t. $ BD$ . Prove that $ ACRX$ is concyclically and $ XA = XR\implies$ $ \widehat {XCA}\equiv\widehat {XCR}$ .

Lemma (well-known or you can easily it). Are given two fixed points $ B$ , $ D$ and three real constants $ m$ , $ n$ , $ p$ so that $ m+n\ne 0$ .

Then the geometrical locus of the point $ X$ for which $ m\cdot XB^2+n\cdot XD^2=p$ is a circle $ C(O)$ , where $ O\in BD$ .


Proof. Denote $ \left\{\begin{array}{c}
m=DC^2-DA^2\ ;\  n=BA^2-BC^2\\\\
p=B^2\cdot CD^2-AD^2\cdot BC^2\\\\
f(X)=m\cdot XB^2+n\cdot XD^2\end{array}\right\|$ . Observe that $ \left\{\begin{array}{c}
AC\not\perp BD\Longleftrightarrow AB^2+CD^2\ne AD^2+BC^2\Longleftrightarrow m+n\ne 0\ .\\\\
f(X)=fC)=f(A)=f(R)=p\ .\end{array}\right\|$

Using the upper lemma results that $ ACRX$ is cyclically. Remark. $ XA=XR$ $ \implies$ the ray $ [CX$ is the bisector of the angle $ \widehat {ACR}$ .

Particular case. $ AB\cdot CD=AD\cdot BC$ , i.e. $ \frac {BA}{BC}=\frac {DA}{DC}$ . The relation $ (*)$ becomes $ \frac {XB^2}{XD^2}=$ $\frac {BC^2-BA^2}{DC^2-DA^2}=$

$\left(\frac {BC}{DC}\right)^2\cdot\frac {1-\left(\frac {BA}{BC}\right)^2}{1-\left(\frac {DA}{DC}\right)^2}$ $ \Longrightarrow$ $ \frac {XB}{XD}=\frac {BC}{DC}$ , i.e. the ray $ [CX$ is the bisector of the angle $ \widehat {ACR}$ .Thus, $ \widehat {RCB}\equiv\widehat {ACD}$ .

Remark. See the particular case $ AB\cdot CD = AD\cdot BC$ , i.e. $ \frac {XB}{CB} = \frac {XD}{CD}$ at http://www.artofproblemsolving.com/Forum/viewtopic.php?t=63420



PP4. The $ A$ - exincircle $ w_a = C(I_a,r_a)$ of $ \triangle ABC$ is tangent to $ AB$ , $ AC$ at the points $ B'$ , $ C'$ . Denote the incircle

$ w = C(I,r)$ of $ \triangle ABC$ and $ \begin{array}{ccc} P\in BI_{a}\cap B'C' & ; & Q\in CI_{a}\cap B'C' \\
 \\
M\in PC\cap BQ & ; & L\in BC\ ,\ ML\perp BC\end{array}$ . Prove that $ ML = r$ .


Proof.

$ \blacktriangleright$ The point $ I$ is the orthocenter of the triangle $ I_aI_bI_c$ (evidently). Prove that the quadrilateral $ BPQC$ is cyclically.


Proof.

$ \blacktriangleright$ Denote $ T\in I_aM\cap BC$ . Show that $ \frac {TB}{TC} = \frac {p - c}{p - b}$ , i.e. $ \overline {I_aMT}\perp BC$ (the point $ T\equiv L$ and belongs to the circle $ w_a$ ).

Proof.

$ \blacktriangleright$ Apply lemma I to the triangle $ BCI_a$ , where $ I_aL\perp BC$ and for the point $ M\in I_aL$ the quadrilateral $ BPQC$

is cyclically. In conclusion, the point $ M$ is the orthocenter of $ \triangle BCI_a$ , i.e. $ CM\perp BI_a$ and $ BM\perp CI_a$ .


$ \blacktriangleright$ Apply lemma II to $ \triangle I_aI_bI_c$ with the orthocenter $ I$ , where $ M$ is the orthocenter of $ \triangle BCI_a$ .

In conclusion, $ ML$ is equally to the inradius of the orthic $ \triangle ABC$ w.r.t. the triangle $ I_aI_bI_c$ , i.e. $ ML = r$ .



PP5. Let $ ABC$ be a triangle with the circumcircle $ w = C(O,R)$ and let $ T$ , $ X$ be the intersections of $ BC$ , $ w$

respectively with the bisector of the angle $ \angle A$ . Through the vertex $ C$ we draw the perpendicular line to $ BC$

which intersects the external bisector of $ \angle A$ in the point $ P$ . Denote $ K\in OA\cap BP$ . Prove that $ KT\perp BC$ .


Proof I (metric). Suppose w.l.o.g. $ b > c$ . Observe that $ \left\|\begin{array}{c} m(\angle KAB) = 90^{\circ} - C \\
 \\
m(\angle KAP) = 90^{\circ} - \frac {B - C}{2} \\
 \\
m\left(\angle APC\right) = 90^{\circ} - \frac {B - C}{2}\end{array}\right\|$ . Denote $ \left\|\begin{array}{c} D\in BC \\
\ AD\perp BC\end{array}\right\|$ . Therefore,

$ \frac {KB}{KP} = \frac {AB}{AP}\cdot\frac {\sin\widehat {KAB}}{\sin\widehat {KAP}} =$ $ \left|\frac {c\cdot\sin \left(90^{\circ}-C\right)}{AP\cdot \cos\frac {B-C}2}\right|=$ $ \frac {c\cdot |\cos C|}{DC} = \frac cb$ . In conclusion, $ \frac {KB}{KP} = \frac {TB}{TC}$ $ \implies$ $ KT\parallel PC$ $ \implies$ $ KT\perp BC$ .


Proof II (synthetic). Denote $ L\in BC\cap AP$ , the diameter $ [XY]$ , the line $ d$ for which $ K\in d$ , $ d\parallel PC$, i.e. $ d\perp BC$ and the points $ U\in AP\cap d$ ,

$ V\in PT\cap LK$ , $ W\in LK\cap PC$ , $ T_1\in d\cap AX$ , $ T_2\in d\cap BC$ . Observe that $ KU=KT_1$ because $ K\in AO$ - the $ A$-median in $ \triangle AXY$

and $ \overline {UKT_1}\parallel \overline {XOY}$ . Thus, the division $ \{B,C;L,T\}$ is harmonically $ \Longleftrightarrow$ the pencil $ P\{B,C;L,T\}$ is harmonically $ \Longleftrightarrow$ a.s.o.



PP6. In an acute-angled triangle $ABC$ denote the midpoint $M$ of side $[BC]$ and the feet $D$ , $E$ , $F$ of the altitudes from $A$ , $B$ , $C$

respectively. Let $H$ be the orthocenter of $\Delta ABC$ , let $S$ be the midpoint of $[AH]$ , let $G\in EF\cap AH$ and let $N$ be the intersection

of the median $AM$ with the circumcircle of $\Delta BCH$ so that $BC$ doesn't separate $A$ , $N$ . Prove that $\widehat{HMA}\equiv\widehat{GNS}$ .


Proof 1. Denote $L\in EF\cap BC$ . From an well-known property obtain that $LH\perp AM$ . Denote $N'\in LH\cap AM$ . Therefore,

$AF\cdot AB=AH\cdot AD=AN'\cdot AM\implies $ $AF\cdot  AB=AN'\cdot AM\implies BFN'M$ is cyclically $\implies m\left(\widehat{BN'M}\right)=$ $m\left(\widehat{BFM}\right)=B$ .

$AE\cdot AC=AH\cdot AD=AN'\cdot AM\implies $ $AE\cdot  AC=AN'\cdot AM\implies CEN'M$ is cyclically $\implies m\left(\widehat{CN'M}\right)=$ $m\left(\widehat{CEM}\right)=C$ .

Therefore, $m\left(\widehat{BN'C}\right)=m\left(\widehat{BN'M}\right)+m\left(\widehat{CN'M}\right)=B+C=180^{\circ}-A\implies$ $BHN'C$ is cyclically $\implies N'\equiv N$ . Since the division

$(A,G,H,D)$ is harmonically and $NH\perp NA$ obtain that $\widehat{HNG}\equiv\widehat{HND}$ . Since the quadrilateral $DHNM$ is cyclically obtain that $\widehat{HND}\equiv \widehat{HMD}$ .

Thus, $\widehat{HNG}\equiv\widehat{HMD}$ . In conclusion, $m\left(\widehat{HMA}\right) =90^{\circ}-m\left(\widehat{DAM}\right)-m\left(\widehat{DMH}\right)=$ $90^{\circ}-m\left(\widehat{ANS}\right)-m\left(\widehat{HND}\right)=$

$90^{\circ}-m\left(\widehat{ANS}\right)-m\left(\widehat{HNG}\right)=m\left(\widehat{GNS}\right)$ $\implies$ $\widehat{HMA}\equiv \widehat{GNS}$ .

Proof 2. Observe taht $BCEF$ is cyclic and $M$ is the orthocenter of $\triangle AHK$ . Denote $N\in HK\cap AM$ . Since the division $(K,D;C,B)$ is harmonically and

$NMDH$ is cyclic obtain that $KH\cdot KN=KD\cdot KM=KC\cdot KB$ . Then $BCHN$ is cyclic. yje point $N$ is that of the problem. $m(\angle GNH)=$

$m(\angle HND)$ since the division $(D,G;H,A)$ is harmonically and $NH\perp NA$ . Since $SN=SH$ and $\widehat{SNH}\equiv\widehat{SHN}$ obtain that $m(\angle SNH)=$

$m(\angle SNG+$ $\angle GNH)$ and $m(\angle SHN)=$ $m(\angle HND)+$ $m(\angle HDN)=$ $m(\angle HND)+(\angle HMA)$ . Thus, $m(\angle SNG)=m(\angle HMA)$ .



PP7. Let $ABC$ be an acute triangle. Denote the midpoint $M$ of the side $[AB]$ . The bisectors of segments $[CB]$ ,

$[CA]$ intersect $CM$ at $Q$ , $P$ respectively. denote $I\in BQ\cap AP$ intersects $AP$ . Prove that $\widehat{ACI}\equiv\widehat{BCM}$ .


Proof. Let $D$ be the reflection of $C$ about $M$. Lines $AP,BQ$ cut $DB,DA$ at $U,V$ respectively, then $BCVD$ and $ACUD$ are isosceles trapezoids with legs

$CV=BD$ and $CU=AD,$ i.e. $\triangle ACV \sim \triangle BCU$ are isosceles with common apex $C$ $\Longrightarrow$ $\angle ACV=\angle BCU$. If the tangents to the circumcircle

of $\triangle ABC$ through $A,B$ intersect at $E,$ then we have $\angle CAV=\angle BAE=\angle C$ and $\angle CBU=\angle ABE=\angle C.$ Thus, by the Jacobi's theorem, it follows

that lines $CE,AU,BV$ concur at $I$ $\Longrightarrow$ $CI\equiv CE$ is the C-symmedian of $\triangle ABC$ $\Longrightarrow$ $\angle ACI=\angle BCM.$



PP8. In isosceles triangle $ ABC\ ,\ (CA = CB)$ consider the point $ M\in (AB)$ so that $ MA = 2\cdot MB$ , the midpoint $ F$

of the side $ [BC]$ and the orthogonal projection $ H$ of the point $ M$ on the line $ AF$ . Prove that $ \angle BHF = \angle ABC$ .


Proof. Denote the midpoint $ L$ of the side $ [AB]$ , the centroid $ G\in AF\cap CL$ of the triangle $ ABC$ , the midpoint $ N$ of the segment $ [AM]$ and the point $ D\in AF$

for which $ DB\perp AB$ . Thus, $ LN=LM$ , $ LA=LB$ , $ AN =$ $ NM =$ $ MB=$ $ 2\cdot NL$ , $ AG = GD$ , $ GC=$ $ DB=$ $ 2\cdot GL$ , $ AC\parallel GN\parallel DM$

and the quadrilateral $ MHDB$ is cyclically. Therefore, $ \widehat {BHF}\equiv$ $ \widehat {BHD}\equiv$ $ \widehat {BMD}\equiv$ $ \widehat {BAC}\equiv$ $ \widehat {ABC}$ , i.e. $ \widehat {BHF}\equiv\widehat {ABC}$ .

Remark. Observe that $ \frac {MB}{ML} = \frac {AB}{AL} = 2$ , i.e. the points $ A$ , $ M$ are harmonically conjugate w.r.t. the pair $ \{L,B\}$ .

Since $ HA\perp HM$ obtain $ \widehat {MHB}\equiv\widehat {MHL}$ . Thus, $ \widehat {LHA}\equiv\widehat {BHD}\equiv\widehat {FBL}$ , i.e. the quadrilateral $ LHFB$ is cyclically.



PP9 (Serbian JBMO TST, 2011). Let $ABC$ be a right triangle, $CA\perp CB$ and $a<b<2a$. Given are the points $M\in AC$ and

$N\in BC$ so that $AM=BC$ and $BN=MC$ . Denote the intersection $K\in AN\cap BM$. Find the value of the angle $\widehat{AKM}\ .$


Proof 1. Let $P$ , $Q$ such that $ACBQ$ is a rectangle and $PB=BC=AM=AQ\implies PQ=MC=BN$ . Then $\triangle CBM\cong$

$\triangle BPN\cong$ $\triangle QAP$ $\implies$ $PA=PN$ and $\angle APN=90^\circ$ . Thus, $AMBP$ is a parallelogram $\implies$ $\angle MKA=\angle KAP=45^\circ$ .


A preliminary metrical study. Prove easily that : $AM=a$ ; $NB=MC=b-a$ ; $CN=2a-b$ ;

$BM^{2}=$ $a^{2}+(b-a)^{2}\ ;\ AN=\sqrt 2\cdot BM\ .$ I'll establish the position of the point $K$ on the segments $[BM]$ and $[AN]$ .

Apply the Menelaus' theorem to the transversals $\overline{AKN}$, $\overline{BKM}$ for the triangles $BCM$ , $ACN$ respectively :

$\blacktriangleright\frac{AM}{AC}\cdot\frac{NC}{NB}\cdot\frac{KB}{KM}=1$ $\Longrightarrow$ $\frac{a}{b}\cdot\frac{2a-b}{b-a}\cdot\frac{KB}{KM}=1$ $\Longrightarrow$ $\Longrightarrow$ $\boxed{\ \frac{KB}{b(b-a)}=\frac{KM}{a(2a-b)}=\frac{1}{BM}\ }\ \ (1)\ .$

$\blacktriangleright\frac{BN}{BC}\cdot \frac{MC}{MA}\cdot\frac{KA}{KN}=1$ $\Longrightarrow$ $\frac{b-a}{a}\cdot\frac{b-a}{a}\cdot\frac{KA}{KN}=1$ $\Longrightarrow$ $\Longrightarrow$ $\boxed{\ \frac{KA}{a^{2}}=\frac{KN}{(a-b)^{2}}=\frac{\sqrt 2}{BM}\ }\ \ (2)\ .$

If denote $m(\widehat{AKM})=\phi$ , $m(\widehat{CBM})=u$ , $m(\widehat{ANC})=v$ , then $\phi =v-u\ .$

Proof 2.1 (metric). Apply the generalized Pythagoras' theorem to the side $AM$ in the triangle $AKM$ :

$2\cdot KA\cdot KM\cdot\cos \phi =KM^{2}+KA^{2}-AM^{2}=$ $2\cdot\frac{a(2a-b)}{BM}\cdot \frac{a^{2}\sqrt 2}{BM}\cdot\cos\phi =\frac{a^{2}(2a-b)^{2}}{BM^{2}}+\frac{2a^{4}}{BM^{2}}-a^{4}$ $\Longrightarrow$

$2\sqrt 2\cdot a(2a-b)\cos\phi=$ $(2a-b)^{2}+2a^{2}-BM^{2}=$ $2a(2a-b)$ $\Longrightarrow$ $\cos\phi =\frac{\sqrt 2}{2}$ $\Longrightarrow$ $\boxed{\ \phi=45^{\circ}\ }\ .$

Proof 2.2 (slight metric). Denote the intersection $P$ between the bisector of the angle $\widehat{BCM}$ and the line $BM$ .

Apply the theorem of the angle bisector to the ray $[CP$ in the triangle $BCM\ :\ \frac{PB}{CB}=\frac{PM}{CM}$ $\Longrightarrow$

$\frac{PB}{a}=\frac{PM}{b-a}=\frac{BM}{b}$ $\Longrightarrow$ $\boxed{\ BP=\frac{a}{b}\cdot BM\ }\ .$ Therefore, $\boxed{\ \phi=45^{\circ}\ }$ $\Longleftrightarrow$ the quadrilateral $CKPN$ is cyclically $\Longleftrightarrow$

$BP\cdot BK=BN\cdot BC$ $\Longleftrightarrow$ $\frac{a}{b}\cdot BM\cdot BK=a(b-a)$ $\Longleftrightarrow$ $BM\cdot BK=b(b-a)$ , what is truly - see the relation $(1)\ .$

Remark. Let $R$ be the middlepoint of the segment $[AN]$ . Then $\triangle ACN\sim\triangle BRM$ , where $\frac{AN}{BM}=\sqrt 2\ .$ Particularly,

$\boxed{\ RB\perp RM\ \ \wedge\ \ CP\parallel MR\ }$ . Let $S\in BC$ and $T\in BM$ so that $C\in (BS)$, $CS=BN$ and $ST\perp BM$. Then $\boxed{\ BK=ST\ }$ .

Proof 3.1 (slight trigonometric). Apply the Sinus' theorem in the triangle $AMK$ :

$\frac{a}{\sin \phi }=\frac{AM}{\sin\phi }=\frac{AK}{\sin (90^{\circ}+u)}=\frac{a^{2}\sqrt 2}{BM\cos u}=\frac{a^{2}\sqrt 2}{a}=a\sqrt 2$ $\Longrightarrow$ $\Longrightarrow$ $\boxed{\ \phi=45^{\circ}\ }\ .$

Proof 3.2 (trigonometric).[/size] $\tan u=\frac{CM}{CB}=\frac{b-a}{a}$ , $\tan v=\frac{CA}{CN}=\frac{b}{2a-b}$ and $\tan \phi=\tan (v-u)=$

$\frac{\tan v-\tan u}{1+\tan u\tan v}=$ $\frac{\frac{b}{2a-b}-\frac{b-a}{a}}{1+\frac{b}{2a-b}\cdot\frac{b-a}{a}}=$ $\frac{ab+2a^{2}-3ab+b^{2}}{2a^{2}-2ab+b^{2}}=1\ .$ Therefore, $\boxed{\ \phi =45^{\circ}\ }\ .$ In the my opinion, this proof is very quickly !

Proof 3.3 (trigonometric).[/size] $\sin u=\frac{b-a}{BM}$ , $\cos u=\frac{a}{BM}$ , $\sin v=\frac{b}{AN}$ , $\cos v=\frac{2a-b}{AN}\ .$ Thus, $\sin \phi =\sin (v-u)=$

$\sin v\cos u-\sin u\cos v=$ $\frac{b}{AN}\cdot\frac{a}{BM}-\frac{b-a}{BM}\cdot \frac{2a-b}{AN}=$ $\frac{2a^{2}-2ab+b^{2}}{AN\cdot BM}=\frac{BM^{2}}{AN\cdot BM}=\frac{BM}{AN}=\frac{\sqrt 2}{2}$ , i.e. $\boxed{\ \phi =45^{\circ}\ }\ .$

Proof 4 (analytic).[/size] In an analytical system denote $C(0,0)$ , $B(a,0)$ , $A(0,b)$ where $a<b<2a\ .$ Thus, the slope of the line $BM$ is

$m=\frac{a-b}{a}$ and the slope of the line $AN$ is $n=\frac{b}{b-2a}$ . Therefore, $\tan \phi =\left|\frac{m-n}{1+mn}\right|=$ $\left|\frac{\frac{a-b}{a}-\frac{b}{b-2a}}{1+\frac{a-b}{a}\cdot\frac{b}{b-2a}}\right|=1$ , i.e. $\boxed{\ \phi =45^{\circ}\ }\ .$



PP10. Fie $\triangle ABC$ neisoscel si $E\in(AB)$ , $D\in(AC)$ astfel incat $BCDE$ este inscriptibil. Notam $O\in EC\cap BD$ si mijloacele $N$ , $P$ pentru

$(DE)$ , $(BC)$ respectiv. Sa se arate ca $AO$ este tangenta la cercul circumscris pentru $\triangle PON$ (concurs Nicolae Coculescu, baraj seniori).


Demonstratie. Fie mijlocul $M$ al lui $[AO]$ . Atunci $P\in MN$ . Omotetizam: $OR=2ON$ , $OQ=2OP$ ; $A\in RQ$ . Deoarece $BQCO$ este paralelogram, atunci $CQ=BO$ . Cum $\triangle EOD\sim\triangle BOC$

si $\triangle ADE\sim\triangle ABC$ , deducem $\displaystyle\frac{CQ}{EO}=\frac{BO}{EO}=\frac{BC}{ED}=\frac{AC}{AE}$ . Din $\angle AEO\equiv\angle ACQ$ reiese $\triangle AEO\sim\triangle ACQ$ . Deci $\angle AOE\equiv\angle AQC$ . Deoarece $\angle CQP\equiv\angle BOP\equiv\angle EON$ ,

obtinem $\angle AON\equiv\angle OQA\equiv\angle OPN$ , de unde rezulta concluzia.



PP11. Let an $A$-right $\triangle ABC$ with the length $r$ of its inradius. Denote $\left\{\begin{array}{ccc}
H\in BC & ; & AH\perp BC\\\\
D\in (HC) & ; & \widehat{DAH}\equiv\widehat{DAC}\\\\
P\in (AB) & ; & \mathrm m\left(\widehat {ADP}\right)=\phi\end{array}\right\|$ . Prove that $AP=2r\iff AP=AS\iff \phi =45^{\circ}$ , where $S\in DP\cap AH$ .

Proof. $\left\{\begin{array}{ccc}
\mathrm m\left(\widehat {BDA}\right)=\mathrm m\left(\widehat {DAC}\right)+\mathrm m\left(\widehat {DCA}\right) & \implies & \mathrm m\left(\widehat {BDA}\right)=\frac A2+C\\\\
\mathrm m\left(\widehat {BAD}\right)=\mathrm m\left(\widehat {BAH}\right)+\mathrm m\left(\widehat {HAD}\right) & \implies & \mathrm m\left(\widehat {BAD}\right)=C+\frac A2\end{array}\right\|\implies$ $\widehat {BDA}\equiv \widehat {BAD}\implies$ $\triangle ABD$ is $B$-isosceles, i.e. $DB=c\ ,\ DC=a-c$ and $DH=HC-DC=$

$\frac {b^2}a-(a-c)=$ $\frac {b^2-a^2+ac}a=\frac {ac-c^2}a\implies$ $\boxed{DH=\frac {c(a-c)}a}\ (*)$ . Apply the Menelaus' theorem to the transversal $\overline{DSP}/\triangle ABH\ :\ \frac {DH}{DB}$ $\cdot\frac {PB}{PA}\cdot\frac {SA}{SH}=$ $1\ \stackrel{(*)}{\iff}\ \boxed{\frac {SH}{SA}=\frac {a-c}a\cdot\frac {PB}{PA}}\ (1)$ .

Therefore, $AP=2r\ \stackrel{(1)}{\iff}\ \frac {SH}{SA}=$ $\frac {a-c}a\cdot \frac {c-(b+c-a)}{b+c-a}$ $\iff$ $\frac {SH}{(a-c)(a-b)}=\frac {SA}{a(b+c-a)}=$ $\frac {AH}{(a-c)(a-b)+a(b+c-a)}=$ $\frac {\frac {bc}a}{a^2-a(b+c)+bc+a(b+c)-a^2}=$ $\frac 1a\iff$

$ SA=b+c-a\iff$ $ SA=2r$ . In conclusion, $\boxed{AP=2r\iff AP=AS}$ (the triangle $PAS$ is $A$-isosceles) $\iff$ $\widehat{APS}\equiv\widehat{ASP}\iff$ $2\left(\phi +\frac B2\right)+C=180^{\circ}\iff$ $2\phi =A\iff$ $\boxed{\phi =45^{\circ}}$ .
This post has been edited 58 times. Last edited by Virgil Nicula, Nov 22, 2015, 2:21 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a